

Supplement of

Halogen-bearing metasomatizing melt preserved in high-pressure (HP) eclogites of Pfaffenberg, Bohemian Massif

Alessia Borghini et al.

Correspondence to: Alessia Borghini (borghini@agh.edu.pl)

The copyright of individual parts of the supplement might differ from the article licence.

SUPPLEMENTARY MATERIAL

Figure S1: Raman spectra of nanogranitoids containing mineral phases and fluids.

Figure S2: BSE images of re-homogenized inclusions at 1000°C and 2.2 GPa containing corundum needles

	EXPER	IMENTAL PARA	RESULTS						
Experiment Name	Temperature (°C)	Pressure (GPa)	Duration (h)	Matarials in the capsule	Complete re- homogenization	Decrepitation	Melt-host interaction		
PF 5.1	1000	2.2	24	Chips + quartz powder	х	-	X Growth of new Grt + Crd needle		
PF 2.5	975	2.7	24	Chips +quartz powder	X (with included Px sometime)	-	X (some inclusions show a thin reaction rim between them and the Grt and they were excluded)		
PF 5.2	975	3	24	4 chips of Grt + quartz powder	x	-	-		

Table S1: Summary of the experimental parameters and the results of the different re-homogenization experiments performed.

Locality	Pfaffenberg		Rubinberg	g		Klatschmühle								
Sample type			Eclogites											
Reference	This study													
Sample name	PF 1	RUB 1	RUB 6	RUB 11	KLA1	KLA 1.2-1	KLA 2.2	RUB Average	KLA Average					
wt %														
SiO ₂	44.4	43.40	43.59	44.81	48.10	46.74	43.38	43.93	46.07					
TiO ₂	1.34	2.35	1.07	1.29	0.67	0.69	0.94	1.57	0.77					
Al ₂ O ₃	16.5	15.20	15.85	15.65	16.30	15.41	17.50	15.57	16.40					
Fe ₂ O ₃	0	0	0	0	0	0	0	0.00	0.00					
FeO	12.6	15.80	12.82	13.87	10.1	11.22	13.53	14.16	11.62					
MnO	0.23	0.26	0.23	0.22	0.15	0.17	0.22	0.24	0.18					
MgO	9.19	9.23	14.04	10.41	10.3	11.14	8.89	11.23	10.11					
CaO	12.6	12.2	11.34	12.61	11.3	11.61	12.76	12.05	11.89					
Na₂O	2.15	1.82	1.14	1.82	2.86	2.03	1.76	1.59	2.22					
K₂O	0.25	0.04	0.02	0.15	0.52	0.53	0.21	0.07	0.42					
P ₂ O ₅	1.25	0.08	0.19	0.08	0.05	0.08	0.36	0.12	0.16					
LOI	0.14	0.04	0.34	-0.03	0.24	0.78	-0.16	0.12	0.29					
TOTAL	100.51	100.38	100.29	100.91	100.35	99.62	99.55	100.53	99.84					
Mg#	57	51	66	57	64	64	54	58	62					
ppm														
Cr	300	200	400	500	500	700	300	367	500					
Ni	31	80	106	89	90	107	27	91	74					
Rb	11	14	2	9	18	31	17	8	22					
Cs	11	49	4	12	11	37	14	22	21					
Ва	78	99	92	225	186	184	55	139	142					
Th	3.0	0.50	2.2	1.8	0.50	0.30	1.0	2	0.60					
U	0.9	0.80	1.3	1.0	0.20	0.10	0.30	1	0.20					
Nb	11	9.9	19	4.3	4.0	4.9	11	11	6.5					
Та	0.70	0.70	1.5	0.30	0.40	0.60	1.1	1	0.70					
La	36	5.8	9.9	12	6.0	6.4	17	9	10					
Ce	91	14	22	27	14	18	34	21	22					
Pb	1.8	1.1	7.9	3.2	1.2	1.8	1.8	4	1.6					
Pr	13	2.2	3.0	3.4	2.2	2.7	4.1	3	3.0					
Р	12500	800	1900	800	500	800	3600	1167	1633					
Sr	141	62	117	115	185	142	131	98	153					
Nd	56	11	13	15	10	13	17	13	14					
Zr	138	74	62	71	73	73	49	69	65					
Hf	4.0	2.3	2	2	2.3	2.5	1.6	2.1	2.1					
Sm	11	3.3	4.0	4.0	3.2	3.6	4.3	3.8	3.7					
Eu	2.2	1.0	1.1	1.2	1.0	1.1	1.2	1.1	1.1					
Gd	9.0	4.4	5.1	5.2	3.6	4.3	4.8	4.9	4.2					
Tb	1.3	0.87	0.91	0.91	0.56	0.66	0.77	0.90	0.66					
Dy 	7.0	5.8	5.9	6.1	3.1	3.7	4.4	5.9	3.7					
	13400	23500	10700	12900	6700	6900	9400	15700	/66/					
Y	3/	37	33	33	16	19	21	34	19					
по Е-	1.4	1.5	1.2	1.3	0.56	0.72	0.89	1.3	0.72					
	3.9	4.0	3.5 0.47	4.1	1.5	∠.U	2.2	4.1	1.9					
1111 Vb	0.54	0.72	0.47	0.55	0.20	U.27 1 E	0.29	0.58	0.25					
10	0.4 0.51	4.7	2.9	3.0 0.50	1.2	1.0 0.00	1.0	3.0 0.57	1.0					
Lu	0.01 nd	0.71 nd	0.41 nd	0.59 n.d	0.10 nd	0.23 nd	0.20 nd	v.o/	0.22 nd					
B	n.u. n.d	n.u.	n.u. n.d	n.u. n.d	n.u. n.d	n.u. n.d	n.u. n.d	n.u. n.d	n.u. n.d					
nd - not determined	n.a.	n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	n.u.	n.u.					
n.u. = not determined														

