Articles | Volume 36, issue 2
https://doi.org/10.5194/ejm-36-279-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-36-279-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Halogen-bearing metasomatizing melt preserved in high-pressure (HP) eclogites of Pfaffenberg, Bohemian Massif
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Kraków, 30-059 Kraków, Poland
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
Silvio Ferrero
Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, 09042 Monserrato, Italy
Museum für Naturkunde (MfN), Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
Patrick J. O'Brien
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
Bernd Wunder
Deutsches GeoForschungsZentrum (GFZ), 14473 Potsdam, Germany
Peter Tollan
Eidgenössische Technische Hochschule, ETH, 8092 Zürich, Switzerland
Jarosław Majka
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Kraków, 30-059 Kraków, Poland
Department of Earth Sciences, Uppsala University, 752-36 Uppsala, Sweden
Rico Fuchs
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
Kerstin Gresky
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
Related authors
Federica Boero, Stefano Ghignone, Mattia Gilio, Alessia Borghini, Emanuele Scaramuzzo, Ivano Gasco, and Marco Bruno
Eur. J. Mineral., 37, 927–936, https://doi.org/10.5194/ejm-37-927-2025, https://doi.org/10.5194/ejm-37-927-2025, 2025
Short summary
Short summary
We report a new ultra-high-pressure (UHP) locality in the western Alps (Italy). Micro-Raman analyses of garnet-hosted inclusions reveal the metamorphic evolution from the prograde path to exhumation. The finding of coesite in the Internal Piedmont Zone (IPZ) meta-ophiolites of Orco Valley suggests that UHP localities represent remnants of a former level that underwent comparable conditions in the coesite stability field in the oceanic slab, from Lago di Cignana to Monviso Massif.
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Federica Boero, Stefano Ghignone, Mattia Gilio, Alessia Borghini, Emanuele Scaramuzzo, Ivano Gasco, and Marco Bruno
Eur. J. Mineral., 37, 927–936, https://doi.org/10.5194/ejm-37-927-2025, https://doi.org/10.5194/ejm-37-927-2025, 2025
Short summary
Short summary
We report a new ultra-high-pressure (UHP) locality in the western Alps (Italy). Micro-Raman analyses of garnet-hosted inclusions reveal the metamorphic evolution from the prograde path to exhumation. The finding of coesite in the Internal Piedmont Zone (IPZ) meta-ophiolites of Orco Valley suggests that UHP localities represent remnants of a former level that underwent comparable conditions in the coesite stability field in the oceanic slab, from Lago di Cignana to Monviso Massif.
Monika Koch-Müller, Christian Lathe, Bernd Wunder, Oona Appelt, Shrikant Bhat, Andreas Ebert, Robert Farla, Vladimir Roddatis, Anja Schreiber, and Richard Wirth
Eur. J. Mineral., 36, 1023–1036, https://doi.org/10.5194/ejm-36-1023-2024, https://doi.org/10.5194/ejm-36-1023-2024, 2024
Short summary
Short summary
We examined the influence of Al2O3 and H2O on the position of the coesite–stishovite transition by means of in situ X‑ray diffraction measurements with the large-volume press at the synchrotron PETRA III in Hamburg. The position of the transition was found to be shifted almost in parallel by about 1.5 GPa to lower pressures compared to results for the pure SiO2 system by Ono et al. (2017). Stishovite of this study containing Al and H is only partially quenchable but transforms back to coesite.
Ross J. Angel, Matteo Alvaro, and Silvio Ferrero
Eur. J. Mineral., 36, 411–415, https://doi.org/10.5194/ejm-36-411-2024, https://doi.org/10.5194/ejm-36-411-2024, 2024
Short summary
Short summary
Inclusions in natural rocks are an invaluable asset for geoscientists because they provide information about processes in the Earth's history that are otherwise hidden or subsequently overprinted. In this paper we review the development over the last 200 years of the concepts and methods to measure the remnant pressures in mineral inclusions and how they can be used to determine pressures and temperatures at which the inclusions were formed deep within the Earth.
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Christian Lathe, Monika Koch-Müller, Bernd Wunder, Oona Appelt, Shrikant Bhat, and Robert Farla
Eur. J. Mineral., 34, 201–213, https://doi.org/10.5194/ejm-34-201-2022, https://doi.org/10.5194/ejm-34-201-2022, 2022
Short summary
Short summary
The equilibrium phase of A + HP clinoenstatite = forsterite + water was experimentally investigated at aH2O = 1 in situ. In cold subducting slabs, it is of relevance to transport water to large depths, initiating the formation of dense hydrous magnesium silicate (DHMS). At normal gradients, the huge water amount from this reaction induces important processes within the overlying mantle wedge. We additionally discuss the relevance of this reaction for intermediate-depth earthquake formation.
