Articles | Volume 36, issue 1
https://doi.org/10.5194/ejm-36-209-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-36-209-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inclusions in magmatic zircon from Slavonian mountains (eastern Croatia): anatase, kumdykolite and kokchetavite and implications for the magmatic evolution
Petra Schneider
CORRESPONDING AUTHOR
Department of Geology, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
Dražen Balen
Department of Geology, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
Related subject area
Igneous petrology
Magmatic to solid-state evolution of a shallow emplaced agpaitic tinguaite (the Suc de Sara dyke, Velay volcanic province, France): implications for peralkaline melt segregation and extraction in ascending magmas
Granite magmatism and mantle filiation
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Constraining the volatile evolution of mafic melts at Mt. Somma–Vesuvius, Italy, based on the composition of reheated melt inclusions and their olivine hosts
Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources
Reactive interaction between migmatite-related melt and mafic rocks: clues from the Variscan lower crust of Palmi (southwestern Calabria, Italy)
ICDP Oman Drilling Project: varitextured gabbros from the dike–gabbro transition within drill core GT3A
A snapshot of the transition from monogenetic volcanoes to composite volcanoes: case study on the Wulanhada Volcanic Field (northern China)
40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems
Quantification of major and trace elements in fluid inclusions and gas bubbles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with no internal standard: a new method
New evidence for upper Permian crustal growth below Eifel, Germany, from mafic granulite xenoliths
Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone)
Thomas Pereira, Laurent Arbaret, Juan Andújar, Mickaël Laumonier, Monica Spagnoli, Charles Gumiaux, Gautier Laurent, Aneta Slodczyk, and Ida Di Carlo
Eur. J. Mineral., 36, 491–524, https://doi.org/10.5194/ejm-36-491-2024, https://doi.org/10.5194/ejm-36-491-2024, 2024
Short summary
Short summary
This work presents the results on deformation-enhanced melt segregation and extraction in a phonolitic magma emplaced at shallow depth in the Velay volcanic province (France). We provide evidence of the segregation and subsequent extraction of the residual melt during magma ascent and final emplacement. We highlight that melt segregation started by compaction as a loose packing of microlites emerged and continued with melt filling of a shear band network.
Michel Pichavant, Arnaud Villaros, Julie A.-S. Michaud, and Bruno Scaillet
Eur. J. Mineral., 36, 225–246, https://doi.org/10.5194/ejm-36-225-2024, https://doi.org/10.5194/ejm-36-225-2024, 2024
Short summary
Short summary
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting and basaltic origin. Peraluminous felsic leucogranites are considered as the only granite examples showing no mantle input. This interpretation is re-evaluated, and we show that leucogranites, as most other crustal granite types, can have a mantle filiation. This stresses the critical importance of the mantle for granite generation and opens the way for unification of silicic magma generation models.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Rosario Esposito, Daniele Redi, Leonid V. Danyushevsky, Andrey Gurenko, Benedetto De Vivo, Craig E. Manning, Robert J. Bodnar, Matthew Steele-MacInnis, and Maria-Luce Frezzotti
Eur. J. Mineral., 35, 921–948, https://doi.org/10.5194/ejm-35-921-2023, https://doi.org/10.5194/ejm-35-921-2023, 2023
Short summary
Short summary
Despite many articles published about eruptions at Mt. Somma–Vesuvius (SV), the volatile contents of magmas associated with mafic (quasi-primitive) melts were not directly analyzed for many eruptions based on melt inclusions (MIs). We suggest that several high-Fo olivines formed at depths greater than those of the carbonate platform based on MI chemical composition. We also estimated that 347 to 686 t d-1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries of volcanic activity.
