Articles | Volume 36, issue 1
https://doi.org/10.5194/ejm-36-195-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-36-195-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Roman Botcharnikov
CORRESPONDING AUTHOR
Institut für Geowissenschaften, Johannes Gutenberg Universität Mainz, Mainz, Germany
Max Wilke
Institut für Geowissenschaften, Universität Potsdam, Potsdam, Germany
Jan Garrevoet
Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany
Maxim Portnyagin
GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany
Kevin Klimm
Institut für Geowissenschaften, Goethe Universität Frankfurt, Frankfurt, Germany
Stephan Buhre
Institut für Geowissenschaften, Johannes Gutenberg Universität Mainz, Mainz, Germany
Stepan Krasheninnikov
Institut für Geowissenschaften, Johannes Gutenberg Universität Mainz, Mainz, Germany
Renat Almeev
Institut für Mineralogie, Leibniz Universität Hannover, Hanover, Germany
Severine Moune
Observatoire de Physique du Globe de Clermont-Ferrand, Université Clermont Auvergne, Aubière CEDEX, France
Gerald Falkenberg
Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany
Related authors
André Stechern, Magdalena Blum-Oeste, Roman E. Botcharnikov, François Holtz, and Gerhard Wörner
Eur. J. Mineral., 36, 721–748, https://doi.org/10.5194/ejm-36-721-2024, https://doi.org/10.5194/ejm-36-721-2024, 2024
Short summary
Short summary
Lascar volcano, located in northern Chile, is among the most active volcanoes of the Andes. Its activity culminated in the last major explosive eruption in April 1993. We carried out experiments at high temperatures (up to 1050 °C) and pressures (up to 5000 bar) in the lab, and we used a wide variety of geochemical methods to provide comprehensive constraints on the depth and temperature of the magma chamber beneath Lascar volcano.
Carina Silke Hanser, Tobias Häger, and Roman Botcharnikov
Eur. J. Mineral., 36, 449–472, https://doi.org/10.5194/ejm-36-449-2024, https://doi.org/10.5194/ejm-36-449-2024, 2024
Short summary
Short summary
The structure of beryl has been a topic of research for decades but is still not entirely understood. This especially applies to substitutions by Fe ions and the occupation of the channels of beryl by H2O and alkalis. The growing amount of studies makes it difficult to gain an overview on these topics. Therefore, this article reviews the current consensus and debates found in the literature.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Donna L. Whitney, Max Wilke, Sara E. Hanel, Florian Heidelbach, Olivier Mathon, and Angelika D. Rosa
Eur. J. Mineral., 37, 143–149, https://doi.org/10.5194/ejm-37-143-2025, https://doi.org/10.5194/ejm-37-143-2025, 2025
Short summary
Short summary
The Earth recycles water and other elements in a vast system that involves the oceans, minerals, magma, and the atmosphere. We studied the part of the system that involves minerals, specifically, lawsonite and epidote because they contain both water and iron. Iron in these minerals is usually assumed to be Fe3+, but we discovered an unexpected amount of Fe2+. Reactions involving different states of Fe and water in minerals affect many processes related to element cycling in the Earth.
Manuela Borchert, Maria A. Kokh, Marion Louvel, Elena F. Bazarkina, Anselm Loges, Edmund Welter, Denis Testemale, Rami Al Abed, Stephan Klemme, and Max Wilke
Eur. J. Mineral., 37, 111–130, https://doi.org/10.5194/ejm-37-111-2025, https://doi.org/10.5194/ejm-37-111-2025, 2025
Short summary
Short summary
Tungsten (W) concentrations in fluids in equilibrium with crystalline tungsten oxide are used to improve constraints of thermodynamic parameters for W solubility. W species in the hydrothermal fluids are further characterized by X-ray spectroscopy. Improved thermodynamic properties for a set of W fluid species are provided that cover a wide range of fluid compositions, necessary for understanding and describing the complex processes of W enrichment and mineralization in hydrothermal systems.
