Articles | Volume 35, issue 5
https://doi.org/10.5194/ejm-35-845-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-845-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources
Departament de Geologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
Gloria Gallastegui
CORRESPONDING AUTHOR
Instituto Geológico y Minero de España (IGME, CSIC), Oviedo, 33005, Spain
Andrés Cuesta
Departamento de Geología, Universidad de Oviedo, Oviedo, 33005, Spain
Guillermo Corretgé
Departamento de Geología, Universidad de Oviedo, Oviedo, 33005, Spain
Ofelia Suárez
Departamento de Geología, Universidad de Oviedo, Oviedo, 33005, Spain
Luis González-Menéndez
Instituto Geológico y Minero de España (IGME, CSIC), León, 24006, Spain
Related authors
No articles found.
Francisco J. Rubio Pascual, Luis M. Martín Parra, Pablo Valverde-Vaquero, Alejandro Díez Montes, Manuel P. Hacar Rodríguez, Justo Iglesias, Rubén Díez Fernández, Gloria Gallastegui, Nemesio Heredia, and L. Roberto Rodríguez Fernández
Solid Earth Discuss., https://doi.org/10.5194/se-2020-25, https://doi.org/10.5194/se-2020-25, 2020
Preprint withdrawn
Related subject area
Igneous petrology
Magmatic to solid-state evolution of a shallow emplaced agpaitic tinguaite (the Suc de Sara dyke, Velay volcanic province, France): implications for peralkaline melt segregation and extraction in ascending magmas
Granite magmatism and mantle filiation
Inclusions in magmatic zircon from Slavonian mountains (eastern Croatia): anatase, kumdykolite and kokchetavite and implications for the magmatic evolution
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Constraining the volatile evolution of mafic melts at Mt. Somma–Vesuvius, Italy, based on the composition of reheated melt inclusions and their olivine hosts
Reactive interaction between migmatite-related melt and mafic rocks: clues from the Variscan lower crust of Palmi (southwestern Calabria, Italy)
ICDP Oman Drilling Project: varitextured gabbros from the dike–gabbro transition within drill core GT3A
A snapshot of the transition from monogenetic volcanoes to composite volcanoes: case study on the Wulanhada Volcanic Field (northern China)
40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems
Quantification of major and trace elements in fluid inclusions and gas bubbles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with no internal standard: a new method
New evidence for upper Permian crustal growth below Eifel, Germany, from mafic granulite xenoliths
Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone)
Thomas Pereira, Laurent Arbaret, Juan Andújar, Mickaël Laumonier, Monica Spagnoli, Charles Gumiaux, Gautier Laurent, Aneta Slodczyk, and Ida Di Carlo
Eur. J. Mineral., 36, 491–524, https://doi.org/10.5194/ejm-36-491-2024, https://doi.org/10.5194/ejm-36-491-2024, 2024
Short summary
Short summary
This work presents the results on deformation-enhanced melt segregation and extraction in a phonolitic magma emplaced at shallow depth in the Velay volcanic province (France). We provide evidence of the segregation and subsequent extraction of the residual melt during magma ascent and final emplacement. We highlight that melt segregation started by compaction as a loose packing of microlites emerged and continued with melt filling of a shear band network.
Michel Pichavant, Arnaud Villaros, Julie A.-S. Michaud, and Bruno Scaillet
Eur. J. Mineral., 36, 225–246, https://doi.org/10.5194/ejm-36-225-2024, https://doi.org/10.5194/ejm-36-225-2024, 2024
Short summary
Short summary
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting and basaltic origin. Peraluminous felsic leucogranites are considered as the only granite examples showing no mantle input. This interpretation is re-evaluated, and we show that leucogranites, as most other crustal granite types, can have a mantle filiation. This stresses the critical importance of the mantle for granite generation and opens the way for unification of silicic magma generation models.
