Articles | Volume 36, issue 2
https://doi.org/10.5194/ejm-36-279-2024
https://doi.org/10.5194/ejm-36-279-2024
Research article
 | 
15 Mar 2024
Research article |  | 15 Mar 2024

Halogen-bearing metasomatizing melt preserved in high-pressure (HP) eclogites of Pfaffenberg, Bohemian Massif

Alessia Borghini, Silvio Ferrero, Patrick J. O'Brien, Bernd Wunder, Peter Tollan, Jarosław Majka, Rico Fuchs, and Kerstin Gresky

Related authors

H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023,https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary

Related subject area

Metamorphic petrology
Pressure–temperature–time and REE mineral evolution in low- to medium-grade polymetamorphic units (Austroalpine Unit, Eastern Alps)
Marianne Sophie Hollinetz, Benjamin Huet, David A. Schneider, Christopher R. M. McFarlane, Ralf Schuster, Gerd Rantitsch, Philip Schantl, Christoph Iglseder, Martin Reiser, and Bernhard Grasemann
Eur. J. Mineral., 36, 943–983, https://doi.org/10.5194/ejm-36-943-2024,https://doi.org/10.5194/ejm-36-943-2024, 2024
Short summary
The composition of metapelitic biotite, white mica, and chlorite: a review with implications for solid-solution models
Benoît Dubacq and Jacob B. Forshaw
Eur. J. Mineral., 36, 657–685, https://doi.org/10.5194/ejm-36-657-2024,https://doi.org/10.5194/ejm-36-657-2024, 2024
Short summary
Comparison between 2D and 3D microstructures and implications for metamorphic constraints using a chloritoid–garnet-bearing mica schist
Fabiola Caso, Alessandro Petroccia, Sara Nerone, Andrea Maffeis, Alberto Corno, and Michele Zucali
Eur. J. Mineral., 36, 381–395, https://doi.org/10.5194/ejm-36-381-2024,https://doi.org/10.5194/ejm-36-381-2024, 2024
Short summary
Sedimentary protolith and high-P metamorphism of oxidized manganiferous quartzite from the Lanterman Range, northern Victoria Land, Antarctica
Taehwan Kim, Yoonsup Kim, Simone Tumiati, Daeyeong Kim, Keewook Yi, and Mi Jung Lee
Eur. J. Mineral., 36, 323–343, https://doi.org/10.5194/ejm-36-323-2024,https://doi.org/10.5194/ejm-36-323-2024, 2024
Short summary
Metamorphic evolution of sillimanite gneiss in the high-pressure terrane of the Western Gneiss Region (Norway)
Ane K. Engvik and Johannes Jakob
Eur. J. Mineral., 36, 345–360, https://doi.org/10.5194/ejm-36-345-2024,https://doi.org/10.5194/ejm-36-345-2024, 2024
Short summary

Cited articles

Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D., and Morgan VI, G. B.: Mechanisms of crustal anatexis: A geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain, J. Petrol., 51, 785–821, https://doi.org/10.1093/petrology/egp095, 2010. 
Acosta-Vigil, A., Buick, I., Cesare, B., London, D., and Morgan, G. B.: The extent of equilibration between melt and residuum during regional anatexis and its implications for differentiation of the continental crust: A study of partially melted metapelitic enclaves, J. Petrol., 53, 1319–1356, https://doi.org/10.1093/petrology/egs018, 2012. 
Andersen, T., O'Reilly, S. Y., and Griffin, W. L.: The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism, Contrib. Mineral. Petr., 88, 72–85, https://doi.org/10.1007/BF00371413, 1984. 
Antignano, A. and Manning, C. E.: Fluorapatite solubility in H2O and H2O-NaCl at 700 to 900 °C and 0.7 to 2.0 GPa, Chem. Geol., 251, 112–119, https://doi.org/10.1016/j.chemgeo.2008.03.001, 2008. 
Aranovich, L. Y., Newton, R. C., and Manning, C. E.: Brine-assisted anatexis: Experimental melting in the system haplogranite-H2O-NaCl-KCl at deep-crustal conditions, Earth Planet. Sc. Lett., 374, 111–120, https://doi.org/10.1016/j.epsl.2013.05.027, 2013. 
Download
Short summary
We studied primary granitic and halogen-rich melt inclusions trapped in mantle rocks in the Bohemian Massif (Germany) in order to retrieve important information about the nature of the melt and the source rock. The melt was produced by the partial melting of metasediments during the deepest stages of subduction and interacted with the mantle. This work is an excellent example of transfer of crustal material, volatiles in particular, in the mantle during the subduction of the continental crust.