André Stechern, Magdalena Blum-Oeste, Roman E. Botcharnikov, François Holtz, and Gerhard Wörner
Eur. J. Mineral., 36, 721–748, https://doi.org/10.5194/ejm-36-721-2024, https://doi.org/10.5194/ejm-36-721-2024, 2024
Short summary
Short summary
Lascar volcano, located in northern Chile, is among the most active volcanoes of the Andes. Its activity culminated in the last major explosive eruption in April 1993. We carried out experiments at high temperatures (up to 1050 °C) and pressures (up to 5000 bar) in the lab, and we used a wide variety of geochemical methods to provide comprehensive constraints on the depth and temperature of the magma chamber beneath Lascar volcano.
Diego González-García, Florian Pohl, Felix Marxer, Stepan Krasheninnikov, Renat Almeev, and François Holtz
Eur. J. Mineral., 36, 623–640, https://doi.org/10.5194/ejm-36-623-2024, https://doi.org/10.5194/ejm-36-623-2024, 2024
Short summary
Short summary
We studied the exchange of chemical elements by diffusion between magmas of tephritic and phonolitic composition from the Canary Islands, performing experiments at high pressure and high temperature with different amounts of added water. Our results characterize the way water and temperature affect the diffusion process, and we also find unexpectedly high mobility of aluminium, which may be related to its variable chemical bonding in highly alkaline melts.
Carina Silke Hanser, Tobias Häger, and Roman Botcharnikov
Eur. J. Mineral., 36, 449–472, https://doi.org/10.5194/ejm-36-449-2024, https://doi.org/10.5194/ejm-36-449-2024, 2024
Short summary
Short summary
The structure of beryl has been a topic of research for decades but is still not entirely understood. This especially applies to substitutions by Fe ions and the occupation of the channels of beryl by H2O and alkalis. The growing amount of studies makes it difficult to gain an overview on these topics. Therefore, this article reviews the current consensus and debates found in the literature.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022, https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
Short summary
Carbonates reduce the melting point of the mantle, and carbonate melts produced in low-degree melting of a carbonated mantle are considered the precursor of CO2-rich magmas. We established experimentally the melting relations of carbonates up to 9 GPa, showing that Mg-carbonates melt incongruently to periclase and carbonate melt. The trace element signature of carbonate melts parental to kimberlites is approached by melting of Mg-rich carbonates.
Cited articles
Berry, A. J., O'Neill, H. S. C., Jayasutiya, K. D., Campbell, S. J., and Foran, G. J.: XANES calibrations for the oxidation state of iron in a silicate glass, Am. Mineral., 88, 967–977, 2003.
Berry, A. J., Stewart, G. A., O'Neill, H. S. C., Mallmann, G., and Mosselmans, J. F. W.: A re-assessment of the oxidation state of iron in MORB glasses, Earth Planet. Sc. Lett., 483, 114–123, 2018.
Bezos, A. and Humler, E.: The Fe3+ ΣFe ratios of MORB glasses and their implications for mantle melting, Geochim. Cosmochim. Ac. 69, 711–725, 2005.
Borisov, A., Behrens, H. and Holtz, F.: ferric ferrous ratio in silicate melts: a new model for 1 atm data with special emphasis on the effects of melt composition, Contrib. Mineral. Petrol., 173, 98, https://doi.org/10.1007/s00410-018-1524-8, 2018.
Botcharnikov, R. E., Koepke, J., Holtz, F., McCammon, C., and Wilke, M.: The effect of water activity on the oxidation and structural state of Fe in a ferrobasaltic melt, Geochim. Cosmochim. Ac., 69, 5071–5085, 2005.
Brounce, M. N., Kelley, K. A., and Cottrell, E.: Variations in Fe3+ ∑Fe of Mariana Arc Basalts and Mantle Wedge fO2. J. Petrol., 55, 2513–2536, 2014.
Bucholz, C. E., Gaetani, G. A., Behn, M. D., and Shimizu, N.: Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions, Earth Planet. Sc. Lett., 374, 145–155, https://doi.org/10.1016/j.epsl.2013.05.033, 2013.
Carmichael, I. S. E.: The redox states of basic and silicic magmas: a reflection of their source regions?, Contrib. Mineral. Petrol., 106, 129–141, 1991.
Chernikov, R., Welter, E., Caliebe, W., Wellenreuther, G., and Falkenberg, G.: Fast EXAFS in synchronous scanning mode at PETRA P06, J. Phys. Conf. Ser., 712, 012020, https://doi.org/10.1088/1742-6596/712/1/012020, 2016.