Gumer Galán, Gloria Gallastegui, Andrés Cuesta, Guillermo Corretgé, Ofelia Suárez, and Luis González-Menéndez
Eur. J. Mineral., 35, 845–871, https://doi.org/10.5194/ejm-35-845-2023, https://doi.org/10.5194/ejm-35-845-2023, 2023
Short summary
Short summary
Two examples of granites in the Variscan Iberian Massif were studied because they are associated with mafic rocks (appinites and vaugnerites), which raise the question of the role of mantle magma in the formation of granitic rocks. We conclude that appinites and vaugnerites derived from melting of different mantle sources, both previously modified by interaction with crustal materials. Subsequent differentiation of appinites and vaugnerites was influenced by contamination with coeval granites.
Maria Rosaria Renna
Eur. J. Mineral., 35, 1–24, https://doi.org/10.5194/ejm-35-1-2023, https://doi.org/10.5194/ejm-35-1-2023, 2023
Short summary
Short summary
Distribution of major and trace elements during anatexis at the source area was investigated in a portion of Variscan mid–lower crust exposed at Palmi (Calabria, Italy). Reactive migration of migmatitic melt imparted a mineralogical and chemical signature in mafic rocks associated with migmatites and promoted the crystallization of amphibole by a coupled dissolution–precipitation process. Amphibole and accessory allanite control the distribution of incompatible elements from the anatectic zone.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Gerhard Franz, Masafumi Sudo, and Vladimir Khomenko
Eur. J. Mineral., 34, 7–18, https://doi.org/10.5194/ejm-34-7-2022, https://doi.org/10.5194/ejm-34-7-2022, 2022
Short summary
Short summary
The age of formation of buddingtonite, ammonium-bearing feldspar, can be dated with the Ar–Ar method; however, it may often give only minimum ages due to strong resetting. In the studied example it gives a Precambrian minimum age of fossils, associated with this occurrence, and the age of the accompanying mineral muscovite indicates an age near 1.5 Ga. We encourage more dating attempts of buddingtonite, which will give valuable information of diagenetic or hydrothermal events.
Leonid Shumlyanskyy, Gerhard Franz, Sarah Glynn, Oleksandr Mytrokhyn, Dmytro Voznyak, and Olena Bilan
Eur. J. Mineral., 33, 703–716, https://doi.org/10.5194/ejm-33-703-2021, https://doi.org/10.5194/ejm-33-703-2021, 2021
Short summary
Short summary
In the paper we discuss the origin of large chamber pegmatite bodies which contain giant gem-quality crystals of black quartz (morion), beryl, and topaz. We conclude that these pegmatites develop under the influence of later intrusions of mafic rocks that cause reheating of the partly crystallized granite massifs and that they supply a large amount of fluids that facilitate the
inflationof pegmatite chambers and crystallization of giant crystals of various minerals.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Anastassia Y. Borisova, Stefano Salvi, German Velasquez, Guillaume Estrade, Aurelia Colin, and Sophie Gouy
Eur. J. Mineral., 33, 305–314, https://doi.org/10.5194/ejm-33-305-2021, https://doi.org/10.5194/ejm-33-305-2021, 2021
Short summary
Short summary
We developed a new method for quantifying elemental concentrations in natural and synthetic fluid inclusions and gas bubbles using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method with no internal standard. The method may be applied to estimate trace (metal and metalloid) elemental concentrations in hydrous carbonic (C–O–H) fluid inclusions and bubbles with uncertainty below 25 %.
Cliff S. J. Shaw
Eur. J. Mineral., 33, 233–247, https://doi.org/10.5194/ejm-33-233-2021, https://doi.org/10.5194/ejm-33-233-2021, 2021
Short summary
Short summary
Volcanic activity in the West Eifel region of Germany over the past million years has brought many samples of the Earth's mantle and crust to the surface. The samples from this study are pieces of the deep crust that formed between 264 and 253 million years ago at a depth of ~ 30 km. Samples like these reveal how the Earth's crust has grown and been modified over time.