Petra Schneider and Dražen Balen
Eur. J. Mineral., 36, 209–223, https://doi.org/10.5194/ejm-36-209-2024, https://doi.org/10.5194/ejm-36-209-2024, 2024
Short summary
Short summary
The acid igneous rocks of eastern Croatia related to the Late Cretaceous closure of the Neotethys Ocean contain zircon as a main accessory mineral. Among others, zircon has inclusions of anatase, hematite and melt (nanogranitoids) with kokchetavite and kumdykolite. The first finding here of kokchetavite and kumdykolite in a magmatic nanogranitoid proves that these are not exclusively ultra-high pressure phases. The detected inclusions indicate rapid uplift and cooling of the oxidised magma.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Rosario Esposito, Daniele Redi, Leonid V. Danyushevsky, Andrey Gurenko, Benedetto De Vivo, Craig E. Manning, Robert J. Bodnar, Matthew Steele-MacInnis, and Maria-Luce Frezzotti
Eur. J. Mineral., 35, 921–948, https://doi.org/10.5194/ejm-35-921-2023, https://doi.org/10.5194/ejm-35-921-2023, 2023
Short summary
Short summary
Despite many articles published about eruptions at Mt. Somma–Vesuvius (SV), the volatile contents of magmas associated with mafic (quasi-primitive) melts were not directly analyzed for many eruptions based on melt inclusions (MIs). We suggest that several high-Fo olivines formed at depths greater than those of the carbonate platform based on MI chemical composition. We also estimated that 347 to 686 t d-1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries of volcanic activity.
Maria Rosaria Renna
Eur. J. Mineral., 35, 1–24, https://doi.org/10.5194/ejm-35-1-2023, https://doi.org/10.5194/ejm-35-1-2023, 2023
Short summary
Short summary
Distribution of major and trace elements during anatexis at the source area was investigated in a portion of Variscan mid–lower crust exposed at Palmi (Calabria, Italy). Reactive migration of migmatitic melt imparted a mineralogical and chemical signature in mafic rocks associated with migmatites and promoted the crystallization of amphibole by a coupled dissolution–precipitation process. Amphibole and accessory allanite control the distribution of incompatible elements from the anatectic zone.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Gerhard Franz, Masafumi Sudo, and Vladimir Khomenko
Eur. J. Mineral., 34, 7–18, https://doi.org/10.5194/ejm-34-7-2022, https://doi.org/10.5194/ejm-34-7-2022, 2022
Short summary
Short summary
The age of formation of buddingtonite, ammonium-bearing feldspar, can be dated with the Ar–Ar method; however, it may often give only minimum ages due to strong resetting. In the studied example it gives a Precambrian minimum age of fossils, associated with this occurrence, and the age of the accompanying mineral muscovite indicates an age near 1.5 Ga. We encourage more dating attempts of buddingtonite, which will give valuable information of diagenetic or hydrothermal events.
Leonid Shumlyanskyy, Gerhard Franz, Sarah Glynn, Oleksandr Mytrokhyn, Dmytro Voznyak, and Olena Bilan
Eur. J. Mineral., 33, 703–716, https://doi.org/10.5194/ejm-33-703-2021, https://doi.org/10.5194/ejm-33-703-2021, 2021
Short summary
Short summary
In the paper we discuss the origin of large chamber pegmatite bodies which contain giant gem-quality crystals of black quartz (morion), beryl, and topaz. We conclude that these pegmatites develop under the influence of later intrusions of mafic rocks that cause reheating of the partly crystallized granite massifs and that they supply a large amount of fluids that facilitate the
inflationof pegmatite chambers and crystallization of giant crystals of various minerals.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Anastassia Y. Borisova, Stefano Salvi, German Velasquez, Guillaume Estrade, Aurelia Colin, and Sophie Gouy
Eur. J. Mineral., 33, 305–314, https://doi.org/10.5194/ejm-33-305-2021, https://doi.org/10.5194/ejm-33-305-2021, 2021
Short summary
Short summary
We developed a new method for quantifying elemental concentrations in natural and synthetic fluid inclusions and gas bubbles using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method with no internal standard. The method may be applied to estimate trace (metal and metalloid) elemental concentrations in hydrous carbonic (C–O–H) fluid inclusions and bubbles with uncertainty below 25 %.