Christie, D. M., Carmichael, I. S. E., and Langmuir, C. H.: Oxidation states of mid-ocean ridge basalt glasses, Earth Planet. Sc. Lett., 79, 397–411, 1986.
Cline II, C. J., Faul, U. H., David, E. C., Berry, A. J., and Jackson, I.: Redox-influenced seismic properties of upper-mantle olivine, Nature, 555, 355, https://doi.org/10.1038/nature25764, 2018.
Cottrell, E., Kelley, K. A., Lanzirotti, A., and Fischer, R. A.: High-precision determination of iron oxidation state in silicate glasses using XANES, Chem. Geol., 268, 167–179, 2009.
Cottrell, E. and Kelley, K. A.: The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle, Earth Planet. Sc. Lett., 305, 270–282, 2011.
Cottrell, E., Lanzirotti, A., Mysen, B., Birner, S., Kelley, K. A., Botcharnikov, R. E., Newville, M., and Davis, F. A.: A Mössbauer-based XANES calibration for hydrous basalt glasses reveals radiation-induced oxidation of Fe, Am. Mineral., 103, 489–501, 2018.
Cottrell, E., Birner, S. K., Brounce, M., Davis, F. A., Waters, L. E., and Kelley, K. A.: Oxygen fugacity across tectonic settings, in: Magma Redox Geochemistry, edited by: Moretti, R. and Neuville, D. R., 33–61, https://doi.org/10.1002/9781119473206.ch3, 2021.
Danyushevsky, L. V., McNeill, A. W., and Sobolev, A. V.: Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications, Chem. Geol., 183, 5–24, https://doi.org/10.1016/S0009-2541(01)00369-2, 2002.
Fiege, A., Ruprecht, P., Simon, A. C., Bell, A. S., Göttlicher, J., Newville, M., Lanzirotti, T., and Moore, G.: Calibration of Fe XANES for high-precision determination of Fe oxidation state in glasses: Comparison of new and existing results obtained at different synchrotron radiation sources, Am. Mineral., 102, 369–380, 2017.
Gaetani, G. A., O'Leary, J. A., Shimizu, N., Bucholz, C. E., and Newville, M.: Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions, Geology, 40, 915–918, https://doi.org/10.1130/G32992.1, 2012.
Geist, D., Harpp, K., Oswald, P., Wallace, P., Bindeman, I., and Christensen, B.: Hekla Revisited: Fractionation of a magma body at historical timescales, J. Petrol., 62, 1–31, https://doi.org/10.1093/petrology/egab001, 2021.
Helz, R., Cottrell, E., Brounce, M. N., and Kelley, K. A.: Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kılauea Volcano as revealed by XANES, J. Volcanol. Geotherm. Res., 333, 1–14, 2017.
Henke, B. L., Gullikson, E. M., and Davis, J. C.: X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1-92, Atomic Data and Nuclear Data Tables, 54, 181–342, 1993.
Hou, T., Botcharnikov, R., Moulas, E., Just, T., Koepke, J., Berndt, J., Yang, Z., Zhang, Z., Wang, M., and Holtz, F.: Kinetics of Fe-Ti oxide re-equilibration in magmatic systems: Implications for thermo-oxybarometry, J. Petrol., 61, 1–24, https://doi.org/10.1093/petrology/egaa116, 2021.
Hughes, E., Buse, B., Kearns, S. L., Blundy, J. D., Kilgour, G., Mader, H. M., Brooker, R. A., Balzer, R., Botcharnikov, R. E., Di Genova, D., Almeev, R. R., and Riker, J. M.: High spatial resolution analysis of the iron oxidation state in silicate glasses using the electron probe, Am. Mineral., 103, 1473–1486, 2018.
Humphreys, J., Brounce, M., and Walowski, K.: Diffusive equilibration of H2O and oxygen fugacity in natural olivine-hosted melt inclusions, Earth Planet. Sc. Lett.,, 584, 117409, https://doi.org/10.1016/j.epsl.2022.117409, 2022.
Kanngießer, B., Malzer, W., and Reiche, I.: A new 3D micro X-ray fluorescence analysis set-up – First archaeometric applications, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 211, 259–264, https://doi.org/10.1016/S0168-583X(03)01321-1; 2003.