Monika Koch-Müller, Oona Appelt, Bernd Wunder, and Richard Wirth
Eur. J. Mineral., 33, 675–686, https://doi.org/10.5194/ejm-33-675-2021, https://doi.org/10.5194/ejm-33-675-2021, 2021
Short summary
Short summary
Dense hydrous magnesium silicates, like the 3.65 Å phase, are thought to cause deep earthquakes. We investigated the dehydration of the 3.65 Å phase at P and T. In both directions of the investigated simple reaction, additional metastable water-rich phases occur. The observed extreme reduction in grain size in the dehydration experiments might cause mechanical instabilities in the Earth’s mantle and, finally, induce earthquakes.
Cited articles
Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D., and Morgan VI, G. B.: Mechanisms of crustal anatexis: A geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain, J. Petrol., 51, 785–821, https://doi.org/10.1093/petrology/egp095, 2010.
Acosta-Vigil, A., Buick, I., Cesare, B., London, D., and Morgan, G. B.: The extent of equilibration between melt and residuum during regional anatexis and its implications for differentiation of the continental crust: A study of partially melted metapelitic enclaves, J. Petrol., 53, 1319–1356, https://doi.org/10.1093/petrology/egs018, 2012.
Andersen, T., O'Reilly, S. Y., and Griffin, W. L.: The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism, Contrib. Mineral. Petr., 88, 72–85, https://doi.org/10.1007/BF00371413, 1984.
Antignano, A. and Manning, C. E.: Fluorapatite solubility in H2O and H2O-NaCl at 700 to 900 °C and 0.7 to 2.0 GPa, Chem. Geol., 251, 112–119, https://doi.org/10.1016/j.chemgeo.2008.03.001, 2008.
Aranovich, L. Y., Newton, R. C., and Manning, C. E.: Brine-assisted anatexis: Experimental melting in the system haplogranite-H2O-NaCl-KCl at deep-crustal conditions, Earth Planet. Sc. Lett., 374, 111–120, https://doi.org/10.1016/j.epsl.2013.05.027, 2013.
Aranovich, L. Y., Makhluf, A. R., Manning, C. E., and Newton, R. C.: Dehydration melting and the relationship between granites and granulites, Precambrian Res., 253, 26–37, https://doi.org/10.1016/j.precamres.2014.07.004, 2014.
Bali, E., Szabó, C., Vaselli, O., and Török, K.: Significance of silicate melt pockets in upper mantle xenoliths from the Bakony – Balaton Highland Volcanic Field, Western Hungary, Lithos, 61, 79–102, https://doi.org/10.1016/S0024-4937(01)00075-5, 2002.
Barnes, J. D., Manning, C. E., Scambelluri, M., and Selverstone, J.: The behaviour of halogens during subduction-zone processes, Springer Geochemistry, Springer, Cham, 545–590, https://doi.org/10.1007/978-3-319-61667-4_8, 2018.
Bartoli, O., Cesare, B., Poli, S., Acosta-Vigil, A., Esposito, R., Turina, A., Bodnar, R. J., Angel, R. J., and Hunter, J.: Nanogranite inclusions in migmatitic garnet: Behaviour during piston-cylinder remelting experiments, Geofluids, 13, 405–420, https://doi.org/10.1111/gfl.12038, 2013.
Bartoli, O., Cesare, B., Remusat, L., Acosta-Vigil, A., and Poli, S.: The H2O content of granite embryos, Earth Planet. Sc. Lett., 395, 281–290, 2014.
Bartoli, O., Acosta-Vigil, A., Ferrero, S., and Cesare, B.: Granitoid magmas preserved as melt inclusions in high-grade metamorphic rocks, Am. Mineral., 101, 1543–1559, https://doi.org/10.2138/am-2016-5541CCBYNCND, 2016.
Bartoli, O., Acosta-Vigil, A., Cesare, B., Remusat, L., Gonzalez-Cano, A., Wälle, M., Tajčmanová, L., and Langone, A.: Geochemistry of Eocene-Early Oligocene low-temperature crustal melts from Greater Himalayan Sequence (Nepal): a nanogranitoid perspective, Contrib. Mineral. Petr., 174, 82, https://doi.org/10.1007/s00410-019-1622-2, 2019.
Beard, J. S. and Lofgren, G. E.: Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb, J. Petrol., 32, 365–401, https://doi.org/10.1093/petrology/32.2.365, 1991.
Bebout, G. E.: Metasomatism in Subduction Zones of Subducted Oceanic Slabs, Mantle Wedges, and the Slab-Mantle Interface, in: Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes, Springer Berlin Heidelberg, Berlin, Heidelberg, 289–349, https://doi.org/10.1007/978-3-642-28394-9_9, 2013.
Bodinier, J. L., Vasseur, G., Vernieres, J., Dupuy, C., and Fabries, J.: Mechanisms of mantle metasomatism: Geochemical evidence from the Lherz orogenic peridotite, J. Petrol., 31, 597–628, 1990.