Marta Antonicelli, Riccardo Tribuzio, Tong Liu, and Fu-Yuan Wu
Eur. J. Mineral., 32, 587–612, https://doi.org/10.5194/ejm-32-587-2020, https://doi.org/10.5194/ejm-32-587-2020, 2020
Short summary
Short summary
We present a petrological–geochemical investigation of peridotites of magmatic origin from the Ivrea–Verbano Zone (Italian Alps), a large-scale section of lower continental crust. The main purpose is to provide new insights into the processes governing the evolution of primitive mantle magmas. We propose that studied peridotites were formed by reaction of a melt-poor olivine-rich crystal mush, or a pre-existing peridotite, with upward-migrating melts possessing a substantial crustal component.
Cited articles
Audétat, A. and Lowenstern, J. B.: Melt Inclusions, in: Treatise on Geochemistry, Second Edition, edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 13, 143–173, https://doi.org/10.1016/B978-0-08-095975-7.01106-2, 2014.
Baldwin, S. L., Schönig, J., Gonzalez, J. P., Davies, H., and von Eynatten, H.: Garnet sand reveals rock recycling processes in the youngest exhumed high- and ultrahigh-pressure terrane on Earth, P. Natl. Acad. Sci. USA, 118, e2017231118, https://doi.org/10.1073/pnas.2017231118, 2021.
Balen, D. and Petrinec, Z.: Development of columnar jointing in albite rhyolite in a rapidly cooling volcanic environment (Rupnica, Papuk Geopark, Croatia), Terra Nova, 26, 102–110, https://doi.org/10.1111/ter.12075, 2014.
Balen, D., Schneider, P., Massonne, H.-J., Opitz, J., Luptakova, J., Putiš, M., and Petrinec, Z.: The Late Cretaceous A-type alkali-feldspar granite from Mt. Požeška Gora (N Croatia): Potential marker of fast magma ascent in the Europe–Adria suture zone, Geol. Charpath., 71, 361–381, https://doi.org/10.31577/GeolCarp.71.4.5, 2020.
Balen, D., Schneider, P., Petrinec, Z., Radonić, G., and Pavić, G.: Cretaceous Volcanic Rock Geosites of the Papuk UNESCO Global Geopark (Croatia): Scientific Aspect of Geoheritage in Geoeducation, Geotourism and Geoconservation, Geoconserv. Res., 6, 1–17, https://doi.org/10.30486/gcr.2023.1979814.1122, 2023.
Bartoli, O. and Cesare, B.: Nanorocks: a 10-year-old story, Rend. Fis. Acc. Lincei, 31, 249–257, https://doi.org/10.1007/s12210-020-00898-7, 2020.
Belak, M., Halamić, J., Marchig, V., and Tibljaš, D.: Upper Cretaceous-Palaeogene Tholeiitic Basalts of the Southern Margin of the Pannonian Basin: Požeska gora Mt. (Croatia), Geol. Croat., 51, 163–174, https://doi.org/10.4154/GC.1998.13, 1998.
Bodnar, R. J. and Student, J. J.: Melt inclusions in plutonic rocks: Petrography and microthermometry. In: Melt Inclusions in Plutonic Rocks, Mineralogical Association of Canada Short Course Series, edited by: Webster, J. D., Mineralogical Association of Canada, Montreal, 36, 1–25, 2006.
Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., and Cavallo, A.: Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites, Geology, 37, 627–630, https://doi.org/10.1130/G25759A.1, 2009.
Cesare, B., Acosta-Vigil, A., Ferrero, S., Bartoli, O.: Melt Inclusions in Migmatites and Granulites, in: The Science of Microstructure – Part II, edited by: Forster, M. A. and Fitz Gerald, J. D., Electronic edition, Journal of the Virtual Explorer, 38, 2, https://doi.org/10.3809/jvirtex.2011.00268, 2011.
Cesare, B., Acosta-Vigil, A., Bartoli, O., and Ferrero, S.: What can we learn from melt inclusions in migmatites and granulites?, Lithos, 239, 186–216, https://doi.org/10.1016/j.lithos.2015.09.028, 2015.