Cliff S. J. Shaw
Eur. J. Mineral., 33, 233–247, https://doi.org/10.5194/ejm-33-233-2021, https://doi.org/10.5194/ejm-33-233-2021, 2021
Short summary
Short summary
Volcanic activity in the West Eifel region of Germany over the past million years has brought many samples of the Earth's mantle and crust to the surface. The samples from this study are pieces of the deep crust that formed between 264 and 253 million years ago at a depth of ~ 30 km. Samples like these reveal how the Earth's crust has grown and been modified over time.
Marta Antonicelli, Riccardo Tribuzio, Tong Liu, and Fu-Yuan Wu
Eur. J. Mineral., 32, 587–612, https://doi.org/10.5194/ejm-32-587-2020, https://doi.org/10.5194/ejm-32-587-2020, 2020
Short summary
Short summary
We present a petrological–geochemical investigation of peridotites of magmatic origin from the Ivrea–Verbano Zone (Italian Alps), a large-scale section of lower continental crust. The main purpose is to provide new insights into the processes governing the evolution of primitive mantle magmas. We propose that studied peridotites were formed by reaction of a melt-poor olivine-rich crystal mush, or a pre-existing peridotite, with upward-migrating melts possessing a substantial crustal component.
Cited articles
Antonicelli, M., Tribuzio, R., Liu, T., and Wu, F.-Y.: Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone), Eur. J. Mineral., 32, 587–612, https://doi.org/10.5194/ejm-32-587-2020, 2020.
Atherton, M. P. and Ghani, A. A.: Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Lithos, 62, 65–85, https://doi.org/10.1016/S0024-4937(02)00111-1, 2002.
Bailey, E. B. and Maufe, H. B.: The Geology of Ben Nevis and Glen Coe and the Surrounding Country (Explanation of Sheet 53), Memoirs of the Geological Survey, Scotland, 53, 167 pp., 1916.
Baxter, S. and Feely, M.: Magma mixing and mingling in granitoids: examples from the Galway Granite, Connemara, Ireland, Miner. Petrol., 76, 63–74, https://doi.org/10.1007/s007100200032, 2002.
Bea, F., Montero, P., and Molina, J. F.: Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: a Model for the Generation of Variscan Batholith in Iberia, J. Geol., 107, 399–419, https://doi.org/10.1086/314356, 1999.
Bea, F., Gallastegui, G., Montero, P., Molina, F. J., Scarrow, J., Cuesta, A., and González-Menéndez, L.: Contrasting high-Mg, high-K rocks in Central Iberia: the appinite–vaugnerite conundrum and their (non-existent) relation with arc magmatism, J. Iber. Geol., 47, 235–261, https://doi.org/10.1007/s41513-020-00152-x, 2021.
Bonin, B.: Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review, Lithos, 78, 1–24, https://doi.org/10.1016/j.lithos.2004.04.042, 2004.
Cambeses, A., Molina, J. F., Morales, I., Lázaro, C., Moreno, J. A., Montero, P., and Bea, F.: Compositional Evolution of the Variscan Intra-Orogenic Extensional Magmatism in the Valencia del Ventoso Plutonic Complex, Ossa-Morena Zone (SW Iberia): A View from Amphibole Compositional Relationships, Minerals-Basel, 11, 431, https://doi.org/10.3390/min11040431, 2021.
Capdevila, R.: Le métamorphisme régional progressif et les granites dans le segment hercynien de Galice Nord Orientale (NW de l'Espagne), PhD Thèse, Univ. Montpellier, 430 pp., 1969.
Castro, A.: Plagioclase morphologies in assimilation experiments. Implications for disequilibrium melting in the generation of granodiorite rocks, Miner. Petrol., 71, 31–49, https://doi.org/10.1007/s007100170044, 2001.
Castro, A., Corretgé, L. G., De La Rosa, J. D., Fernández, C., López, S., García-Moreno, O., and Chacón, H.: The Appinite-Migmatite Complex of Sanabria; NW Iberian Massif, Spain, J. Petrol., 44, 1309–1344, https://doi.org/10.1093/petrology/44.7.1309, 2003.