Bodinier, J. L., Garrido, C. J., Chanefo, I., Bruguier, O., and Gervilla, F.: Origin of pyroxenite-peridotite veined mantle by refertilization reactions: Evidence from the Ronda peridotite (Southern Spain), J. Petrol., 49, 999–1025, https://doi.org/10.1093/petrology/egn014, 2008.
Borghini, A., Ferrero, S., Wunder, B., Laurent, O., O'Brien, P. J., and Ziemann, M. A.: Granitoid melt inclusions in orogenic peridotite and the origin of garnet clinopyroxenite, Geology, 46, 1007–1010, https://doi.org/10.1130/G45316.1, 2018.
Borghini, A., Ferrero, S., Brien, P. J. O., Günter, C., Ziemann, M. A., O'Brien, P. J., Laurent, O., Günter, C., and Ziemann, M. A.: Cryptic metasomatic agent measured in situ in Variscan mantle rocks: Melt inclusions in garnet of eclogite, Granulitgebirge, Germany, J. Metamorph. Geol., 38, 207–234, https://doi.org/10.1111/jmg.12519, 2020.
Borghini, A., Nicoli, G., Ferrero, S., O'Brien, P. J., Laurent, O., Remusat, L., Borghini, G., and Milani, S.: The role of continental subduction in mantle metasomatism and carbon recycling revealed by melt inclusions in UHP eclogites, Sci. Adv., 9, eabp9482, https://doi.org/10.1126/sciadv.abp9482, 2023.
Borghini, G., Rampone, E., Zanetti, A., Class, C., Cipriani, A., Hofmann, A. W., and Goldstein, S. L.: Pyroxenite layers in the northern apennines' upper mantle (Italy)-Generation by pyroxenite melting and melt infiltration, J. Petrol., 57, 625–653, https://doi.org/10.1093/petrology/egv074, 2016.
Bose, K. and Ganguly, J.: Quartz-coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermochemical properties, Am. Mineral., 80, 231–238, 1995.
Brown, M.: Some thoughts about eclogites and related rocks, Eur. J. Mineral., 35, 523–547, https://doi.org/10.5194/ejm-35-523-2023, 2023.
Carvalho, B. B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., Capizzi, L. S., and Poli, S.: Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy), J. Metamorph. Geol., 37, 1–25, https://doi.org/10.1111/jmg.12463, 2018.
Carvalho, B. B., Bartoli, O., Cesare, B., Tacchetto, T., Gianola, O., Ferri, F., Aradi, L. E., and Szabó, C.: Primary CO2-bearing fluid inclusions in granulitic garnet usually do not survive, Earth Planet. Sc. Lett., 536, 116170, https://doi.org/10.1016/j.epsl.2020.116170, 2020.
Cesare, B., Acosta-Vigil, A., Bartoli, O., and Ferrero, S.: What can we learn from melt inclusions in migmatites and granulites?, Lithos, 239, 186–216, https://doi.org/10.1016/j.lithos.2015.09.028, 2015.
Chen, Y. X., Zheng, Y. F., Gao, X. Y., and Hu, Z.: Multiphase solid inclusions in zoisite-bearing eclogite: Evidence for partial melting of ultrahigh-pressure metamorphic rocks during continental collision, Lithos, 200–201, 1–21, https://doi.org/10.1016/j.lithos.2014.04.004, 2014.
Čopjaková, R. and Kotková, J.: Composition of barian mica in multiphase solid inclusions from orogenic garnet peridotites as evidence of mantle metasomatism in a subduction zone setting, Contrib. Mineral. Petrol., 173, 641–646, https://doi.org/10.1007/s00410-018-1534-6, 2018.
Dallai, L., Bianchini, G., Avanzinelli, R., Deloule, E., Natali, C., Gaeta, M., Cavallo, A., and Conticelli, S.: Quartz-bearing rhyolitic melts in the Earth's mantle, Nat. Commun., 13, 7765, https://doi.org/10.1038/s41467-022-35382-3, 2022.
Faryad, S. W., Jedlicka, R., and Ettinger, K.: Subduction of lithospheric upper mantle recorded by solid phase inclusions and compositional zoning in garnet: Example from the Bohemian Massif, Gondwana Res., 23, 944–955, https://doi.org/10.1016/j.gr.2012.05.014, 2013.
Ferrero, S. and Angel, R. J.: Micropetrology: Are inclusions grains of truth?, J. Petrol., 59, 1671–1700, https://doi.org/10.1093/petrology/egy075, 2018.
Ferrero, S., Wunder, B., Walczak, K., O'Brien, P. J., and Ziemann, M. A.: Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths, Geology, 43, 447–450, https://doi.org/10.1130/G36534.1, 2015.
Ferrero, S., Ziemann, M. A., Angel, R. J., O'Brien, P. J., and Wunder, B.: Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not an evidence for ultrahigh-pressure conditions, Contrib. Mineral. Petrol., 171, 1–12, https://doi.org/10.1007/s00410-015-1220-x, 2016.