Fei, C. and Liu, J.: Vaterite in a decrepitated diamond-bearing inclusion in zircon from a stromatic migmatite in the Chinese Sulu ultrahigh-pressure metamorphic belt, Am. Mineral., 107, 1410–1424, https://doi.org/10.2138/am-2021-7940, 2022.
Ferrero, S. and Angel, R. J.: Micropetrology: Are Inclusions Grains of Truth?, J. Petrol., 59, 1671–1700, https://doi.org/10.1093/petrology/egy075, 2018.
Ferrero, S., Bartoli, O., Cesare, B., Salvioli-Mariani, E., Acosta-Vigil, A., Cavallo, A., Groppo, C., and Battiston, S.: Microstructures of melt inclusions in anatectic metasedimentary rocks, J. Metamorph. Geol., 30, 303–322, https://doi.org/10.1111/j.1525-1314.2011.00968.x, 2012.
Ferrero, S., Braga, R., Berkesi, M., Cesare, B., and Laridhi Ouazaa, N.: Production of metaluminous melt during fluid-present anatexis: an example from the Maghrebian basement, La Galite Archipelago, central Mediterranean, J. Metamorph. Geol., 32, 209–225, https://doi.org/10.1111/jmg.12068, 2014.
Ferrero, S., Wunder, B., Walczak, K., O'Brien, P. J., and Ziemann, M. A.: Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths, Geology, 43, 447–450, https://doi.org/10.1130/G36534.1, 2015.
Ferrero, S., Ziemann, M. A., Angel, R. J., O'Brien, P. J., and Wunder, B.: Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica–Snieznik Dome (Bohemian Massif): not evidence for ultrahigh–pressure conditions, Contrib. Mineral. Petrol., 171, 3, https://doi.org/10.1007/s00410-015-1220-x, 2016
Frezzotti, M. L.: Silicate-melt inclusions in magmatic rocks: Applications to petrology, Lithos, 55, 273–299, https://doi.org/10.1016/S0024-4937(00)00048-7, 2001.
Frezzotti, M. L., Tecce, F., and Casgali, A.: Raman spectroscopy for fluid inclusions analysis, J. Geochem. Explor., 112, 1–12, https://doi.org/10.1016/j.gexplo.2011.09.009, 2012.
Fu, Z., Liang, Y., Wang, S., and Zhong, Z.: Structural phase transition and mechanical properties of TiO2 under high pressure, Phys. Status Solidi B, 250, 2206–2214, https://doi.org/10.1002/pssb.201349186, 2013.
Gonzalez, J. P., Mazzucchelli, M. L., Angel, R. J., and Alvaro, M.: Elastic Geobarometry for Anisotropic Inclusions in Anisotropic Host Minerals: Quartz-in-Zircon, J. Geophys. Res.-Sol. Ea., 126, 6, e2021JB022080, https://doi.org/10.1029/2021JB022080, 2021.
Gopal, M., Moberly Chan, W. J., and De Jonghe, L. C.: Room temperature synthesis of crystalline metal oxides, J. Mater. Sci., 32, 6001–6008, https://doi.org/10.1023/A:1018671212890, 1997.
Gudelius, D., Zeh, A., Almeev, R. R., Wilson, A. H., Fischer, L. A., and Schmitt, A. K.: Zircon melt inclusions in mafic and felsic rocks of the Bushveld Complex – Constraints for zircon crystallization temperatures and partition coefficients, Geochim. Cosmochim. Ac., 289, 158–181, https://doi.org/10.1016/j.gca.2020.08.027, 2020.
Haggerty, S. E.: Oxide textures – a mini-atlas, Rev. Mineral. Geochem., 25, 129–220, https://doi.org/10.1515/9781501508684-008, 1991.
Hanaor, D. A. H. and Sorrell, C. C.: Review of the anatase to rutile phase transformation, J. Mat. Sci., 46, 855–874, https://doi.org/10.1007/s10853-010-5113-0, 2011.