Kanngießer, B., Malzer, W., Rodriguez, A., and Reiche, I.: 3D micro-XRF investigations of paint layers with tabletop set-up, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60, 41–47, https://doi.org/10.1016/j.sab.2004.10.012, 2004.
Kanngießer, B., Mantouvalou, I., Malzer, W., Wolff, T., and Hahn, O.: Non-destructive, depth resolved investigation of corrosion layers of historical glass objects by 3D Micro X-ray fluorescence analysis, J. Anal. Atom. Spectrom., 23, 814–819, 2008.
Kanngießer, B., Malzer, W., Mantouvalou, I., Sokaras, D., and Karydas A. G.: A deep view in cultural heritage – confocal micro X-ray spectroscopy for depth resolved elemental analysis, Appl. Phys. A, 106, 325–338, https://doi.org/10.1007/s00339-011-6698-0, 2012.
Kelley, K. A. and Cottrell, E.: Water and the Oxidation State of Subduction Zone Magmas, Science, 325, 605–607, 2009.
Kelley, K. A. and Cottrell, E.: The influence of magmatic differentiation on the ox-idation state of Fe in a basaltic arc magma, Earth Planet. Sc. Lett., 329, 109–121, https://doi.org/10.1016/j.epsl.2012.02.010, 2012.
Kress, V. C. and Carmichael, I. S. E.: The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states, Contrib. Mineral. Petrol., 108, 82–92, 1991.
Lucic, G., Berg, A.-S., and Stix, J.: Water-rich and volatile-undersaturated magmas at Hekla volcano, Iceland, Geochem. Geophys. Geosyst., 17, 3111–3130, https://doi.org/10.1002/2016GC006336, 2016.
Lühl, L., Hesse, B., Mantouvalou, I., Wilke, M., Mahlkow, S., Aloupi-Siotis, E., and Kanngiesser, B.: Confocal XANES and the Attic Black Glaze: The Three-Stage Firing Process through Modern Reproduction, Anal. Chem., 86, 6924–6930, 2014.
Moune, S., O. Sigmarsson, T. Thordarson, and P.-J. Gauthier: Recent volatile evolution in the magmatic system of Hekla volcano, Iceland, Earth Planet. Sc. Lett., 255, 373–389, https://doi.org/10.1016/j.epsl.2006.12.024, 2007.
Osborn, E. F.: Role of oxygen partial pressure in the crystallization and differentiation of basaltic magma, Am. J. Sci., 257, 609–647, 1959.
Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F.: Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma, Earth Planet. Sc. Lett., 272, 541–552, https://doi.org/10.1016/j.epsl.2008.05.020, 2008.
Portnyagin, M., Hoernle, K., Storm, S., Mironov, N., van den Bogaard, C., and Botcharnikov, R.: H2O-rich melt inclusions in fayalitic olivine from Hekla volcano: Implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland, Earth Planet. Sc. Lett., 357, 337–346, https://doi.org/10.1016/j.epsl.2012.09.047, 2012.
Putirka, K.: Thermometers and barometers for volcanic systems, in Minerals, Inclusions and Volcanic Processes, in: Reviews in Mineralogy and Geochemistry, vol. 69, edited by: Putirka, K. D. and Tepley III, G. J., Washington, D. C., Mineral. Soc. Am., 61–120, https://doi.org/10.2138/rmg.2008.69.3, 2008.
Rose-Koga E. F., Bouvier, A. S., Gaetani, G. A., et al.: Silicate melt inclusions in the new millennium: A review of recommended practices for preparation, analysis, and data presentation, Chem. Geol., 570, 120145, https://doi.org/10.1016/j.chemgeo.2021.120145, 2021.
Rudra, A. and Hirschmann, M. M.: Fe3+ partitioning between clinopyroxene and silicate melt at 1–2.5 GPa: Implications for Fe3+ content of MORB and OIB source mantle, Geochim. Cosmochim. Ac., 328, 258–279, 2022.
Schattel, N., Portnyagin, M., Golowin, R., Hoernle, K., and Bindeman, I.: Contrasting conditions of rift and off-rift silicic magma origin on Iceland, Geophys. Res. Lett., 41, 5813–5820, https://doi.org/10.1002/2014GL060780, 2014.