Castro, A., Gerya, T., García-Casco, A., Fernández, C., Díaz-Alvarado, J., Moreno-Ventas, I., and Löw, I.: Melting Relations of MORB–Sediment Mélanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-type Batholiths, J. Petrol., 51, 1267–1295, https://doi.org/10.1093/petrology/egq019, 2010.
Cocherie, A., Rossi, P., Fouillac, A. M., and Vidal, P.: Crust and mantle contributions to granite genesis – An example from the Variscan batholith of Corsica, France, studied by trace-element and Nd-Sr-O-isotope systematics, Chem. Geol., 115, 173–211, https://doi.org/10.1016/0009-2541(94)90186-4, 1994.
Condamine, P., Couzinié, S., Fabbrizio, A., Devidal J.-L., and Médard, E.: Trace element partitioning during incipient melting of phlogopite-peridotite in the spinel and garnet stability fields, Geochim. Cosmochim. Ac., 327, 53–78, https://doi.org/10.1016/j.gca.2022.04.011, 2022.
Corretgé, L. G., Suárez, O., Galán, G., and Fernández-Suárez, J.: Zona Asturoccidental Leonesa. Magmatismo, in: Geología de España, edited by: Vera, J. A., Sociedad Geológica de España, Instituto Geológico y Minero, Madrid, 63–68, ISBN 84-7840-546-1, 2004.
Couzinié, S., Moyen, J.-F., Villaros, A., Paquette, J.-L., Scarrow, J. H., and Marignac, C.: Temporal relationships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of Velay Complex (Massif Central, France), J. Geosci.-Czech., 59, 69–86, https://doi.org/10.3190/jgeosci.155, 2014.
Couzinié, S., Laurent, O., Moyen, J.-F., Zeh, A., Bouilhol, P., and Villaros, A.: Post-collisional magmatism: Crustal growth not identified by zircon Hf–O isotopes, Earth Planet. Sc. Lett., 456, 182–195, https://doi.org/10.1016/j.epsl.2016.09.033, 2016.
Cuesta, A. and Gallastegui, G.: Zona Centro Ibérica. Magmatismo: Galicia Occidental, in: Geología de España, edited by: Vera, J. A., Sociedad Geológica de España, Instituto Geológico y Minero, Madrid, 96–100, ISBN 84-7840-546-1, 2004.
Dallmeyer, R. D., Martínez Catalán, J. R., Arenas, R., Gil Ibarguchi, J. I., Gutiérrez Alonso, G., Farias, P., Bastida, F., and Aller, J.: Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from dating of regional fabrics, Tectonophysics, 277, 307–337, https://doi.org/10.1016/S0040-1951(97)00035-8, 1997.
Davies, J. H. and von Blanckenbourg, F.: Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens, Earth Planet. Sc. Lett., 129, 85–102, https://doi.org/10.1016/0012-821X(94)00237-S, 1995.
DePaolo, D. J.: Neodymium Isotope Geochemistry: An Introduction, in: Minerals and Rocks 20, edited by: Wyllie, P. J., El Goresy, A., von Engelhardt, W., and Hahn, T., Springer-Verlag, Berlin, 187 pp., ISBN 3642489184, 1998.
Dickin, A. P.: Radiogenic Isotope Geology. Cambridge University Press. Cambridge, 471 pp., ISBN O-521-8231-I, 2005.
Díez-Balda, M. A., Vegas, R., and González Lodeiro, F.: Structure of the Autochthon of the Central Iberian Zone, in: Pre-Mesozoic Geology of Iberia, edited by: Dallmeyer, R. D. and Martínez, E., Springer-Verlag, Heidelberg, 172–188, https://doi.org/10.1007/978-3-642-83980-1, 1990.
Díez Fernández, R., Martínez Catalán, J. R., Arenas Martín, R., and Abati Gómez, J.: Tectonic evolution of a continental subduction-exhumation channel: Variscan structure of the basal allochthonous units in NW Spain, Tectonics, 30, 1–22, https://doi.org/10.1029/2010TC002850, 2011.