Table S2: Whole rock major and trace element composition of Pfaffenberg eclogites compared with the nearby eclogitesof Rubinberg and Klatschmühle (Borghini et al., 2020) (Mg# = [molar Mg / (Mg + Fe²⁺tot) x 100]).

								A																A								
	Apatite in matrix																						Apatite	e in gari	net							
Sample name	PF5-1_	MIPF5-1_	MIPF5-1_	MIPF5-1_	MIPF5-1_I	MIPF5-1_	MIPF5-1_	MIPF5-1_	MIPF5-1	MIPF5-1_	M PF5-1_	MIPF5-1_I	MIPF5-1_	MIPF5-1	MIPF5-1_	MIPF5-1_	MIPF5-1_	M PF5-1_	MIPF5-1_	MIPF4-1_	MIPF4-1_I	MIPF4-1_	MIPF4-1_	MIPF4-1_	M PF4-1	MIPF4-1	MIPF4-1_	MIPF4-1_	MIPF4-1	_MIPF4-1_	MIPF4-1_	MIPF4-1_M
apfu																																
F	0.47	0.51	0.45	0.55	0.50	0.51	0.54	0.57	0.45	0.49	0.43	0.48	0.52	0.49	0.54	0.57	0.42	0.42	0.39	0.71	0.65	0.64	0.65	0.64	0.62	0.53	0.63	0.59	0.63	0.53	0.57	0.57
CI	0.23	0.22	0.22	0.22	0.34	0.33	0.30	0.30	0.24	0.24	0.24	0.23	0.20	0.19	0.17	0.17	0.21	0.21	0.21	0.19	0.20	0.21	0.20	0.15	0.15	0.14	0.15	0.13	0.13	0.13	0.13	0.19
OH	1.30	1.27	1.33	1.23	1.16	1.16	1.16	1.12	1.31	1.27	1.32	1.29	1.29	1.32	1.29	1.26	1.37	1.37	1.41	1.10	1.15	1.15	1.15	1.21	1.23	1.32	1.22	1.28	1.24	1.34	1.30	1.24
XE	0.24	0.25	0.22	0.28	0.25	0.25	0.27	0.29	0.22	0.25	0.22	0.24	0.26	0.24	0.27	0.29	0.21	0.21	0.19	0.36	0.33	0.32	0.33	0.32	0.31	0.27	0.32	0.29	0.32	0.27	0.28	0.28
XCI	0.11	0.11	0.11	0.11	0.17	0.17	0.15	0.15	0.12	0.12	0.12	0.12	0.10	0.10	0.08	0.08	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.08	0.08	0.07	0.08	0.07	0.07	0.06	0.07	0.10
XOH	0.65	0.64	0.67	0.61	0.58	0.58	0.58	0.56	0.66	0.63	0.66	0.64	0.64	0.66	0.65	0.63	0.68	0.69	0.70	0.55	0.57	0.58	0.57	0.61	0.62	0.66	0.61	0.64	0.62	0.67	0.65	0.62
7011	0.00	0.04	0.07	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.00	0.00	0.00	0.00	0.00	0.70	0.00	0.07	0.00	0.07	0.01	0.01	0.00	0.01	0.04	0.01	0.07	0.00	0.01
E in molt:																																
VC is such	0.040	0.040	0.040	0.040	0.044	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.042	0.040	0.040	0.042	0.044	0.040	0.040
AF IN Melt	0.015	0.013	0.013	0.013	0.011	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.015	0.015	0.013	0.013	0.015	0.015	0.012	0.012	0.012	0.012	0.012	0.015	0.013	0.013	0.013	0.013	0.013	0.014	0.015	0.013
E: 11 101																																
⊢ in meit in wt%	0.24	0.24	0.24	0.24	0.22	0.22	0.22	0.22	0.24	0.24	0.23	0.24	0.24	0.25	0.25	0.25	0.24	0.24	0.24	0.23	0.23	0.23	0.23	0.25	0.25	U.26	0.25	0.25	0.25	0.26	0.26	0.24