Schmitz, S., Möller, A., Wilke, M., Malzer, W., Kanngiesser, B., Bousquet, R., Berger, A., and Schefer, S.: Chemical U-Th-Pb dating of monazite by 3D-Micro X-ray fluorescence analysis with synchrotron radiation, Europ. J. Mineral., 21, 927–945, 2009.
Schuessler, J., Botcharnikov, R., Behrens, H., Misiti, V., and Freda, C.: Amorphous Materials: Properties, structure, and durability: Oxidation state of iron in hydrous phono-tephritic melts, Am. Mineral., 93, 1493–1504, https://doi.org/10.2138/am.2008.2795, 2008.
Schwab, R. G. and Küstner, D.: The equilibrium fugacities of important oxygen buffers in technology and petrology, Neues Jahrbuch für Mineralogie, 140, 112–142, 1981.
Sobolev, A. V. and Danyushevsky, L. V.: Petrology and Geochemistry of Boninites from the North Termination of the Tonga Trench: Constraints on the Generation Conditions of Primary High-Ca Boninite Magmas, J. Petrol., 35, 1183–1211, 1994.
Vekemans, B., Vincze, L., Brenker, F., and Adams, F.: Processing of three-dimensional microscopic X-ray fluorescence data, J. Anal. Atom. Spectrom., 19, 1302–1308, 2004.
Venezky, D. Y. and Rutherford, M. J.: Petrology and Fe–Ti oxide reequilibration of the 1991 Mount Unzen mixed magma, J. Volcan. Geotherm. Res., 89, 213–230, 1999.
Vincze, L., Vekemans, B., Brenker, F. E., Falkenberg, G., Rickers, K., Somogyi, A., Kersten, M., and Adams, F.: Three-Dimensional Trace Element Analysis by Confocal X-ray Microfluorescence Imaging, Anal. Chem., 76, 6786–6791, 2004.
Waters, L. E. and Lange, R. A.: No effect of H2O degassing on the oxidation state of magmatic liquids, Earth Planet. Sc. Lett., 447, 48–59, 2016.
Wilke, M., Farges, F., Petit, P.-E., Brown Jr., G. E., and Martin, F.: Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study, Am. Mineral. 86, 714–730, 2001.
Wilke, M., Behrens, H., Burkhard, D. J. M., and Rossano, S.: The oxidation state of iron in silicic melt at 500 MPa water pressure, Chem. Geol., 189, 55–67, 2002.
Wilke, M., Partzsch, G. M., Bernhardt, R., and Lattard, D.: Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge, Chem. Geol., 213, 71–87, 2004.
Wilke, M., Partzsch, G. M., Bernhardt, R., and Lattard, D.: Erratum for Wilke et al. (2004) due to incorrect and missing figures, Chem. Geol., 220, 143–161, 2005.
Wilke, M., Schmidt, C., Farges, F., Malavergne, V., Gautron, L., Simionovici, A., Hahn, M., and Petit, P. E.: Structural environment of Fe in water-bearing silicate glass and melt e evidence from X-ray absorption spectroscopy, Chem. Geol., 229, 144–161, 2006.
Wilke, M., Farges, F., Partzsch, G. M., Schmidt, C., and Behrens, H.: Speciation of iron in silicate glasses and melts by in-situ XANES spectroscopy, Am. Mineral. 92, 44–56, 2007.
Wilke, M., Jugo, P., Klimm, K., Susini, J., Botcharnikov, R., Kohn, S. C., and Janousch, M.: The origin of S4+ detected in silicate glasses by XANES, Am. Mineral., 93, 235–240, https://doi.org/10.2138/am.2008.2765, 2008.
Zhang, C., Almeev, R. R., Hughes, E., Borisov, A. A., Wolff, E. P., Höfer, H. E., Botcharnikov, R. E., and Koepke, J.: Electron microprobe technique for the determination of iron oxidation state in silicate glasses, Am. Mineral., 103, 1445–1454, 2018.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7817 KB) - Full-text XML
- Corrigendum
-
Supplement
(120 KB) - BibTeX
- EndNote
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe...
Special issue