Articles | Volume 36, issue 2
https://doi.org/10.5194/ejm-36-279-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-36-279-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Halogen-bearing metasomatizing melt preserved in high-pressure (HP) eclogites of Pfaffenberg, Bohemian Massif
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Kraków, 30-059 Kraków, Poland
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
Silvio Ferrero
Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, 09042 Monserrato, Italy
Museum für Naturkunde (MfN), Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
Patrick J. O'Brien
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
Bernd Wunder
Deutsches GeoForschungsZentrum (GFZ), 14473 Potsdam, Germany
Peter Tollan
Eidgenössische Technische Hochschule, ETH, 8092 Zürich, Switzerland
Jarosław Majka
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Kraków, 30-059 Kraków, Poland
Department of Earth Sciences, Uppsala University, 752-36 Uppsala, Sweden
Rico Fuchs
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
Kerstin Gresky
Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
Related authors
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Monika Koch-Müller, Christian Lathe, Bernd Wunder, Oona Appelt, Shrikant Bhat, Andreas Ebert, Robert Farla, Vladimir Roddatis, Anja Schreiber, and Richard Wirth
Eur. J. Mineral., 36, 1023–1036, https://doi.org/10.5194/ejm-36-1023-2024, https://doi.org/10.5194/ejm-36-1023-2024, 2024
Short summary
Short summary
We examined the influence of Al2O3 and H2O on the position of the coesite–stishovite transition by means of in situ X‑ray diffraction measurements with the large-volume press at the synchrotron PETRA III in Hamburg. The position of the transition was found to be shifted almost in parallel by about 1.5 GPa to lower pressures compared to results for the pure SiO2 system by Ono et al. (2017). Stishovite of this study containing Al and H is only partially quenchable but transforms back to coesite.
Ross J. Angel, Matteo Alvaro, and Silvio Ferrero
Eur. J. Mineral., 36, 411–415, https://doi.org/10.5194/ejm-36-411-2024, https://doi.org/10.5194/ejm-36-411-2024, 2024
Short summary
Short summary
Inclusions in natural rocks are an invaluable asset for geoscientists because they provide information about processes in the Earth's history that are otherwise hidden or subsequently overprinted. In this paper we review the development over the last 200 years of the concepts and methods to measure the remnant pressures in mineral inclusions and how they can be used to determine pressures and temperatures at which the inclusions were formed deep within the Earth.
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Christian Lathe, Monika Koch-Müller, Bernd Wunder, Oona Appelt, Shrikant Bhat, and Robert Farla
Eur. J. Mineral., 34, 201–213, https://doi.org/10.5194/ejm-34-201-2022, https://doi.org/10.5194/ejm-34-201-2022, 2022
Short summary
Short summary
The equilibrium phase of A + HP clinoenstatite = forsterite + water was experimentally investigated at aH2O = 1 in situ. In cold subducting slabs, it is of relevance to transport water to large depths, initiating the formation of dense hydrous magnesium silicate (DHMS). At normal gradients, the huge water amount from this reaction induces important processes within the overlying mantle wedge. We additionally discuss the relevance of this reaction for intermediate-depth earthquake formation.
Monika Koch-Müller, Oona Appelt, Bernd Wunder, and Richard Wirth
Eur. J. Mineral., 33, 675–686, https://doi.org/10.5194/ejm-33-675-2021, https://doi.org/10.5194/ejm-33-675-2021, 2021
Short summary
Short summary
Dense hydrous magnesium silicates, like the 3.65 Å phase, are thought to cause deep earthquakes. We investigated the dehydration of the 3.65 Å phase at P and T. In both directions of the investigated simple reaction, additional metastable water-rich phases occur. The observed extreme reduction in grain size in the dehydration experiments might cause mechanical instabilities in the Earth’s mantle and, finally, induce earthquakes.
Related subject area
Metamorphic petrology
Pressure–temperature–time and REE mineral evolution in low- to medium-grade polymetamorphic units (Austroalpine Unit, Eastern Alps)
The composition of metapelitic biotite, white mica, and chlorite: a review with implications for solid-solution models
Comparison between 2D and 3D microstructures and implications for metamorphic constraints using a chloritoid–garnet-bearing mica schist
Sedimentary protolith and high-P metamorphism of oxidized manganiferous quartzite from the Lanterman Range, northern Victoria Land, Antarctica
Metamorphic evolution of sillimanite gneiss in the high-pressure terrane of the Western Gneiss Region (Norway)
Île Dumet (Armorican Massif, France) and its glaucophane eclogites: the little sister of Île de Groix
Retrogression of ultrahigh-pressure eclogite, Western Gneiss Region, Norway
Electron backscatter diffraction analysis combined with NanoSIMS U–Pb isotope data reveal intra-grain plastic deformation in zircon and its effects on U–Pb age: examples from Himalayan eclogites, Pakistan
H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks
Very-low-grade phyllosilicates in the Aravis massif (Haute-Savoie, France) and the di-trioctahedral substitution in chlorite
Partial melting of amphibole–clinozoisite eclogite at the pressure maximum (eclogite type locality, Eastern Alps, Austria)
Petrological study of an eclogite-facies metagranite from the Champtoceaux Complex (La Picherais, Armorican Massif, France)
Corundum-bearing and spinel-bearing symplectites in ultrahigh-pressure eclogites record high-temperature overprint and partial melting during slab exhumation
Some thoughts about eclogites and related rocks
Metamorphic P–T paths of Archean granulite facies metasedimentary lithologies from the eastern Beartooth Mountains of the northern Wyoming Province, Montana, USA: constraints from quartz-in-garnet (QuiG) Raman elastic barometry, geothermobarometry, and thermodynamic modeling
Detrital garnet petrology challenges Paleoproterozoic ultrahigh-pressure metamorphism in western Greenland
Equilibrium and kinetic approaches to understand the occurrence of the uncommon chloritoid + biotite assemblage
Geochemistry and paleogeographic implications of Permo-Triassic metasedimentary cover from the Tauern Window (Eastern Alps)
Reaction progress of clay minerals and carbonaceous matter in a contact metamorphic aureole (Torres del Paine intrusion, Chile)
Partial melting of zoisite eclogite from the Sanddal area, North-East Greenland Caledonides
Marianne Sophie Hollinetz, Benjamin Huet, David A. Schneider, Christopher R. M. McFarlane, Ralf Schuster, Gerd Rantitsch, Philip Schantl, Christoph Iglseder, Martin Reiser, and Bernhard Grasemann
Eur. J. Mineral., 36, 943–983, https://doi.org/10.5194/ejm-36-943-2024, https://doi.org/10.5194/ejm-36-943-2024, 2024
Short summary
Short summary
In situ U–Th–Pb dating of allanite and monazite provides a robust record of polymetamorphism in greenschist facies metapelites in the Austroalpine Unit. Variations in bulk rock Ca, Al and Na contents produced a wide range of REE-mineral-phase relationships and microstructures, making them excellent geochronometers in complex tectonic settings. Our new pressure, temperature, time and deformation data reveal Permian metamorphism and a major crustal-scale Cretaceous detachment.