Ferrero, S., O'Brien, P. J., Borghini, A., Wunder, B., Wälle, M., Günter, C., and Ziemann, M. A.: A treasure chest full of nanogranitoids: an archive to investigate crustal melting in the Bohemian Massif, in: Metamorphic Geology: Microscale to Mountain Belts, Geol. Soc. Lond. Spec. Publ., 478, 13–38, https://doi.org/10.1144/SP478.19, 2018.
Ferrero, S., Wannhoff, I., Laurent, O., Yakymchuk, C., Darling, R., Wunder, B., Borghini, A., and O'Brien, P. J.: Embryos of TTGs in Gore Mountain garnet megacrysts from water-fluxed melting of the lower crust, Earth Planet. Sc. Lett., 569, 117058, https://doi.org/10.1016/j.epsl.2021.117058, 2021a.
Ferrero, S., Ague, J. J., O'Brien, P. J., Wunder, B., Remusat, L., Ziemann, M. A., and Axler, J.: High pressure, halogen-bearing melt preserved in ultra-high temperature felsic granulites of the Central Maine terrane, Connecticut (US), Am. Mineral., 106, 1225–1236, https://doi.org/10.2138/am-2021-7690, 2021b.
Ferrero, S., Borghini, A., Remusat, L., Nicoli, G., Wunder, B., and Braga, R.: H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks, Europ. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, 2023.
Ferri, F., Cesare, B., Bartoli, O., Ferrero, S., Palmeri, R., Remusat, L., and Poli, S.: Melt inclusions at Mt. Edixon (Antartica): Chemistry, petrology and implications for the evolution of the Lantmann range, Lithos, 374/375, 105685, https://doi.org/10.1016/j.lithos.2020.105685, 2020.
Franke, W.: The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution, Geol. Soc. Lond. Spec. Publ., 179, 35–61, https://doi.org/10.1144/gsl.sp.2000.179.01.05, 2000.
Frezzotti, M. L., Tecce, F., and Casagli, A.: Raman spectroscopy for fluid inclusion analysis, J. Geochem. Explor., 112, 1–20, https://doi.org/10.1016/j.gexplo.2011.09.009, 2012.
Frost, B. R. and Frost, C. D.: A geochemical classification for feldspathic igneous rocks, J. Petrol., 49, 1955–1969, https://doi.org/10.1093/petrology/egn054, 2008.
Gao, X. Y., Zheng, Y. F., and Chen, Y. X.: Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet, J. Metamorph. Geol., 30, 193–212, https://doi.org/10.1111/j.1525-1314.2011.00962.x, 2012.
Gao, X. Y., Zheng, Y. F., Chen, Y. X., and Hu, Z.: Trace element composition of continentally subducted slab-derived melt: Insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen, J. Metamorph. Geol., 31, 453–468, https://doi.org/10.1111/jmg.12029, 2013.
Gao, X. Y., Zheng, Y. F., Chen, Y. X., and Hu, Z.: Composite carbonate and silicate multiphase solid inclusions in metamorphic garnet from ultrahigh-P eclogite in the Dabie orogen, J. Metamorph. Geol., 32, 961–980, https://doi.org/10.1111/jmg.12102, 2014.
Gianola, O., Bartoli, O., Ferri, F., Galli, A., Ferrero, S., Capizzi, L. S., Liebske, C., and Remusat: Anatectic melt inclusions in ultra high temperature granulites, J. Metamorph. Geol., 39, 321–342 https://doi.org/10.1111/jmg.12567, 2020.
Golovin, A. V and Sharygin, V. V: Petrogenetic analysis of fluid and melt inclusions in minerals from mantle xenoliths from the Bele pipe basanites (North Minusa depression), Russ. Geol. Geophys., 48, 811–824, 2007.
Guillong, M., Meier, D. L., Allan, M. M., Heinrich, C. A., and Yardley, B. W. D.: SILLS: A Matlab-based program for the reduction of laser ablation ICP–MS data of homogeneous materials and inclusions, Mineral. Assoc. Can.Short Cours., 40, 328–333, 2008.
Guzmics, T., Zajacz, Z., Kodolányi, J., Halter, W., and Szabó, C.: LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth's mantle, Geochim. Cosmochim. Ac., 72, 1864–1886, https://doi.org/10.1016/j.gca.2008.01.024, 2008.
Hagen, B., Hoernes, S., and Rötzler, J.: Geothermometry of the ultrahigh-temperature Saxon granulites revisited, Part II: Thermal peak conditions and cooling rates inferred from oxygen-isotope fractionations, Europ. J. Mineral., 20, 1117–1133, https://doi.org/10.1127/0935-1221/2008/0020-1858, 2008.
Halter, W. E., Pettke, T., Heinrich, C. A., and Rothen-Rutishauser, B.: Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification, Chem. Geol., 183, 63–86, https://doi.org/10.1016/S0009-2541(01)00372-2, 2002.