Table S3: Representative results of F calculated based on the F content of apatite, both the one scattered in the matrix and the one included in the garnet.

Locality	Pfaffenberg																			
Name	PF-A-001	PF-A-005	PF-A-006	PF-A-007	PF-A-008	PF-B1-00	4 PF-B1-00	5 PF-B1-006	5 PF-B1-00	7 PF-B2-00	6 PF-B2-00	7 PF-B2-00	8 PF-E-001	PF-E-002	PF-E-003	PF-E-004	PF-E-005	PF-E-006	PF-E-007	PF-E-008
ppm																				
Rb	239.31	265.20	725.08	339.41	258.45	484.21	299.71	372.67	326.65	415.02	191.43	270.84	417.70	363.50	690.06	330.56	169.62	522.01	449.56	333.93
Cs Ba	15.06 1252.37	19.85 831.53	99.77 944.74	23.79 1870.16	16.86 690.27	36.54 712.11	14.32 1698.66	38.15 745.85	10.15 1217.28	35.23 904.28	6.77 704.55	24.74 194.29	37.43 794.27	13.36 480.00	61.73 643.89	10.97 849.30	3636.36 645.96	33.56 547.48	19.10 1159.58	11.08 835.89
Th	37.29	b.d.l.	17.84	37.26	31.39	50.38	69.97	26.66	16.64	64.31	73.31	64.93	77.28	23.60	38.25	70.50	127.73	34.57	105.89	52.39
U	2.84	1.58	9.46	20.99	6.15	33.54	7.00	5.24	8.54	26.00	5.28	26.43	36.48	19.61	6.96	10.76	44.75	18.60	58.93	24.78
по Та	5.41 b.d.l.	3.52 b.d.l.	2.36 b.d.l.	5.31 b.d.l.	3.34 0.40	4.10 b.d.l.	0.74	0.39	9.81 b.d.l.	4.34 0.42	2.23 b.d.l.	4.36 0.40	0.49	3.90 b.d.l.	0.81	4.37 b.d.l.	9.17 0.58	3.46 b.d.l.	9.77	4.47 0.51
La	22.28	8.39	16.02	33.97	23.42	26.30	27.26	20.58	18.80	41.42	32.13	26.50	42.00	5.92	24.44	30.71	64.71	8.13	68.91	8.49
Ce	54.85	12.51	34.22	74.40	44.23	51.63	45.50	52.99	31.90	75.43	62.56	49.65	79.45	13.59	59.22	77.24	123.86	17.42	135.47	21.68
Pr	7.57	2.28	4.54	6.23	4.71	5.75	4.49	7.33	b.d.l.	9.39	8.43	6.14	7.54	2.01	7.16	11.76	15.08	1.91	16.17	3.13
Р	b.d.l.	b.d.l.	789.74	1259.84	238.38	604.90	b.d.l.	482.37	b.d.l.	886.30	616.89	763.28	577.15	b.d.l.	297.59	b.d.l.	642.52	585.60	1527.22	486.16
Sr	286.40	83.41	95.35	196.68	100.44	107.23	331.97	27.13	b.d.l.	209.00	189.53	38.14	122.42	56.58	105.04	43.95	107.13	49.24	124.46	69.38
Zr	226.37	134.23	161.60	246.97	219.25	238.87	74.53	236.42	b.d.l.	278.42	210.47	301.17	241.91	143.62	147.09	194.09	290.87	160.46	332.95	203.22
Hf	6.54	1.97	3.22	9.93	5.83	8.23	2.22	8.72	b.d.l.	6.63	7.50	7.75	5.16	4.69	5.74	6.18	7.54	4.41	8.57	6.46