Benoît Dubacq and Jacob B. Forshaw
Eur. J. Mineral., 36, 657–685, https://doi.org/10.5194/ejm-36-657-2024, https://doi.org/10.5194/ejm-36-657-2024, 2024
Short summary
Short summary
This article reviews the crystal chemistry of chlorite, biotite, and white mica in metamorphosed sediments. These minerals have complex compositions because many atom exchanges may take place in their structure. Such exchanges include easily measured cations but also structurally bound H2O, notoriously hard to measure; iron oxidation; and vacancies. Consequently, formula units are often calculated from incomplete measurements and some exchanges may appear solely due to normalization issues.
Fabiola Caso, Alessandro Petroccia, Sara Nerone, Andrea Maffeis, Alberto Corno, and Michele Zucali
Eur. J. Mineral., 36, 381–395, https://doi.org/10.5194/ejm-36-381-2024, https://doi.org/10.5194/ejm-36-381-2024, 2024
Short summary
Short summary
Despite the fact that rock textures depend on the 3D spatial distribution of minerals, our tectono-metamorphic reconstructions are mostly based on a 2D visualisation (i.e. thin sections). For 2D a thin section scan has been combined with chemical X-ray maps, whereas for 3D the X-ray computerised axial microtomography (μCT) has been applied. This study corroborates the reliability of the thin section approach, still emphasising that 3D visualisation can help understand rock textures.
Taehwan Kim, Yoonsup Kim, Simone Tumiati, Daeyeong Kim, Keewook Yi, and Mi Jung Lee
Eur. J. Mineral., 36, 323–343, https://doi.org/10.5194/ejm-36-323-2024, https://doi.org/10.5194/ejm-36-323-2024, 2024
Short summary
Short summary
The manganese-rich siliceous metasediment in the Antarctic Ross orogen most likely originated from Mn-nodule-bearing chert deposited not earlier than ca. 546 Ma. Subduction-related metamorphism resulted in the production of highly oxidized assemblages involving Mn3+ and rare-earth-element-zoned epidote-group mineral and Mn2+-rich garnet. A reduced environment was responsible for the Mn olivine-bearing assemblages from silica-deficient composition.
Ane K. Engvik and Johannes Jakob
Eur. J. Mineral., 36, 345–360, https://doi.org/10.5194/ejm-36-345-2024, https://doi.org/10.5194/ejm-36-345-2024, 2024
Short summary
Short summary
The paper documents sillimanite gneiss in the Western Gneiss Region (WGR) and its presence, composition, formation and metamorphic evolution. Peak metamorphism is modelled to T = 750 °C and P around 0.6 GPa. Subsequent retrogression consumes garnet and shows mineral replacement and melt crystallization involving sillimanite, white mica, K-feldspar and quartz. The petrological evolution is in accordance with the investigated eclogites and HP granulites in the northwestern part of WGR.
Gaston Godard, David C. Smith, Damien Jaujard, and Sidali Doukkari
Eur. J. Mineral., 36, 99–122, https://doi.org/10.5194/ejm-36-99-2024, https://doi.org/10.5194/ejm-36-99-2024, 2024
Short summary
Short summary
Petrological and mineralogical studies of mica schists, orthogneisses and glaucophane eclogites from Dumet Island (Armorican Massif, NW France) indicate that this occurrence, which has undergone high-pressure metamorphism up to 16 kbar and 620 °C, is similar to that of Groix Island. There are about 10 similar occurrences within the Ibero-Armorican Arc, forming a discontinuous high-pressure belt, but most of them have remained unnoticed due to a high degree of retrogression.
Dirk Spengler, Adam Włodek, Xin Zhong, Anselm Loges, and Simon J. Cuthbert
Eur. J. Mineral., 35, 1125–1147, https://doi.org/10.5194/ejm-35-1125-2023, https://doi.org/10.5194/ejm-35-1125-2023, 2023
Short summary
Short summary
Rock lenses from the diamond stability field (>120 km depth) within ordinary gneiss are enigmatic. Even more when these lenses form an alternating exposure pattern with ordinary lenses. We studied 10 lenses from W Norway and found that many of them have a hidden history. Tiny needles of quartz enclosed in old pyroxene cores are evidence for a rock origin at great depth. These needles survived the rocks' passage to the surface that variably obscured the mineral chemistry – the rocks' memory.
Hafiz U. Rehman, Takanori Kagoshima, Naoto Takahata, Yuji Sano, Fabrice Barou, David Mainprice, and Hiroshi Yamamoto
Eur. J. Mineral., 35, 1079–1090, https://doi.org/10.5194/ejm-35-1079-2023, https://doi.org/10.5194/ejm-35-1079-2023, 2023
Short summary
Short summary
Zircon preserves geologic rock history. Electron backscatter diffraction (EBSD) analysis is useful to visualize deformed domains in zircons. Zircons from the Himalayan high-pressure eclogites were analzyed for EBSD to identify intra-grain plastic deformation. The U–Pb isotope age dating, using Nano-SIMS, showed that plastic deformation likely affects the geochronological records. For geologically meaningful results, it is necessary to identify undisturbed domains in zircon via EBSD.
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste
Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, https://doi.org/10.5194/ejm-35-831-2023, 2023
Short summary
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Simon Schorn, Anna Rogowitz, and Christoph A. Hauzenberger
Eur. J. Mineral., 35, 715–735, https://doi.org/10.5194/ejm-35-715-2023, https://doi.org/10.5194/ejm-35-715-2023, 2023
Short summary
Short summary
We investigate rocks called eclogite, which are related to subduction and the collision of continents. Our samples show evidence of limited melting at high pressure corresponding to about 70 km depth, which may play an important role in the exhumation of these rocks and the differentiation of the crust. However, due to their composition and metamorphic evolution, melt production is limited, suggesting that similar rocks are unlikely to contribute strongly to subduction-related magmatism.