Harley, S. L. and Kelly, N. M.: Zircon Tiny but Timely, Elements, 3, 13–18, https://doi.org/10.2113/gselements.3.1.13, 2007.
Horvat, M.: Geochemistry and petrology of granitoids of Papuk and Psunj Mts. (Slavonia, Croatia), PhD Thesis, Eötvös Loránd University, Budapest, Hungary, 133 pp., 2004.
Hoskin, P. W. O. and Schaltegger, U.: The composition of zircon and igneous and metamorphic petrogenesis, Rev. Mineral. Geochem., 53, 27–62, https://doi.org/10.2113/0530027, 2003.
Hwang, S.-L., Shen, P., Chu, H.-T., Tzen, Y. T., Liou, J. G., Sobolev, N. V., Zhang, R.-Y., Shatsky, V. S., and Zayachkovsky, A. A.: Kokchetavite: A new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane, Contrib. Mineral. Petrol., 148, 380–389, https://doi.org/10.1007/s00410-004-0610-2, 2004.
Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., Liou, J. G., and Sobolev, N. V.: Kumdykolite, an orthorhombic polymorph of albite, from the Kokchetav ultrahigh-pressure massif, Kazakhstan, Eur. J. Mineral., 21, 1325–1334, https://doi.org/10.1127/0935-1221/2009/0021-1970, 2009.
Hwang, S.-L., Yui, T.-F., Chu, H.-T., Shen, P., Liou, J. G, and Sobolev N. V.: Oriented kokchetavite compound rods in clinopyroxene of Kokchetav ultrahigh-pressure rocks, J. Asian Earth Sci., 63, 56–69, https://doi.org/10.1016/j.jseaes.2012.09.003, 2013.
Jamičić, D.: Osnovne geološke značajke Slavonskih planina s osvrtom na Našičko područje, Matica Hrvatska, Našički zbornik, 6, 29–36, 2001 (in Croatian).
Jamičić, D.: Osnovne geološke značajke Slavonskih planina, Priroda, 6–7, 20–27, 2003 (in Croatian).
Jennings, E., Marschall, H., Hawkesworth, C., and Storey, C.: Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so, Geology, 39, 863–866, https://doi.org/10.1130/G32037.1, 2011.
Kanzaki M., Xue X., Amalberti J., and Zhang Q.: Raman and NMR spectroscopic characterization of high-pressure K-cymrite (KAlSi3O8 ⋅ H2O) and its anhydrous form (kokchetavite), J. Mineral. Petrol. Sci., 107, 114–119, https://doi.org/10.2465/jmps.111020i, 2012.
Katayama, I. and Maruyama, S.: Inclusion study in zircon from ultrahigh-pressure metamorphic rocks in the Kokchetav massif: An excellent tracer of metamorphic history, J. Geol. Soc., 166, 783–796, https://doi.org/10.1144/0016-76492008-019, 2009.
Kendall-Langley, L. A., Kemp, A. I. S., Hawkesworth, C. J., EIMF, Roberts, M. P.: Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon, Contrib. Mineral. Petrol., 176, 58, https://doi.org/10.1007/s00410-021-01813-5, 2021.
Kloprogge, T.: Raman Spectroscopy of Clay Minerals, in: Developments in Clay Science, 8, edited by: Gates, W. P., Kloprogge, J. T., Madejová, J., and Bergaya, F., Elsevier, 150–199, https://doi.org/10.1016/B978-0-08-100355-8.00006-0, 2017.
Kotková J., Škoda R., and Machovič, V.: Kumdykolite from the ultrahigh-pressure granulite of the Bohemian Massif, Am. Mineral., 99, 1798–1801, https://doi.org/10.2138/am.2014.4889, 2014.
Li, Y. and Ishigaki, T.: Thermodynamic Analysis of Nucleation of Anatase and Rutile from TiO2 Melt, J. Cryst. Growth., 242, 511–516, https://doi.org/10.1016/S0022-0248(02)01438-0, 2002.