Hanley, J. J. and Koga, K. T.: Halogens in terrestrial and cosmic geochemical systems: Abundances, geochemical behaviours, and analytical methods, Springer Geochemistry, Springer, Cham, 21–121, https://doi.org/10.1007/978-3-319-61667-4_2, 2018.
Harlov, D. E. and Aranovich, L.: The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle, Springer, https://doi.org/10.1007/978-3-319-61667-4, 2018.
Harlov, D. E. and Austrheim, H.: Metasomatism and the chemical transformation of rock: Rock-mineral-fluid interaction in terrestrial and extraterrestrial environments, in: Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes, Springer Berlin Heidelberg, Berlin, Heidelberg, 1–16, https://doi.org/10.1007/978-3-642-28394-9_1, 2013.
Hermann, J.: Allanite: thorium and light rare earth element carrier in subducted crust, Chem Geol, 192, 289–306, 2002.
Hughes, L., Burgess, R., Chavrit, D., Pawley, A., Tartèse, R., Droop, G., Ballentine, C. J., and Lyon, I.: Halogen behaviour in subduction zones: Eclogite facies rocks from the Western and Central Alps, Geochim. Cosmochim. Ac., 243, 1–23, https://doi.org/10.1016/j.gca.2018.09.024, 2018.
Hughes, L., Cuthbert, S., Quas-Cohen, A., Ruzié-Hamilton, L., Pawley, A., Droop, G., Lyon, I., Tartèse, R., and Burgess, R.: Halogens in eclogite facies minerals from the Western Gneiss Region, Norway, Minerals, 11, 1–33, https://doi.org/10.3390/min11070760, 2021.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and Enzweiler, J.: Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines, Geostand. Geoanal. Res., 35, 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Johannes, W. and Holtz, F.: Petrogenesis and Experimental Petrology of Granitic Rocks, Springer, Berlin, https://doi.org/10.1007/978-3-642-61049-3, 1996.
John, T., Gussone, N., Podladchikov, Y. Y., Bebout, G. E., Dohmen, R., Halama, R., Klemd, R., Magna, T., and Seitz, H. M.: Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs, Nat. Geosci., 5, 489–492, https://doi.org/10.1038/ngeo1482, 2012.
Kendrick, M. A., Woodhead, J. D., and Kamenetsky, V. S.: Tracking halogens through the subduction cycle, Geology, 40, 1075–1078, https://doi.org/10.1130/G33265.1, 2012.
Klemd, R.: Metasomatism During High-Pressure Metamorphism: Eclogites and Blueschist-Facies Rocks, in: Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes, Springer Berlin Heidelberg, Berlin, Heidelberg, 351–413, https://doi.org/10.1007/978-3-642-28394-9_10, 2013.
Kobayashi, M., Sumino, H., Burgess, R., Nakai, S., Iizuka, T., Nagao, J., Kagi, H., Nakamura, M., Takahashi, E., Kogiso, T., and Ballentine, C. J.: Halogen heterogeneity in the lithosphere and evolution of mantle halogen abundances inferred from intraplate mantle xenoliths, Geochem. Geophy. Geosy., 20, 952–973, https://doi.org/10.1029/2018GC007903, 2019.
Kotková, J., O'Brien, P. J., and Ziemann, M. A.: Diamond and coesite discovered in Saxony-type granulite: Solution to the Variscan garnet peridotite enigma, Geology, 39, 667–670, https://doi.org/10.1130/G31971.1, 2011.
Lamadrid, H. M. and Steele-MacInnis, M.: Crustal melting: Deep, hot, and salty, Am. Mineral., 106, 1193–1194, https://doi.org/10.2138/am-2022-8108, 2021.
Laurie, A. and Stevens, G.: Water-present eclogite melting to produce Earth's early felsic crust, Chem. Geol., 314–317, 83–95, https://doi.org/10.1016/j.chemgeo.2012.05.001, 2012.
Li, H. and Hermann: Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 °C: A new experimentally derived thermodynamic model, Am. Mineral., 102, 580–594, https://doi.org/10.2138/am-2017-5891, 2017.
Liptai, N., Berkesi, M., Patkó, L., Bodnar, R. J., O'Reilly, S. Y., Griffin, W. L., and Szabó, C.: Characterization of the metasomatizing agent in the upper mantle beneath the northern Pannonian Basin based on Raman imaging, FIB-SEM, and LA-ICP-MS analyses of silicate melt inclusions in spinel peridotite, Am. Mineral., 106, 685–700, https://doi.org/10.2138/am-2021-7292, 2021.
Liu, P., Zhang, J., Massonne, H. J., and Jin, Z.: Polyphase solid-inclusions formed by interactions between infiltrating fluids and precursor minerals enclosed in garnet of UHP rocks from the Dabie Shan, China, Am. Mineral., 103, 1663–1673, https://doi.org/10.2138/am-2018-6395, 2018.