Thomas Gyomlai, Philippe Yamato, and Gaston Godard
Eur. J. Mineral., 35, 589–611, https://doi.org/10.5194/ejm-35-589-2023, https://doi.org/10.5194/ejm-35-589-2023, 2023
Short summary
Short summary
The La Picherais metagranite is a key example of undeformed high-pressure quartzofeldspathic rock from the Armorican Massif. Through petrological observations and thermodynamic modelling, this study determines that the metagranite was pressured above 1.7 GPa and the associated mafic lenses at ~ 2.1 GPa. This metagranite provides an opportunity to study the degree of transformation of quartzofeldspathic rocks at high pressure, which may have a significant impact on the dynamics of subduction.
Pan Tang and Shun Guo
Eur. J. Mineral., 35, 569–588, https://doi.org/10.5194/ejm-35-569-2023, https://doi.org/10.5194/ejm-35-569-2023, 2023
Short summary
Short summary
In this study, unusual corundum- and spinel-bearing symplectites after muscovite were found in ultrahigh-pressure eclogites from the Dabie terrane, China. The results indicate that these symplectites formed by the low-pressure partial melting of muscovite during slab exhumation. We stress that the occurrence of corundum- and spinel-bearing symplectites after muscovite in eclogites provides important implications for fluid and melt actions in exhumed slabs.
Michael Brown
Eur. J. Mineral., 35, 523–547, https://doi.org/10.5194/ejm-35-523-2023, https://doi.org/10.5194/ejm-35-523-2023, 2023
Short summary
Short summary
The past 40 years have been a golden age for eclogite studies, supported by an ever wider range of instrumentation and enhanced computational capabilities, linked with ongoing developments in the determination of the temperatures and pressures of metamorphism and the age of these rocks. These data have been used to investigate the spatiotemporal distribution of metamorphism and secular change but not without controversy in relation to the emergence of plate tectonics on Earth.
Larry Tuttle and Darrell J. Henry
Eur. J. Mineral., 35, 499–522, https://doi.org/10.5194/ejm-35-499-2023, https://doi.org/10.5194/ejm-35-499-2023, 2023
Short summary
Short summary
Quartz inclusions in garnet are used to constrain the metamorphic pressure–temperature history of multiple ~2.8 Ga metasedimentary rocks from Montana, USA. Inclusion studies along with mineral and whole rock chemistry suggests that the rocks of interest experienced a clockwise metamorphic P–T history that included isobaric heating to peak metamorphic temperatures once inclusions were entrapped. These findings place fundamental constraints on the P–T evolution of this important geologic setting.
Jan Schönig, Carsten Benner, Guido Meinhold, Hilmar von Eynatten, and N. Keno Lünsdorf
Eur. J. Mineral., 35, 479–498, https://doi.org/10.5194/ejm-35-479-2023, https://doi.org/10.5194/ejm-35-479-2023, 2023
Short summary
Short summary
When and how modern-style plate tectonics initiated is a matter of debate. Although the earliest unequivocal evidence for ultrahigh-pressure metamorphism is Neoproterozoic, similar processes have been proposed for Paleoproterozoic rocks of western Greenland. We intensely screened the area by studying detrital heavy minerals, garnet chemistry, and mineral inclusion assemblages in garnet. Our results raise considerable doubts on the existence of Paleoproterozoic ultrahigh-pressure rocks.
Sara Nerone, Chiara Groppo, and Franco Rolfo
Eur. J. Mineral., 35, 305–320, https://doi.org/10.5194/ejm-35-305-2023, https://doi.org/10.5194/ejm-35-305-2023, 2023
Short summary
Short summary
The coexistence of chloritoid and biotite in medium-pressure Barrovian terranes is uncommon, with chloritoid usually occurring at lower temperatures than biotite. A petrologic approach using equilibrium thermodynamic modelling points out how metapelites can attain H2O-undersaturated conditions even at medium pressure and amphibolite-facies conditions and consequently can be affected by kinetic barriers, which need to be taken into account.
Gerhard Franz, Martin Kutzschbach, Eleanor J. Berryman, Anette Meixner, Anselm Loges, and Dina Schultze
Eur. J. Mineral., 33, 401–423, https://doi.org/10.5194/ejm-33-401-2021, https://doi.org/10.5194/ejm-33-401-2021, 2021
Short summary
Short summary
Metamorphic rocks contain information about their original rocks and thus provide insight into the earlier stages of a region of interest. Here, we used the whole-rock chemical composition and stable boron isotopes of a suite of rocks from the Alps (Italy–Austria), which were deposited in a restricted intramontane basin before the Alpine orogeny. It is possible to reconstruct the depositional conditions for these sediments, which are now common metamorphic rocks such as schists and gneisses.
Annette Süssenberger, Susanne Theodora Schmidt, Florian H. Schmidt, and Manuel F. G. Weinkauf
Eur. J. Mineral., 32, 653–671, https://doi.org/10.5194/ejm-32-653-2020, https://doi.org/10.5194/ejm-32-653-2020, 2020
Wentao Cao, Jane A. Gilotti, and Hans-Joachim Massonne
Eur. J. Mineral., 32, 405–425, https://doi.org/10.5194/ejm-32-405-2020, https://doi.org/10.5194/ejm-32-405-2020, 2020
Short summary
Short summary
Zoisite eclogites from the Sanddal area, North-East Greenland, contain numerous textures, such as cusps and neoblasts, which are interpreted as melt-related textures. Mineral chemistry and thermodynamic modeling demonstrate that they were partially melted through the breakdown of hydrous minerals, phengite, paragonite and zoisite. Pressure–temperature phase diagrams show that the eclogites reached a maximum depth of ∼70 km and were partially melted near that depth and during exhumation.
Cited articles
Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D., and Morgan VI, G. B.: Mechanisms of crustal anatexis: A geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain, J. Petrol., 51, 785–821, https://doi.org/10.1093/petrology/egp095, 2010.
Acosta-Vigil, A., Buick, I., Cesare, B., London, D., and Morgan, G. B.: The extent of equilibration between melt and residuum during regional anatexis and its implications for differentiation of the continental crust: A study of partially melted metapelitic enclaves, J. Petrol., 53, 1319–1356, https://doi.org/10.1093/petrology/egs018, 2012.
Andersen, T., O'Reilly, S. Y., and Griffin, W. L.: The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism, Contrib. Mineral. Petr., 88, 72–85, https://doi.org/10.1007/BF00371413, 1984.
Antignano, A. and Manning, C. E.: Fluorapatite solubility in H2O and H2O-NaCl at 700 to 900 °C and 0.7 to 2.0 GPa, Chem. Geol., 251, 112–119, https://doi.org/10.1016/j.chemgeo.2008.03.001, 2008.