Lindsley, D. H.: Experimental studies of oxide minerals, Rev. Mineral. Geochem., 25, 69–106, https://doi.org/10.1515/9781501508684-006, 1991.
Liu, F. L. and Liou, J. G.: Zircon as the best mineral for P–T–time history of UHP metamorphism: A review on mineral inclusions and U–Pb SHRIMP ages of zircons from the Dabie–Sulu UHP rocks, J. Asian Earth Sci., 40, 1–39, https://doi.org/10.1016/j.jseaes.2010.08.007, 2011.
Liu, J., Ye, K., Maruyama, S., Cong, B., and Fan, H.: Mineral Inclusions in Zircon from Gneisses in the Ultrahigh-Pressure Zone of the Dabie Mountains, China, J. Geol., 109, 523–535, https://doi.org/10.1086/320796, 2001.
Lowenstern, J. B.: Melt inclusions come of age: Volatiles, volcanoes and Sorby's legacy, in: Developments in Volcanology, Melt Inclusions in Volcanic Systems, edited by: De Vivo, B. and Bodnar, R. J., Elsevier, Amsterdam, 5, 1–21, https://doi.org/10.1016/S1871-644X(03)80021-9, 2003.
Lužar-Oberiter, B., Mikes, T., Dunkl, I., Babić, Lj., and Von Eynatten, H.: Provenance of Cretaceous synorogenic sediments from the NW Dinarides (Croatia), Swiss J. Geosci., 105, 377–399, https://doi.org/10.1007/s00015-012-0107-3, 2012.
Massonne, H.-J.: Experimental and petrogenetic study of UHPM, in “Ultrahigh Pressure Metamorphism”, edited by: Coleman, R. G. and Wang, X., Cambridge University Press, New York, 33–95, https://doi.org/10.1017/CBO9780511573088.003, 1995.
Mikhno, A. O., Schmidt, U., and V. Korsakov, A. V.: Origin of K-cymrite and kokchetavite in the polyphase mineral inclusions from Kokchetav UHP calc-silicate rocks: evidence from confocal Raman imaging, Eur. J. Mineral., 25, 807–816, https://doi.org/10.1127/0935-1221/2013/0025-2321, 2013.
Nèmeth, P., Lehner, S., Petaev, M., and Buseck, P.: Kumdykolite, a high-temperature feldspar from an enstatite chondrite, Am. Mineral., 98, 1070–1073, https://doi.org/10.2138/am.2013.4459, 2013.
Nicoli, G. and Ferrero, S.: Nanorocks, volatiles and plate tectonics, Geosci. Front., 12, 101188, https://doi.org/10.1016/j.gsf.2021.101188, 2021.
Pamić, J.: Upper Cretaceous basaltoid and pyroclastic rocks from the Voćin volcanic mass on the Papuk Mt. (Slavonija, Northern Croatia), Geol. Vjesnik, 44, 161–172, 1991 (in Croatian, with English summary).
Pamić, J.: Eoalpine to Neoalpine magmatic and metamorphic processes in the northwestern Vardar Zone, the easternmost Periadriatic Zone and the southwestern Pannonian Basin, Tectonophysics, 109, 273–307, https://doi.org/10.1016/0040-1951(93)90135-7, 1993.
Pamić, J.: Volcanic rocks of the Sava-Drava interfluve and Baranja (Croatia), Nafta, Zagreb, Croatia, 192 pp., ISBN 953-96835-1-3, 1997 (in Croatian, with English summary).
Pamić, J.: The Sava-Vardar Zone of the Dinarides and Hellenides versus the Vardar Ocean, Eclogae Geol. Helv., 95, 99–113, https://doi.org/10.5169/seals-168948, 2002.
Pamić, J. and Lanphere, M.: Hercynian granites and metamorphic rocks from the Papuk, Psunj, Krndija and the surrounding basement of the Pannonian Basin (Northern Croatia, Yugoslavia), Geologija Ljubljana, 34, 81–253, https://doi.org/10.5474/geologija.1991.004, 1991a.