Díez Fernández, R., Arenas Martín, R., Pereira, M. F., Sánchez-Martínez, S., Albert, R., Martín Parra, L.-M., Rubio Pascual, F.-J., and Matas, J.: Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited, Earth-Sci. Rev., 162, 269–292, https://doi.org/10.1016/j.earscirev.2016.08.002, 2016.
Errandonea-Martin, J., Sarrionandia, F., Carracedo-Sánchez, M., Gil Ibarguchi, J. I., and Eguíluz, L.: Petrography and geochemistry of late- to post-Variscan vaugnerite series rocks and calc-alkaline lamprophyres within a cordierite-bearing monzogranite (Sierra Bermeja Pluton, southern Iberian Massif), Geol. Acta, 16, 237–255, https://doi.org/10.1344/GeologicaActa2018.16.3.1, 2018.
Farias, P., Gallastegui, G., González Lodeiro, F., Marquínez, J., Martín Parra, L. M., Martínez Catalán, J. R., Pablo Maciá, J. G., and Rodríguez Fernández, L. R.: Aportaciones al conocimiento de la litoestratigrafia y estructura de Galicia Central, Memórias No. 1, Museu e Laboratório Mineralógico e Geológico, Facultade de Ciências, Universidade do Porto, 1, 411–431, 1987.
Feig, S. T., Koepke, J., and Snow, J. E.: Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions, Contrib. Mineral. Petr., 152, 611–638, https://doi.org/10.1007/s00410-006-0123-2, 2006.
Fernández-Suárez, J., Dunning, G. R., Jenner, G. A., and Gutiérrez-Alonso, G.: Variscan collisional magmatism and deformation in NW Iberia: constraints from U–Pb geochronology of granitoids, J. Geol. Soc. Lond., 157, 565–576, https://doi.org/10.1144/jgs.157.3.565, 2000.
Ferré, E. C. and Leake, B. E.: Geodynamic significance of early orogenic high-K crustal and mantle melts: example of the Corsica Batholith, Lithos, 59, 47–67, https://doi.org/10.1016/S0024-4937(01)00060-3, 2001.
Fowler, M. and Rollinson, H.: Phanerozoic sanukitoids from Caledonian Scotland: Implications for Archean subduction, Geology, 40, 1079–1082, https://doi.org/10.1130/G33371.1, 2012.
Fowler, M. B., Kocks, H., Darbyshire, D. P. F., and Greenwood, P. B.: Petrogenesis of high Ba–Sr plutons from the Northern Highlands Terrane of the British Caledonian Province, Lithos, 105, 129–148, https://doi.org/10.1144/jgs.157.3.565, 2008.
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., and Frost, D. C.: A Geochemical Classification for Granitic Rocks, J. Petrol., 42, 2033–2048, https://doi.org/10.1093/petrology/42.11.2033, 2001.
Gaetani, G. A., Grove, T. L., and Bryan, W. B.: The influence of water on the petrogenesis of subduction-related igneous rocks, Nature, 365, 332–334, https://doi.org/10.1038/365332a0, 1993.
Galán, G.: Las rocas graníticas del Macizo de Vivero en el sector norte (Lugo, NO de España). Corpus Geologicum Gallaeciae, Segunda Serie III, Academia de Ciencias Gallega, Laboratorio Geológico de Lage, Fundación Pedro Barrie de la Maza, La Coruña, 376 pp., ISBN 84-85728-64-5, 1987.
Galán, G., Pin, C., and Duthou J.-L.: Sr–Nd isotopic record of multi-stage interactions between mante-derived magmas and crustal components in a collision context – The ultramafic–granitoid association from Vivero (Hercynian belt, NW Spain), Chem. Geol., 131, 67–91, https://doi.org/10.1016/0009-2541(96)00027-7, 1996.