Aranovich, L. Y., Newton, R. C., and Manning, C. E.: Brine-assisted anatexis: Experimental melting in the system haplogranite-H2O-NaCl-KCl at deep-crustal conditions, Earth Planet. Sc. Lett., 374, 111–120, https://doi.org/10.1016/j.epsl.2013.05.027, 2013.
Aranovich, L. Y., Makhluf, A. R., Manning, C. E., and Newton, R. C.: Dehydration melting and the relationship between granites and granulites, Precambrian Res., 253, 26–37, https://doi.org/10.1016/j.precamres.2014.07.004, 2014.
Bali, E., Szabó, C., Vaselli, O., and Török, K.: Significance of silicate melt pockets in upper mantle xenoliths from the Bakony – Balaton Highland Volcanic Field, Western Hungary, Lithos, 61, 79–102, https://doi.org/10.1016/S0024-4937(01)00075-5, 2002.
Barnes, J. D., Manning, C. E., Scambelluri, M., and Selverstone, J.: The behaviour of halogens during subduction-zone processes, Springer Geochemistry, Springer, Cham, 545–590, https://doi.org/10.1007/978-3-319-61667-4_8, 2018.
Bartoli, O., Cesare, B., Poli, S., Acosta-Vigil, A., Esposito, R., Turina, A., Bodnar, R. J., Angel, R. J., and Hunter, J.: Nanogranite inclusions in migmatitic garnet: Behaviour during piston-cylinder remelting experiments, Geofluids, 13, 405–420, https://doi.org/10.1111/gfl.12038, 2013.
Bartoli, O., Cesare, B., Remusat, L., Acosta-Vigil, A., and Poli, S.: The H2O content of granite embryos, Earth Planet. Sc. Lett., 395, 281–290, 2014.
Bartoli, O., Acosta-Vigil, A., Ferrero, S., and Cesare, B.: Granitoid magmas preserved as melt inclusions in high-grade metamorphic rocks, Am. Mineral., 101, 1543–1559, https://doi.org/10.2138/am-2016-5541CCBYNCND, 2016.
Bartoli, O., Acosta-Vigil, A., Cesare, B., Remusat, L., Gonzalez-Cano, A., Wälle, M., Tajčmanová, L., and Langone, A.: Geochemistry of Eocene-Early Oligocene low-temperature crustal melts from Greater Himalayan Sequence (Nepal): a nanogranitoid perspective, Contrib. Mineral. Petr., 174, 82, https://doi.org/10.1007/s00410-019-1622-2, 2019.
Beard, J. S. and Lofgren, G. E.: Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb, J. Petrol., 32, 365–401, https://doi.org/10.1093/petrology/32.2.365, 1991.
Bebout, G. E.: Metasomatism in Subduction Zones of Subducted Oceanic Slabs, Mantle Wedges, and the Slab-Mantle Interface, in: Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes, Springer Berlin Heidelberg, Berlin, Heidelberg, 289–349, https://doi.org/10.1007/978-3-642-28394-9_9, 2013.
Bodinier, J. L., Vasseur, G., Vernieres, J., Dupuy, C., and Fabries, J.: Mechanisms of mantle metasomatism: Geochemical evidence from the Lherz orogenic peridotite, J. Petrol., 31, 597–628, 1990.
Bodinier, J. L., Garrido, C. J., Chanefo, I., Bruguier, O., and Gervilla, F.: Origin of pyroxenite-peridotite veined mantle by refertilization reactions: Evidence from the Ronda peridotite (Southern Spain), J. Petrol., 49, 999–1025, https://doi.org/10.1093/petrology/egn014, 2008.
Borghini, A., Ferrero, S., Wunder, B., Laurent, O., O'Brien, P. J., and Ziemann, M. A.: Granitoid melt inclusions in orogenic peridotite and the origin of garnet clinopyroxenite, Geology, 46, 1007–1010, https://doi.org/10.1130/G45316.1, 2018.
Borghini, A., Ferrero, S., Brien, P. J. O., Günter, C., Ziemann, M. A., O'Brien, P. J., Laurent, O., Günter, C., and Ziemann, M. A.: Cryptic metasomatic agent measured in situ in Variscan mantle rocks: Melt inclusions in garnet of eclogite, Granulitgebirge, Germany, J. Metamorph. Geol., 38, 207–234, https://doi.org/10.1111/jmg.12519, 2020.
Borghini, A., Nicoli, G., Ferrero, S., O'Brien, P. J., Laurent, O., Remusat, L., Borghini, G., and Milani, S.: The role of continental subduction in mantle metasomatism and carbon recycling revealed by melt inclusions in UHP eclogites, Sci. Adv., 9, eabp9482, https://doi.org/10.1126/sciadv.abp9482, 2023.
Borghini, G., Rampone, E., Zanetti, A., Class, C., Cipriani, A., Hofmann, A. W., and Goldstein, S. L.: Pyroxenite layers in the northern apennines' upper mantle (Italy)-Generation by pyroxenite melting and melt infiltration, J. Petrol., 57, 625–653, https://doi.org/10.1093/petrology/egv074, 2016.
Bose, K. and Ganguly, J.: Quartz-coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermochemical properties, Am. Mineral., 80, 231–238, 1995.
Brown, M.: Some thoughts about eclogites and related rocks, Eur. J. Mineral., 35, 523–547, https://doi.org/10.5194/ejm-35-523-2023, 2023.
Carvalho, B. B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., Capizzi, L. S., and Poli, S.: Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy), J. Metamorph. Geol., 37, 1–25, https://doi.org/10.1111/jmg.12463, 2018.
Carvalho, B. B., Bartoli, O., Cesare, B., Tacchetto, T., Gianola, O., Ferri, F., Aradi, L. E., and Szabó, C.: Primary CO2-bearing fluid inclusions in granulitic garnet usually do not survive, Earth Planet. Sc. Lett., 536, 116170, https://doi.org/10.1016/j.epsl.2020.116170, 2020.
Cesare, B., Acosta-Vigil, A., Bartoli, O., and Ferrero, S.: What can we learn from melt inclusions in migmatites and granulites?, Lithos, 239, 186–216, https://doi.org/10.1016/j.lithos.2015.09.028, 2015.
Chen, Y. X., Zheng, Y. F., Gao, X. Y., and Hu, Z.: Multiphase solid inclusions in zoisite-bearing eclogite: Evidence for partial melting of ultrahigh-pressure metamorphic rocks during continental collision, Lithos, 200–201, 1–21, https://doi.org/10.1016/j.lithos.2014.04.004, 2014.