Sm	5.47 b.d.l	7.04	b.d.l.	6.29 b.d.l	1.97	b.d.l.	6.36 b.d.l	0.52 b.d.l	b.d.l.	4.17	5.39 b.d.l	1.57 b.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	7.74 b.d.l	3.26
Gd	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Tb	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Dy Ti	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Y	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	2308.43 b.d.l.	b.d.l.	b.d.l.	5.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Но	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Er Tm	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Yb	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Lu	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Li B	b.d.l.	b.d.l.	b.d.l.	b.d.l.	34.13	b.d.l.	b.d.l.	219.14	b.d.l.	35.22	24.27 b.d.l	32.06	b.d.l. 38 31	b.d.l.	73.24 b.d.l	b.d.l.	946.64 62.03	b.d.l.	58.98 64.68	b.d.l. 40.76
Detection	limits	0.0.1.	0.0.1.	0.0.1.	50.21	0.0.1.	0.0.1.	25.07	0.0.1.	50.12	0.0.1.	43.32	50.51	0.0.1.	0.0.1.	0.0.1.	02.05	0.0.1.	04.00	40.70
Name	PF-A-001	PF-A-005	PF-A-006	PF-A-007	PF-A-008	PF-B1-00	4 PF-B1-00	5 PF-B1-006	5 PF-B1-007	7 PF-B2-00	6 PF-B2-00	7 PF-B2-00	8 PF-E-001	PF-E-002	PF-E-003	PF-E-004	PF-E-005	PF-E-006	PF-E-007	PF-E-008
ppm Rb	2 64	2 71	2 58	2 04	0.56	2 51	1.09	0.42	6 77	0.52	0.58	0.64	1 18	1 76	0.62	1 70	1 02	1.80	0.58	1 55
Cs	2.07	1.66	1.53	1.40	0.38	1.40	0.69	0.15	3.48	0.47	0.38	0.38	0.77	1.16	0.36	1.00	0.54	1.48	0.54	0.86
Ba	21.93	21.46	25.19	18.83	6.17	26.30	10.20	4.31	74.44	5.72	4.69	5.39	6.92	16.29	4.64	11.87	8.21	12.64	4.75	10.32
u U	0.29	0.36	0.36	0.26	0.08	0.59	0.19	0.04	0.82	0.09	0.09	0.10	0.09	0.23	0.07	0.17	0.19	0.18	0.06	0.11
Nb	1.10	1.10	1.35	0.56	0.29	1.64	0.76	0.23	1.71	0.19	0.18	0.21	0.39	0.62	0.28	0.79	0.43	0.75	0.32	0.50
Та	1.59	1.19	1.21	0.72	0.32	1.06	0.39	0.15	2.38	0.27	0.34	0.22	0.30	0.62	0.25	0.42	0.29	0.70	0.27	0.40
La Ce	1.11	0.71	1.59	1.17	0.41	2.16	0.66	0.33	2.99	0.42	0.31	0.29	0.48	1.02	0.34	0.95	0.61	0.68	0.31	0.69
Pb	1.19	1.59	1.87	1.75	0.48	1.97	0.67	0.30	6.42	0.41	0.41	0.43	0.41	0.79	0.29	0.71	0.48	0.72	0.32	0.46