Malaspina, N., Hermann, J., Scambelluri, M., and Compagnoni, R.: Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite, Earth Planet. Sc. Lett., 249, 173–187, https://doi.org/10.1016/j.epsl.2006.07.017, 2006.
Malaspina, N., Hermann, J., and Scambelluri, M.: Fluid/mineral interaction in UHP garnet peridotite, Lithos, 107, 38–52, https://doi.org/10.1016/j.lithos.2008.07.006, 2009.
Massonne, H. J. and Bautsch, H. J.: An unusual garnet pyroxenite from the Granulitgebirge, Germany: Origin in the transition zone (> 400 km depths) or in a shallower upper mantle region?, Int. Geol. Rev., 44, 779–796, https://doi.org/10.2747/0020-6814.44.9.779, 2002.
Massonne, H.-J. J.: First find of coesite in the ultrahigh-pressure metamorphic area of the central Erzgebirge, Germany, Europ. J. Mineral., 13, 565–570, https://doi.org/10.1127/0935-1221/2001/0013-0565, 2001.
Matusiak-Małek, M., Puziewicz, J., Ntaflos, T., Grégoire, M., and Downes, H.: Metasomatic effects in the lithospheric mantle beneath the NE Bohemian Massif: A case study of Lutynia (SW Poland) peridotite xenoliths, Lithos, 117, 49–60, https://doi.org/10.1016/j.lithos.2010.02.005, 2010.
McDonough, W. F. and Sun, S.-S.: The composition of the Earth, Chem. Geol., 120, 223–253, 1995.
Morgan, G. B. and London, D.: Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses, Am. Mineral., 90, 1131–1138, 2005.
Naemura, K., Ikuta, D., Kagi, H., Odake, S., Ueda, T., Ohi, S., Kobayashi, T., Svojtka, M., and Hirajima, T.: Diamond and other possible ultradeep evidence discovered in the orogenic spinel-garnet peridotite from the Moldanubian Zone of the Bohemian Massif, Czech Republic, in: Ultrahigh-Pressure Metamorphism, Elsevier, 77–111, https://doi.org/10.1016/B978-0-12-385144-4.00002-3, 2011.
Naemura, K., Hirajima, T., Svojtka, M., Shimizu, I., and Iizuka, T.: Fossilized melts in mantle wedge peridotites, Sci. Rep., 8, 1–12, https://doi.org/10.1038/s41598-018-28264-6, 2018.
Nasdala, L. and Massonne, H.-J.: Microdiamonds from the Saxonian Erzgebirge, Germany: In situ micro-Raman characterisation, Europ. J. Mineral., 12, 495–498, https://doi.org/10.1127/0935-1221/2000/0012-0495, 2000.
Németh, B., Török, K., Bali, E., Zajacz, Z., Fodor, L., and Szabó, C.: Melt-rock interaction in the lower crust based on silicate melt inclusions in mafic garnet granulite xenoliths, Bakony–Balaton Highland Volcanic Field (Hungary), Geol. Carpath., 72, 232–252, https://doi.org/10.31577/GEOLCARP.72.3.4, 2021.
Nicoli, G. and Ferrero, S.: Nanorocks, volatiles and plate tectonics, Geosci. Front., 12, 101188, https://doi.org/10.1016/j.gsf.2021.101188, 2021.
Nicoli, G., Gresky, K., and Ferrero, S.: Mesoarchean melt and fluid inclusions in garnet from the Kangerlussuaq basement, Southeast Greenland, Mineralogia, 53, 1–9, https://doi.org/10.2478/mipo-2022-0001, 2022a.
Nicoli, G., Borghini, A., and Ferrero, S.: The carbon budget of crustal reworking during continental collision: Clues from nanorocks and fluid inclusions, Chem. Geol., 608, 121025, https://doi.org/10.1016/j.chemgeo.2022.121025, 2022b.
O'Brien, P. J.: The fundamental Variscan problem: High-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures, Geol. Soc. Spec. Publ., 179, 369–386, https://doi.org/10.1144/GSL.SP.2000.179.01.22, 2000.
O'Brien, P. J.: Type-locality granulites: High-pressure rocks formed at eclogite-facies conditions, Mineral. Petrol., 86, 161–175, https://doi.org/10.1007/s00710-005-0108-2, 2006.
O'Brien, P. J.: Challenges in high-pressure granulite metamorphism in the era of pseudosections: Reaction textures, compositional zoning and tectonic interpretation with examples from the Bohemian Massif, J. Metamorph. Geol., 26, 235–251, https://doi.org/10.1111/j.1525-1314.2007.00758.x, 2008.
O'Brien, P. J. and Carswell, D. A.: Tectonometamorphic evolution of the Bohemian Massif: Evidence from high-pressure metamorphic rocks, Geol. Rundsch., 82, 531–555, 1993.
O'Brien, P. J. and Rötzler, J.: High-pressure granulites: Formation, recovery of peak conditions and implications for tectonics, J. Metamorph. Geol., 21, 3–20, https://doi.org/10.1046/j.1525-1314.2003.00420.x, 2003.