Pamić, J. and Lanphere, M.: A-type granites from the collisional area of the northernmost Dinarides and Pannonian Basin, Neues Jahrb. Mineral. Abh., 161, 215–236, 1991b.
Pamić, J., Belak, M., Bullen, T. D., Lanphere, M. A., and McKee, E. H.: Geochemistry and geodynamics of a Late Cretaceous bimodal volcanic association from the southern part of the Pannonian Basin in Slavonija (northern Croatia), Mineral. Petrol., 68, 271–296, https://doi.org/10.1007/s007100050013, 2000.
Pamić, J., Tomljenović, B., and Balen, D.: Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview, Lithos, 65, 113–142, https://doi.org/10.1016/S0024-4937(02)00162-7, 2002a.
Pamić, J., Balen, D., and Herak, M.: Origin and geodynamic evolution of Late Paleogene magmatic associations along the Periadriatic-Sava-Vardar magmatic belt, Geodin. Acta, 15, 209–231, https://doi.org/10.1016/S0985-3111(02)01089-6, 2002b.
Penel, G., Leroy, G., Rey, C., Sombret, B., Huvenne, J., and Brès, E. F.: Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders, J. Mater. Sci., 8, 271–276, https://doi.org/10.1023/A:1018504126866, 1997.
Perraki, M. and Faryad, S. W.: First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: Implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif, Lithos, 202, 157–166, https://doi.org/10.1016/j.lithos.2014.05.025, 2014.
Piccoli, P. M. and Candela, P. A.: Apatite in Igneous Systems, Rev. Mineral. Geochem., 48, 255–292, https://doi.org/10.2138/rmg.2002.48.6, 2002.
Romanenko, A., Rashchenko, S., Sokol, A., Korsakov, A., Seryotkin, Y., Glazyrin, K., and Musiyachenko, K.: Crystal structures of K-cymrite and kokchetavite from single-crystal X-ray diffraction, Am. Mineral., 106, 404–409, https://doi.org/10.2138/am-2020-7407, 2021.
RRUFF: Albite R040068, https://rruff.info/albite/display=default/R040068, last access: 1 September 2023a.
RRUFF: Cristobalite R060648, https://rruff.info/cristobalite/R060648, last access: 1 September 2023b.
RRUFF: Hematite R040024, https://rruff.info/hematite/R040024, last access: 1 September 2023c.
RRUFF: Ilmenite R130214, https://rruff.info/ilmenite/R130214, last access: 1 September 2023d.
RRUFF: Microcline R040154, https://rruff.info/microcline/R040154, last access: 1 September 2023e.
RRUFF: Quartz R050125, https://rruff.info/quartz/R050125, last access: 1 September 2023f.
Rubatto, D. and Hermann, J.: Zircon Behaviour in Deeply Subducted Rocks, Elements, 3, 31–35, https://doi.org/10.2113/gselements.3.1.31, 2007.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., and Ustaszewski, K.: The Alps–Carpathians–Dinarides connection: a compilation of tectonic units, Swiss J. Geosci., 101, 139–183, https://doi.org/10.1007/s00015-008-1247-3, 2008.
Schmid, S. M., Fügenschuh, B., Kounov, A., Maţenco, L., Nievergelt, P., Oberhänsli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenović, B., Ustaszewski, K., and Van Hinsbergen, D. J. J.: Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey, Gondwana Res., 78, 308–374, https://doi.org/10.1016/j.gr.2019.07.005, 2020.
Schneider, P., Balen, D., Opitz, J., and Massonne, H.-J.: Dating and geochemistry of zircon and apatite from rhyolite at the UNESCO geosite Rupnica (Mt. Papuk, northern Croatia) and the relationship to the Sava Zone, Geol. Croat., 75, 249–267, https://doi.org/10.4154/gc.2022.19, 2022.