Pr	0.57	0.60	0.94	0.98	0.14	0.64	0.32	0.15	2.50	0.15	0.14	0.24	0.33	0.46	0.26	0.58	0.19	0.76	0.23	0.21
Sr	35.47	31.94	36.48	28.26	9.58	37.66	16.41	6.97	111.83	8.52	7.60	7.36	9.34	15.26	5.70	15.57	10.13	17.57	5.85	12.95
Nd	3.06	5.39	3.78	2.72	0.89	3.95	3.42	0.92	8.42	0.96	1.40	1.04	1.11	2.81	0.88	3.11	1.18	3.92	0.70	2.24
Zr Llf	1.86	3.11	2.69	1.76	0.31	2.36	1.46	0.38	5.26	0.52	0.31	0.68	0.74	1.44	0.32	1.65	0.99	1.25	0.48	0.83
Sm	4.11	4.29	4.36	3.15	1.03	7.08	2.30	0.57	9.89	1.09	1.03	1.18	1.27	3.21	1.47	4.50	1.35	2.44	0.39	1.46
Eu	2.65	1.35	2.10	2.03	0.60	2.53	0.72	0.51	5.63	0.35	0.69	0.63	0.40	1.41	0.52	1.28	0.69	1.40	0.55	0.45
Gd	4.66	4.49	6.33	3.72	0.95	4.01	2.72	1.08	19.92	1.53	0.78	1.12	1.75	3.23	1.19	3.45	1.40	2.99	0.81	2.19
Dy	1.67	1.30	1.32	0.25	0.15	1.40	0.25	0.12	7.22	0.18	0.15	0.15	0.17	0.30	0.11	0.28	0.15	0.51	0.08	0.18
ті	86.64	123.25	112.62	74.97	34.08	97.05	41.27	16.53	365.66	33.94	29.87	30.20	47.52	83.47	30.08	67.15	62.06	104.98	33.38	55.26
Y Ho	1.41	2.01	1.72	1.33	0.36	1.21	0.68	0.22	4.85	0.34	0.43	0.37	0.51	1.04	0.31	0.90	0.52	0.86	0.32	0.68
Er	1.79	1.78	1.78	1.36	0.16	2.09	0.17	0.12	2.31	0.08	0.12	0.09	0.09	0.56	0.21	0.52	0.19	0.28	0.31	0.30
Tm	0.79	0.47	0.72	0.24	0.20	0.61	0.17	0.12	0.75	0.09	0.08	0.16	0.09	0.35	0.12	0.16	0.20	0.28	0.12	0.34
Yb	1.96	2.13	2.15	1.55	0.94	4.75	1.99	0.26	10.66	1.16	0.98	0.57	1.22	2.23	0.45	1.00	0.59	1.71	0.56	1.62
Li	138.66	102.52	118.60	86.01	29.86	114.45	48.27	21.03	339.00	26.55	23.69	23.36	32.21	55.14	20.66	58.40	38.24	66.70	21.93	48.84
B	95.45	79.42	92.31	70.41	26.48	109.13	47.11	17.07	282.82	23.82	22.87	20.89	27.11	43.03	16.66	45.81	29.05	53.36	17.97	37.99
D.d.I= belo	w detection	n imit																		

Table S4: Representative trace element laser ablation ICP-MS analyses of nanogranitoids with the corresponding detection limits.

REFERENCES.

Borghini, A., Ferrero, S., Brien, P.J.O., Günter, C., Ziemann, M.A., O'Brien, P.J., Laurent, O., Günter, C., and Ziemann, M.A., 2020, Cryptic metasomatic agent measured in situ in Variscan mantle rocks: Melt inclusions in garnet of eclogite, Granulitgebirge, Germany: Journal of Metamorphic Geology, v. 38, p. 207–234, doi:10.1111/jmg.12519.