O'Reilly, S. Y. and Griffin, W. L.: Mantle metasomatism, Metasomatism and the chemical transformation of rock, Lecture Notes in Earth System Sciences, Springer, Berlin, Heidelberg, 471–533, https://doi.org/10.1007/978-3-642-28394-9_12, 2013.
Pagé, L., Hattori, K., Hoog, J. C. M. De, and Okay, A. I.: Halogen (F, Cl, Br, I) behaviour in subducting slabs: A study of lawsonite blueschists in western Turkey, Earth Planet. Sc. Lett., 442, 133–142, 2016.
Perraki, M. and Faryad, S. W.: First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: Implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif, Lithos, 202/203, 157–166, https://doi.org/10.1016/j.lithos.2014.05.025, 2014.
Plank, T. and Langmuir, C. H.: The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325–394, 1998.
Puziewicz, J., Matusiak-Małek, M., Ntaflos, T., Grégoire, M., Kaczmarek, M. A., Aulbach, S., Ziobro, M., and Kukuła, A.: Three major types of subcontinental lithospheric mantle beneath the Variscan orogen in Europe, Lithos, 362–363, 105467, https://doi.org/10.1016/j.lithos.2020.105467, 2020.
Rapp, R. P. and Watson, E. B.: Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling, J. Petrol., 36, 891–931, https://doi.org/10.1093/petrology/36.4.891, 1995.
Rapp, R. P., Watson, E. B., and Miller, C. F.: Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites, Precambrian. Res., 51, 1–25, https://doi.org/10.1016/0301-9268(91)90092-O, 1991.
Reinhardt, J. and Kleemann, U.: Extensional unroofing of granulitic lower crust and related low-pressure, high-temperature metamorphism in the Saxonian Granulite Massif, Germany, Tectonophysics, 238, 71–94, https://doi.org/10.1016/0040-1951(94)90050-7, 1994.
Rötzler, J. and Romer: P-T-t Evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany, Part I: Petrology, J. Petrol., 42, 1995–2013, 2001.
Rötzler, J., Hagen, B., and Hoernes, S.: Geothermometry of the ultrahigh-temperature Saxon granulites revisited, Part I: New evidence from key mineral assemblages and reaction textures, Europ. J. Mineral., 20, 1097–1115, https://doi.org/10.1127/0935-1221/2008/0020-1857, 2008.
Rudnick, R. L. and Gao, S.: Composition of the Continental Crust, Treat. Geochem., 3, 1–64, https://doi.org/10.1016/B0-08-043751-6/03016-4, 2003.
Safonov, O. G., Tatarinova, D. S., van Reenen, D. D., Golunova, M. A., and Yapaskurt, V. O.: Fluid-assisted interaction of peraluminous metapelites with trondhjemitic magma within the Petronella shear-zone, Limpopo Complex, South Africa, Precambrian. Res., 253, 114–145, https://doi.org/10.1016/j.precamres.2014.06.006, 2014.
Sajona, F. G., Maury, R. C., Prouteau, G., Cotten, J., Schiano, P., Bellon, H., and Fontaine, L.: Slab melt as metasomatic agent in island arc magma mantle sources, Negros and Batan (Phillipines), Island Arc., 9, 472–486, https://doi.org/10.1111/j.1440-1738.2000.00295.x, 2000.
Schiano, P., Clocchiattit, R., Shimizut, N., Maury, R. C., Hofmann, K. P. J. B. A. W., Clocchiatti, R., Shimizu, N., Maury, R. C., Jochum, K. P., and Hofmann, A. W.: Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas, Nature, 377, 595–600, https://doi.org/10.1038/377595a0, 1995.
Schmädicke, E., Gose, J., and Will, T. M.: The P-T evolution of ultra high temperature garnet-bearing ultramafic rocks from the Saxonian Granulitgebirge Core Complex, Bohemian Massif, J. Metamorph. Geol., 28, 489–508, https://doi.org/10.1111/j.1525-1314.2010.00876.x, 2010.
Schmidt, M. W., Vielzeuf, D., and Auzanneau, E.: Melting and dissolution of subducting crust at high pressures: The key role of white mica, Earth Planet. Sc. Lett., 228, 65–84, https://doi.org/10.1016/j.epsl.2004.09.020, 2004.
Schönig, J., von Eynatten, H., Meinhold, G., Lünsdorf, N. K., Willner, A. P., and Schulz, B.: Deep subduction of felsic rocks hosting UHP lenses in the central Saxonian Erzgebirge: Implications for UHP terrane exhumation, Gondwana Res., 98, 320–323, https://doi.org/10.1016/j.gr.2020.12.029, 2021.
Schulmann, K., Lexa, O., Janoušek, V., Lardeaux, J. M., and Edel, J. B.: Anatomy of a diffuse cryptic suture zone: An example from the Bohemian Massif, European Variscides, Geology, 42, 275–278, https://doi.org/10.1130/G35290.1, 2014.