Čopjaková, R. and Kotková, J.: Composition of barian mica in multiphase solid inclusions from orogenic garnet peridotites as evidence of mantle metasomatism in a subduction zone setting, Contrib. Mineral. Petrol., 173, 641–646, https://doi.org/10.1007/s00410-018-1534-6, 2018.
Dallai, L., Bianchini, G., Avanzinelli, R., Deloule, E., Natali, C., Gaeta, M., Cavallo, A., and Conticelli, S.: Quartz-bearing rhyolitic melts in the Earth's mantle, Nat. Commun., 13, 7765, https://doi.org/10.1038/s41467-022-35382-3, 2022.
Faryad, S. W., Jedlicka, R., and Ettinger, K.: Subduction of lithospheric upper mantle recorded by solid phase inclusions and compositional zoning in garnet: Example from the Bohemian Massif, Gondwana Res., 23, 944–955, https://doi.org/10.1016/j.gr.2012.05.014, 2013.
Ferrero, S. and Angel, R. J.: Micropetrology: Are inclusions grains of truth?, J. Petrol., 59, 1671–1700, https://doi.org/10.1093/petrology/egy075, 2018.
Ferrero, S., Wunder, B., Walczak, K., O'Brien, P. J., and Ziemann, M. A.: Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths, Geology, 43, 447–450, https://doi.org/10.1130/G36534.1, 2015.
Ferrero, S., Ziemann, M. A., Angel, R. J., O'Brien, P. J., and Wunder, B.: Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not an evidence for ultrahigh-pressure conditions, Contrib. Mineral. Petrol., 171, 1–12, https://doi.org/10.1007/s00410-015-1220-x, 2016.
Ferrero, S., O'Brien, P. J., Borghini, A., Wunder, B., Wälle, M., Günter, C., and Ziemann, M. A.: A treasure chest full of nanogranitoids: an archive to investigate crustal melting in the Bohemian Massif, in: Metamorphic Geology: Microscale to Mountain Belts, Geol. Soc. Lond. Spec. Publ., 478, 13–38, https://doi.org/10.1144/SP478.19, 2018.
Ferrero, S., Wannhoff, I., Laurent, O., Yakymchuk, C., Darling, R., Wunder, B., Borghini, A., and O'Brien, P. J.: Embryos of TTGs in Gore Mountain garnet megacrysts from water-fluxed melting of the lower crust, Earth Planet. Sc. Lett., 569, 117058, https://doi.org/10.1016/j.epsl.2021.117058, 2021a.
Ferrero, S., Ague, J. J., O'Brien, P. J., Wunder, B., Remusat, L., Ziemann, M. A., and Axler, J.: High pressure, halogen-bearing melt preserved in ultra-high temperature felsic granulites of the Central Maine terrane, Connecticut (US), Am. Mineral., 106, 1225–1236, https://doi.org/10.2138/am-2021-7690, 2021b.
Ferrero, S., Borghini, A., Remusat, L., Nicoli, G., Wunder, B., and Braga, R.: H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks, Europ. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, 2023.
Ferri, F., Cesare, B., Bartoli, O., Ferrero, S., Palmeri, R., Remusat, L., and Poli, S.: Melt inclusions at Mt. Edixon (Antartica): Chemistry, petrology and implications for the evolution of the Lantmann range, Lithos, 374/375, 105685, https://doi.org/10.1016/j.lithos.2020.105685, 2020.
Franke, W.: The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution, Geol. Soc. Lond. Spec. Publ., 179, 35–61, https://doi.org/10.1144/gsl.sp.2000.179.01.05, 2000.
Frezzotti, M. L., Tecce, F., and Casagli, A.: Raman spectroscopy for fluid inclusion analysis, J. Geochem. Explor., 112, 1–20, https://doi.org/10.1016/j.gexplo.2011.09.009, 2012.
Frost, B. R. and Frost, C. D.: A geochemical classification for feldspathic igneous rocks, J. Petrol., 49, 1955–1969, https://doi.org/10.1093/petrology/egn054, 2008.
Gao, X. Y., Zheng, Y. F., and Chen, Y. X.: Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet, J. Metamorph. Geol., 30, 193–212, https://doi.org/10.1111/j.1525-1314.2011.00962.x, 2012.
Gao, X. Y., Zheng, Y. F., Chen, Y. X., and Hu, Z.: Trace element composition of continentally subducted slab-derived melt: Insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen, J. Metamorph. Geol., 31, 453–468, https://doi.org/10.1111/jmg.12029, 2013.
Gao, X. Y., Zheng, Y. F., Chen, Y. X., and Hu, Z.: Composite carbonate and silicate multiphase solid inclusions in metamorphic garnet from ultrahigh-P eclogite in the Dabie orogen, J. Metamorph. Geol., 32, 961–980, https://doi.org/10.1111/jmg.12102, 2014.
Gianola, O., Bartoli, O., Ferri, F., Galli, A., Ferrero, S., Capizzi, L. S., Liebske, C., and Remusat: Anatectic melt inclusions in ultra high temperature granulites, J. Metamorph. Geol., 39, 321–342 https://doi.org/10.1111/jmg.12567, 2020.
Golovin, A. V and Sharygin, V. V: Petrogenetic analysis of fluid and melt inclusions in minerals from mantle xenoliths from the Bele pipe basanites (North Minusa depression), Russ. Geol. Geophys., 48, 811–824, 2007.
Guillong, M., Meier, D. L., Allan, M. M., Heinrich, C. A., and Yardley, B. W. D.: SILLS: A Matlab-based program for the reduction of laser ablation ICP–MS data of homogeneous materials and inclusions, Mineral. Assoc. Can.Short Cours., 40, 328–333, 2008.
Guzmics, T., Zajacz, Z., Kodolányi, J., Halter, W., and Szabó, C.: LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth's mantle, Geochim. Cosmochim. Ac., 72, 1864–1886, https://doi.org/10.1016/j.gca.2008.01.024, 2008.
Hagen, B., Hoernes, S., and Rötzler, J.: Geothermometry of the ultrahigh-temperature Saxon granulites revisited, Part II: Thermal peak conditions and cooling rates inferred from oxygen-isotope fractionations, Europ. J. Mineral., 20, 1117–1133, https://doi.org/10.1127/0935-1221/2008/0020-1858, 2008.
Halter, W. E., Pettke, T., Heinrich, C. A., and Rothen-Rutishauser, B.: Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification, Chem. Geol., 183, 63–86, https://doi.org/10.1016/S0009-2541(01)00372-2, 2002.