Schönig, J., von Eynatten, H., Meinhold, G., Lünsdorf, N. K., Willner, A. P., and Schulz, B.: Deep subduction of felsic rocks hosting UHP lenses in the central Saxonian Erzgebirge: Implications for UHP terrane exhumation, Gondwana Res., 87, 320–329, https://doi.org/10.1016/j.gr.2020.06.020, 2020.
Seki, Y. and Kennedy, G. C.: The breakdown of potassium feldspar, KAlSi3O8, at high temperatures and high pressures, Am. Mineral., 49, 1688–1706, 1964.
Smith, S., Stevens, R., Liu, S., Li, G., Navrotsky, A., Boerio-Goates, J., and Woodfield, B.: Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability, Am. Mineral., 94, 236–243, https://doi.org/10.2138/am.2009.3050, 2009.
Sorby, H. C.: On the microscopical structure of crystals, indicating origin of minerals and rocks, Quart. J. Geol. Soc. London, 14, 453–500, https://doi.org/10.1144/GSL.JGS.1858.014.01-02.44, 1858.
Stähle, V., Chanmuang, N. C., Schwarz, W. H., Trieloff, M., and Varychev, A.: Newly detected shock-induced high-pressure phases formed in amphibolite clasts of the suevite breccia (Ries impact crater, Germany): Liebermannite, kokchetavite, and other ultrahigh-pressure phases, Contrib. Mineral, Petrol., 177, 80, https://doi.org/10.1007/s00410-022-01936-3, 2022.
Thomas, J. B., Bodnar, R. J., Shimizu, N., and Sinha, A. K.: Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon, Geochim. Cosmochim. Ac., 66, 2887–2902, https://doi.org/10.1016/S0016-7037(02)00881-5, 2002.
Thomas, J., Bodnar, R., Shimizu, N., and Chesner, C.: Melt Inclusions in Zircon, Rev. Mineral. Geochem., 53, 63–87, https://doi.org/10.2113/0530063, 2003.
Thompson, P., Parsons, I., Graham, C. M., and Jackson, B.: The breakdown of potassium feldspar at high water pressures, Contrib. Mineral. Petrol., 130, 176–186, https://doi.org/10.1007/s004100050358, 1998.
Ustaszewski, K., Schmid, S. M., Lugović, B., Schuster, R., Schaltegger, U., Bernoulli, D., Hottinger, L., Kounov, A., Fügenschuh, B., and Schefer, S.: Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): implications for the collision of the Adriatic and European plates, Lithos, 108, 106–125, https://doi.org/10.1016/j.lithos.2008.09.010, 2009.
Wenk, H.-R. and Bulakh, A.: Minerals: their constitution and origin, Cambridge University Press, 646 pp., ISBN 0521529581, 2004.
Zeng, X., Joy, K. H., Li, S., Lin, Y., Wang, N., Li, X., Li, Y., Hao, J., Liu, J., and Wang, S.: Oldest immiscible silica-rich melt on the Moon recorded in a ∼4.38 Ga zircon, Geophys. Res. Lett., 47, e2019GL085997, https://doi.org/10.1029/2019GL085997, 2020.
Zhang, R. Y., Liou J. G., and Lo, C.-H.: Raman spectra of polycrystalline microdiamond inclusions in zircons, and ultrahigh-pressure metamorphism of a quartzofeldspathic rock from the Erzgebirge terrane, Germany, Int. Geol. Rev., 59, 779–792, https://doi.org/10.1080/00206814.2016.1271366, 2017.
Short summary
The acid igneous rocks of eastern Croatia related to the Late Cretaceous closure of the Neotethys Ocean contain zircon as a main accessory mineral. Among others, zircon has inclusions of anatase, hematite and melt (nanogranitoids) with kokchetavite and kumdykolite. The first finding here of kokchetavite and kumdykolite in a magmatic nanogranitoid proves that these are not exclusively ultra-high pressure phases. The detected inclusions indicate rapid uplift and cooling of the oxidised magma.
The acid igneous rocks of eastern Croatia related to the Late Cretaceous closure of the...