Scott, J. M., Konrad-Schmolke, M., O'Brien, P. J., and Günter, C.: High-T, low-P formation of rare olivine-bearing symplectites in Variscan eclogite, J. Petrol., 54, 1375–1398, https://doi.org/10.1093/petrology/egt015, 2013.
Skjerlie, K. P. and Patiño Douce, A. E.: The Fluid-absent Partial Melting of a Zoisite-bearing Quartz Eclogite from 1.0 to 3.2 GPa; Implications for Melting in Thickened Continental Crust and for Subduction-zone Processes, J. Petrol., 43, 291–314, https://doi.org/10.1093/petrology/43.2.291, 2002.
Skora, S., Blundy, J. D., Brooker, R. A., Green, E. C. R., de Hoog, J. C. M., and Connolly, J. A. D.: Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions, J. Petrol., 56, 953–980, https://doi.org/10.1093/petrology/egv024, 2015.
Spear, F. S. and Pyle, J. M.: Apatite, monazite, and xenotime in metamorphic rocks, Rev. Mineral. Geochem., 481, 293–335, 2002.
Stepanov, A. S., Hermann, J., Rubatto, D., Korsakov, A. V, and Danyushevsky, L. V: Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in garnet, Kokchetav Massif, Kazakhstan, J. Petrol., 57, 1531–1554, https://doi.org/10.1093/petrology/egw049, 2016.
Sun, S.-S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geol. Soc. Lond. Spec. Publ., 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Svensen, H., Jamtveit, B., Banks, D. A., and Austrheim, H.: Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway, J. Metamorph. Geol., 19, 165–178, 2001.
Svojtka, M., Ackerman, L., Medaris, L. G., Hegner, E., Valley, J. W., Hirajima, T., Jelínek, E., and Hrstka, T.: Petrological, geochemical and Sr-Nd-O isotopic constraints on the origin of garnet and spinel pyroxenites from the Moldanubian zone of the Bohemian Massif, J. Petrol., 57, 897–920, https://doi.org/10.1093/petrology/egw025, 2016.
Urann, B. M., Roux, V. Le, John, T., Beaudoin, G. M., and Barnes, J. D.: The distribution and abundance of halogens in eclogites: An in situ SIMS perspective of the Raspas Complex (Ecuador), Am. Mineral., 105, 307–318, https://doi.org/10.2138/am-2020-6994, 2020.
Vrijmoed, J. C., Austrheim, H., John, T., Hin, R. C., Corfu, F., and Davies, G. R.: Metasomatism in the ultrahigh-pressure Svartberget garnet-peridotite (Western Gneiss Region, Norway): Implications for the transport of crust-derived fluids within the mantle, J. Petrol., 54, 1815–1848, https://doi.org/10.1093/petrology/egt032, 2013.
Warr, L. N.: IMA–CNMNC approved mineral symbols, Mineral. Mag., 85, 291–320, https://doi.org/10.1180/mgm.2021.43, 2021.
Wulff-Pedersen, E., Neumann, E. R., and Jensen, B. B.: The upper mantle under La Palma, Canary Islands: Formation of Si–K–Na-rich melt and its importance as a metasomatic agent, Contrib. Mineral. Petrol., 125, 113–139, https://doi.org/10.1007/s004100050210, 1996.
Zanetti, A., Mazzucchelli, M., Rivalenti, G., and Vannucci, R.: The Finero phlogopite-peridotite massif: An example of subduction-related metasomatism, Contrib. Mineral. Petrol., 134, 107–122, https://doi.org/10.1007/s004100050472, 1999.
Zelinkova, T., Racek, M., and Abart, R.: Compositional trends in Ba-, Ti-, and Cl-rich micas from metasomatized mantle rocks of the Gföhl Unit, Bohemian Massif, Austria, Am. Mineral., 108, 1840–1851, https://doi.org/10.2138/am-2022-8746, 2023.
Zhao, Y., Zheng, J. P., and Xiong, Q.: Prolonged slab-derived silicate and carbonate metasomatism of a cratonic mantle wedge (Maowu ultramafic body, China), J. Petrol., 62, 1–25, https://doi.org/10.1093/petrology/egab081, 2021.
Zheng, Y. and Hermann, J.: Geochemistry of continental subduction-zone fluids, Earth Planet. Space, 66, 1–16, https://doi.org/10.1186/1880-5981-66-93, 2014.
Short summary
We studied primary granitic and halogen-rich melt inclusions trapped in mantle rocks in the Bohemian Massif (Germany) in order to retrieve important information about the nature of the melt and the source rock. The melt was produced by the partial melting of metasediments during the deepest stages of subduction and interacted with the mantle. This work is an excellent example of transfer of crustal material, volatiles in particular, in the mantle during the subduction of the continental crust.
We studied primary granitic and halogen-rich melt inclusions trapped in mantle rocks in the...