Hanley, J. J. and Koga, K. T.: Halogens in terrestrial and cosmic geochemical systems: Abundances, geochemical behaviours, and analytical methods, Springer Geochemistry, Springer, Cham, 21–121, https://doi.org/10.1007/978-3-319-61667-4_2, 2018.
Harlov, D. E. and Aranovich, L.: The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle, Springer, https://doi.org/10.1007/978-3-319-61667-4, 2018.
Harlov, D. E. and Austrheim, H.: Metasomatism and the chemical transformation of rock: Rock-mineral-fluid interaction in terrestrial and extraterrestrial environments, in: Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes, Springer Berlin Heidelberg, Berlin, Heidelberg, 1–16, https://doi.org/10.1007/978-3-642-28394-9_1, 2013.
Hermann, J.: Allanite: thorium and light rare earth element carrier in subducted crust, Chem Geol, 192, 289–306, 2002.
Hughes, L., Burgess, R., Chavrit, D., Pawley, A., Tartèse, R., Droop, G., Ballentine, C. J., and Lyon, I.: Halogen behaviour in subduction zones: Eclogite facies rocks from the Western and Central Alps, Geochim. Cosmochim. Ac., 243, 1–23, https://doi.org/10.1016/j.gca.2018.09.024, 2018.
Hughes, L., Cuthbert, S., Quas-Cohen, A., Ruzié-Hamilton, L., Pawley, A., Droop, G., Lyon, I., Tartèse, R., and Burgess, R.: Halogens in eclogite facies minerals from the Western Gneiss Region, Norway, Minerals, 11, 1–33, https://doi.org/10.3390/min11070760, 2021.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and Enzweiler, J.: Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines, Geostand. Geoanal. Res., 35, 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Johannes, W. and Holtz, F.: Petrogenesis and Experimental Petrology of Granitic Rocks, Springer, Berlin, https://doi.org/10.1007/978-3-642-61049-3, 1996.
John, T., Gussone, N., Podladchikov, Y. Y., Bebout, G. E., Dohmen, R., Halama, R., Klemd, R., Magna, T., and Seitz, H. M.: Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs, Nat. Geosci., 5, 489–492, https://doi.org/10.1038/ngeo1482, 2012.
Kendrick, M. A., Woodhead, J. D., and Kamenetsky, V. S.: Tracking halogens through the subduction cycle, Geology, 40, 1075–1078, https://doi.org/10.1130/G33265.1, 2012.
Klemd, R.: Metasomatism During High-Pressure Metamorphism: Eclogites and Blueschist-Facies Rocks, in: Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes, Springer Berlin Heidelberg, Berlin, Heidelberg, 351–413, https://doi.org/10.1007/978-3-642-28394-9_10, 2013.
Kobayashi, M., Sumino, H., Burgess, R., Nakai, S., Iizuka, T., Nagao, J., Kagi, H., Nakamura, M., Takahashi, E., Kogiso, T., and Ballentine, C. J.: Halogen heterogeneity in the lithosphere and evolution of mantle halogen abundances inferred from intraplate mantle xenoliths, Geochem. Geophy. Geosy., 20, 952–973, https://doi.org/10.1029/2018GC007903, 2019.
Kotková, J., O'Brien, P. J., and Ziemann, M. A.: Diamond and coesite discovered in Saxony-type granulite: Solution to the Variscan garnet peridotite enigma, Geology, 39, 667–670, https://doi.org/10.1130/G31971.1, 2011.
Lamadrid, H. M. and Steele-MacInnis, M.: Crustal melting: Deep, hot, and salty, Am. Mineral., 106, 1193–1194, https://doi.org/10.2138/am-2022-8108, 2021.
Laurie, A. and Stevens, G.: Water-present eclogite melting to produce Earth's early felsic crust, Chem. Geol., 314–317, 83–95, https://doi.org/10.1016/j.chemgeo.2012.05.001, 2012.
Li, H. and Hermann: Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 °C: A new experimentally derived thermodynamic model, Am. Mineral., 102, 580–594, https://doi.org/10.2138/am-2017-5891, 2017.
Liptai, N., Berkesi, M., Patkó, L., Bodnar, R. J., O'Reilly, S. Y., Griffin, W. L., and Szabó, C.: Characterization of the metasomatizing agent in the upper mantle beneath the northern Pannonian Basin based on Raman imaging, FIB-SEM, and LA-ICP-MS analyses of silicate melt inclusions in spinel peridotite, Am. Mineral., 106, 685–700, https://doi.org/10.2138/am-2021-7292, 2021.
Liu, P., Zhang, J., Massonne, H. J., and Jin, Z.: Polyphase solid-inclusions formed by interactions between infiltrating fluids and precursor minerals enclosed in garnet of UHP rocks from the Dabie Shan, China, Am. Mineral., 103, 1663–1673, https://doi.org/10.2138/am-2018-6395, 2018.
Malaspina, N., Hermann, J., Scambelluri, M., and Compagnoni, R.: Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite, Earth Planet. Sc. Lett., 249, 173–187, https://doi.org/10.1016/j.epsl.2006.07.017, 2006.
Malaspina, N., Hermann, J., and Scambelluri, M.: Fluid/mineral interaction in UHP garnet peridotite, Lithos, 107, 38–52, https://doi.org/10.1016/j.lithos.2008.07.006, 2009.
Massonne, H. J. and Bautsch, H. J.: An unusual garnet pyroxenite from the Granulitgebirge, Germany: Origin in the transition zone (> 400 km depths) or in a shallower upper mantle region?, Int. Geol. Rev., 44, 779–796, https://doi.org/10.2747/0020-6814.44.9.779, 2002.
Massonne, H.-J. J.: First find of coesite in the ultrahigh-pressure metamorphic area of the central Erzgebirge, Germany, Europ. J. Mineral., 13, 565–570, https://doi.org/10.1127/0935-1221/2001/0013-0565, 2001.
Matusiak-Małek, M., Puziewicz, J., Ntaflos, T., Grégoire, M., and Downes, H.: Metasomatic effects in the lithospheric mantle beneath the NE Bohemian Massif: A case study of Lutynia (SW Poland) peridotite xenoliths, Lithos, 117, 49–60, https://doi.org/10.1016/j.lithos.2010.02.005, 2010.
McDonough, W. F. and Sun, S.-S.: The composition of the Earth, Chem. Geol., 120, 223–253, 1995.
Morgan, G. B. and London, D.: Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses, Am. Mineral., 90, 1131–1138, 2005.
Naemura, K., Ikuta, D., Kagi, H., Odake, S., Ueda, T., Ohi, S., Kobayashi, T., Svojtka, M., and Hirajima, T.: Diamond and other possible ultradeep evidence discovered in the orogenic spinel-garnet peridotite from the Moldanubian Zone of the Bohemian Massif, Czech Republic, in: Ultrahigh-Pressure Metamorphism, Elsevier, 77–111, https://doi.org/10.1016/B978-0-12-385144-4.00002-3, 2011.
Naemura, K., Hirajima, T., Svojtka, M., Shimizu, I., and Iizuka, T.: Fossilized melts in mantle wedge peridotites, Sci. Rep., 8, 1–12, https://doi.org/10.1038/s41598-018-28264-6, 2018.
Nasdala, L. and Massonne, H.-J.: Microdiamonds from the Saxonian Erzgebirge, Germany: In situ micro-Raman characterisation, Europ. J. Mineral., 12, 495–498, https://doi.org/10.1127/0935-1221/2000/0012-0495, 2000.
Németh, B., Török, K., Bali, E., Zajacz, Z., Fodor, L., and Szabó, C.: Melt-rock interaction in the lower crust based on silicate melt inclusions in mafic garnet granulite xenoliths, Bakony–Balaton Highland Volcanic Field (Hungary), Geol. Carpath., 72, 232–252, https://doi.org/10.31577/GEOLCARP.72.3.4, 2021.
Nicoli, G. and Ferrero, S.: Nanorocks, volatiles and plate tectonics, Geosci. Front., 12, 101188, https://doi.org/10.1016/j.gsf.2021.101188, 2021.
Nicoli, G., Gresky, K., and Ferrero, S.: Mesoarchean melt and fluid inclusions in garnet from the Kangerlussuaq basement, Southeast Greenland, Mineralogia, 53, 1–9, https://doi.org/10.2478/mipo-2022-0001, 2022a.
Nicoli, G., Borghini, A., and Ferrero, S.: The carbon budget of crustal reworking during continental collision: Clues from nanorocks and fluid inclusions, Chem. Geol., 608, 121025, https://doi.org/10.1016/j.chemgeo.2022.121025, 2022b.
O'Brien, P. J.: The fundamental Variscan problem: High-temperature metamorphism at different depths and high-pressure metamorphism at different temperatures, Geol. Soc. Spec. Publ., 179, 369–386, https://doi.org/10.1144/GSL.SP.2000.179.01.22, 2000.
O'Brien, P. J.: Type-locality granulites: High-pressure rocks formed at eclogite-facies conditions, Mineral. Petrol., 86, 161–175, https://doi.org/10.1007/s00710-005-0108-2, 2006.
O'Brien, P. J.: Challenges in high-pressure granulite metamorphism in the era of pseudosections: Reaction textures, compositional zoning and tectonic interpretation with examples from the Bohemian Massif, J. Metamorph. Geol., 26, 235–251, https://doi.org/10.1111/j.1525-1314.2007.00758.x, 2008.
O'Brien, P. J. and Carswell, D. A.: Tectonometamorphic evolution of the Bohemian Massif: Evidence from high-pressure metamorphic rocks, Geol. Rundsch., 82, 531–555, 1993.
O'Brien, P. J. and Rötzler, J.: High-pressure granulites: Formation, recovery of peak conditions and implications for tectonics, J. Metamorph. Geol., 21, 3–20, https://doi.org/10.1046/j.1525-1314.2003.00420.x, 2003.
O'Reilly, S. Y. and Griffin, W. L.: Mantle metasomatism, Metasomatism and the chemical transformation of rock, Lecture Notes in Earth System Sciences, Springer, Berlin, Heidelberg, 471–533, https://doi.org/10.1007/978-3-642-28394-9_12, 2013.
Pagé, L., Hattori, K., Hoog, J. C. M. De, and Okay, A. I.: Halogen (F, Cl, Br, I) behaviour in subducting slabs: A study of lawsonite blueschists in western Turkey, Earth Planet. Sc. Lett., 442, 133–142, 2016.
Perraki, M. and Faryad, S. W.: First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: Implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif, Lithos, 202/203, 157–166, https://doi.org/10.1016/j.lithos.2014.05.025, 2014.
Plank, T. and Langmuir, C. H.: The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325–394, 1998.
Puziewicz, J., Matusiak-Małek, M., Ntaflos, T., Grégoire, M., Kaczmarek, M. A., Aulbach, S., Ziobro, M., and Kukuła, A.: Three major types of subcontinental lithospheric mantle beneath the Variscan orogen in Europe, Lithos, 362–363, 105467, https://doi.org/10.1016/j.lithos.2020.105467, 2020.
Rapp, R. P. and Watson, E. B.: Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling, J. Petrol., 36, 891–931, https://doi.org/10.1093/petrology/36.4.891, 1995.
Rapp, R. P., Watson, E. B., and Miller, C. F.: Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites, Precambrian. Res., 51, 1–25, https://doi.org/10.1016/0301-9268(91)90092-O, 1991.
Reinhardt, J. and Kleemann, U.: Extensional unroofing of granulitic lower crust and related low-pressure, high-temperature metamorphism in the Saxonian Granulite Massif, Germany, Tectonophysics, 238, 71–94, https://doi.org/10.1016/0040-1951(94)90050-7, 1994.
Rötzler, J. and Romer: P-T-t Evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany, Part I: Petrology, J. Petrol., 42, 1995–2013, 2001.
Rötzler, J., Hagen, B., and Hoernes, S.: Geothermometry of the ultrahigh-temperature Saxon granulites revisited, Part I: New evidence from key mineral assemblages and reaction textures, Europ. J. Mineral., 20, 1097–1115, https://doi.org/10.1127/0935-1221/2008/0020-1857, 2008.
Rudnick, R. L. and Gao, S.: Composition of the Continental Crust, Treat. Geochem., 3, 1–64, https://doi.org/10.1016/B0-08-043751-6/03016-4, 2003.
Safonov, O. G., Tatarinova, D. S., van Reenen, D. D., Golunova, M. A., and Yapaskurt, V. O.: Fluid-assisted interaction of peraluminous metapelites with trondhjemitic magma within the Petronella shear-zone, Limpopo Complex, South Africa, Precambrian. Res., 253, 114–145, https://doi.org/10.1016/j.precamres.2014.06.006, 2014.
Sajona, F. G., Maury, R. C., Prouteau, G., Cotten, J., Schiano, P., Bellon, H., and Fontaine, L.: Slab melt as metasomatic agent in island arc magma mantle sources, Negros and Batan (Phillipines), Island Arc., 9, 472–486, https://doi.org/10.1111/j.1440-1738.2000.00295.x, 2000.
Schiano, P., Clocchiattit, R., Shimizut, N., Maury, R. C., Hofmann, K. P. J. B. A. W., Clocchiatti, R., Shimizu, N., Maury, R. C., Jochum, K. P., and Hofmann, A. W.: Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas, Nature, 377, 595–600, https://doi.org/10.1038/377595a0, 1995.
Schmädicke, E., Gose, J., and Will, T. M.: The P-T evolution of ultra high temperature garnet-bearing ultramafic rocks from the Saxonian Granulitgebirge Core Complex, Bohemian Massif, J. Metamorph. Geol., 28, 489–508, https://doi.org/10.1111/j.1525-1314.2010.00876.x, 2010.
Schmidt, M. W., Vielzeuf, D., and Auzanneau, E.: Melting and dissolution of subducting crust at high pressures: The key role of white mica, Earth Planet. Sc. Lett., 228, 65–84, https://doi.org/10.1016/j.epsl.2004.09.020, 2004.
Schönig, J., von Eynatten, H., Meinhold, G., Lünsdorf, N. K., Willner, A. P., and Schulz, B.: Deep subduction of felsic rocks hosting UHP lenses in the central Saxonian Erzgebirge: Implications for UHP terrane exhumation, Gondwana Res., 98, 320–323, https://doi.org/10.1016/j.gr.2020.12.029, 2021.
Schulmann, K., Lexa, O., Janoušek, V., Lardeaux, J. M., and Edel, J. B.: Anatomy of a diffuse cryptic suture zone: An example from the Bohemian Massif, European Variscides, Geology, 42, 275–278, https://doi.org/10.1130/G35290.1, 2014.
Scott, J. M., Konrad-Schmolke, M., O'Brien, P. J., and Günter, C.: High-T, low-P formation of rare olivine-bearing symplectites in Variscan eclogite, J. Petrol., 54, 1375–1398, https://doi.org/10.1093/petrology/egt015, 2013.
Skjerlie, K. P. and Patiño Douce, A. E.: The Fluid-absent Partial Melting of a Zoisite-bearing Quartz Eclogite from 1.0 to 3.2 GPa; Implications for Melting in Thickened Continental Crust and for Subduction-zone Processes, J. Petrol., 43, 291–314, https://doi.org/10.1093/petrology/43.2.291, 2002.
Skora, S., Blundy, J. D., Brooker, R. A., Green, E. C. R., de Hoog, J. C. M., and Connolly, J. A. D.: Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions, J. Petrol., 56, 953–980, https://doi.org/10.1093/petrology/egv024, 2015.
Spear, F. S. and Pyle, J. M.: Apatite, monazite, and xenotime in metamorphic rocks, Rev. Mineral. Geochem., 481, 293–335, 2002.
Stepanov, A. S., Hermann, J., Rubatto, D., Korsakov, A. V, and Danyushevsky, L. V: Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in garnet, Kokchetav Massif, Kazakhstan, J. Petrol., 57, 1531–1554, https://doi.org/10.1093/petrology/egw049, 2016.
Sun, S.-S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geol. Soc. Lond. Spec. Publ., 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Svensen, H., Jamtveit, B., Banks, D. A., and Austrheim, H.: Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway, J. Metamorph. Geol., 19, 165–178, 2001.
Svojtka, M., Ackerman, L., Medaris, L. G., Hegner, E., Valley, J. W., Hirajima, T., Jelínek, E., and Hrstka, T.: Petrological, geochemical and Sr-Nd-O isotopic constraints on the origin of garnet and spinel pyroxenites from the Moldanubian zone of the Bohemian Massif, J. Petrol., 57, 897–920, https://doi.org/10.1093/petrology/egw025, 2016.
Urann, B. M., Roux, V. Le, John, T., Beaudoin, G. M., and Barnes, J. D.: The distribution and abundance of halogens in eclogites: An in situ SIMS perspective of the Raspas Complex (Ecuador), Am. Mineral., 105, 307–318, https://doi.org/10.2138/am-2020-6994, 2020.
Vrijmoed, J. C., Austrheim, H., John, T., Hin, R. C., Corfu, F., and Davies, G. R.: Metasomatism in the ultrahigh-pressure Svartberget garnet-peridotite (Western Gneiss Region, Norway): Implications for the transport of crust-derived fluids within the mantle, J. Petrol., 54, 1815–1848, https://doi.org/10.1093/petrology/egt032, 2013.
Warr, L. N.: IMA–CNMNC approved mineral symbols, Mineral. Mag., 85, 291–320, https://doi.org/10.1180/mgm.2021.43, 2021.
Wulff-Pedersen, E., Neumann, E. R., and Jensen, B. B.: The upper mantle under La Palma, Canary Islands: Formation of Si–K–Na-rich melt and its importance as a metasomatic agent, Contrib. Mineral. Petrol., 125, 113–139, https://doi.org/10.1007/s004100050210, 1996.
Zanetti, A., Mazzucchelli, M., Rivalenti, G., and Vannucci, R.: The Finero phlogopite-peridotite massif: An example of subduction-related metasomatism, Contrib. Mineral. Petrol., 134, 107–122, https://doi.org/10.1007/s004100050472, 1999.
Zelinkova, T., Racek, M., and Abart, R.: Compositional trends in Ba-, Ti-, and Cl-rich micas from metasomatized mantle rocks of the Gföhl Unit, Bohemian Massif, Austria, Am. Mineral., 108, 1840–1851, https://doi.org/10.2138/am-2022-8746, 2023.
Zhao, Y., Zheng, J. P., and Xiong, Q.: Prolonged slab-derived silicate and carbonate metasomatism of a cratonic mantle wedge (Maowu ultramafic body, China), J. Petrol., 62, 1–25, https://doi.org/10.1093/petrology/egab081, 2021.
Zheng, Y. and Hermann, J.: Geochemistry of continental subduction-zone fluids, Earth Planet. Space, 66, 1–16, https://doi.org/10.1186/1880-5981-66-93, 2014.
Short summary
We studied primary granitic and halogen-rich melt inclusions trapped in mantle rocks in the Bohemian Massif (Germany) in order to retrieve important information about the nature of the melt and the source rock. The melt was produced by the partial melting of metasediments during the deepest stages of subduction and interacted with the mantle. This work is an excellent example of transfer of crustal material, volatiles in particular, in the mantle during the subduction of the continental crust.
We studied primary granitic and halogen-rich melt inclusions trapped in mantle rocks in the...