Galán, G., Oliveras, V., and Paterson, B.: Thermal and redox state of the subcontinental lithospheric mantle of NE Spain from thermobarometric data on mantle xenoliths, Int. J. Earth Sci., 100, 81–106, https://doi.org/10.1007/s00531-009-0503-8, 2011.
Galán, G., Enrique, P., Butjosa, L., and Fernández-Roig, M.: Spinels of Variscan olivine hornblendites related to the Montnegre granitoids revisited (NE Spain): petrogenetic evidence of mafic magma mixing, Geol. Acta, 15, 323–336, https://doi.org/10.1344/GeologicaActa2017.15.4.5, 2017.
Gallastegui, G.: Petrología del macizo granodiorítico de Bayo-Vigo (provincia de Pontevedra, España). Serie Nova Terra, 26. Edicios do Castro, Sada, A Coruña, 412 pp., ISBN 8485-175-3, 2005.
Gallastegui, G., Corretgé, L. G., and Cuesta, A.: Petrografía y aspectos geoquímicos de los enclaves microgranudos de Cangas de Morrazo-Moaña (Prov. de Pontevedra), Cad. Lab. Xeol. Laxe, 7, 55–85, Ediciós Do Castro, Sada, A Coruña, ISBN 84-7492-204-6, 1984.
Gil Ibarguchi, J. I.: A comparative study of vaugnerites and metabasic rocks from the Finisterre region (NW Spain), Neues Jb. Miner. Abh., 143, 91–101, 1981.
Gil Ibarguchi, J. I., Bowden, P., and Whitley, J. E.: Rare Earth Element Distribution in Some Hercynian Granitoids from the Finisterre Region, NW Spain, J. Geol., 92, 397–416, https://doi.org/10.1086/628875, 1984.
Goldstein, S. L., O'Nions, R. K., and Hamilton, P. J.: A Sm-Nd isotopic study of atmospheric dust and particulates from major river systems, Earth Planet. Sc. Lett., 70, 221–236, https://doi.org/10.1016/0012-821X(84)90007-4, 1984.
González-Menéndez, L., Gallastegui, G., Cuesta, A., Montero, P., Valverde-Vaquero, P., Rubio-Ordóñez, A., and Bea, F.: Los primeros pulsos del magmatismo Varisco del NO de Iberia (Galicia, España). Datos preliminares de nuevas edades U-Pb SHRIMP y CA-ID-TIMS en granodioritas precoces, in: Geo-Temas, 18, p. 430, X Congreso Geológico de España, 5–7 Julio 2021, 2021.
Green T. H.: Anatexis of mafic crust and high pressure crystallisation of andesites, in: Andesites: Orogenic andesites and related rocks, edited by: Thorpe R. S., Chichester, John Wiley and Sons, New York, 465–488, ISBN 0-471-28034-8, 1982.
Guo, Z., Wilson, M., Zhang, L., Zhang, M., Cheng, Z., and Liu, J.: The role of subduction channel meìlanges and convergent subduction systems in the petrogenesis of post-collisional K-rich mafic magmatism in NW Tibet, Lithos, 198–199, 184–201, https://doi.org/10.1016/j.lithos.2014.03.020, 2014.
Gutiérrez-Alonso, G., Collins, A. S., Fernández-Suárez, J., Pastor-Galán, D., González-Clavijo, E., Jourdan, F., Weil, A. B., and Johnston, S. T.: Dating of lithospheric buckling: ages of syn-orocline strike–slip shear zones in northwestern Iberia, Tectonophysics, 643, 44–54, https://doi.org/10.1016/j.tecto.2014.12.009, 2015.
Gutiérrez-Alonso, G., Fernández-Suárez, J., López-Carmona, A., and Gärtner, A.: Exhuming a cold case: The early granodiorites of the northwest Iberian Variscan belt – A Visean magmatic flare-up?, Lithosphere-US, 10, 194–216, https://doi.org/10.1130/L706.1, 2018.
Hamilton, P. J., O'Nions, R. K., Bridgwater, D., and Nutman, A.: Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth's early history, Earth Planet. Sc. Lett., 62, 263–272, https://doi.org/10.1016/0012-821X(83)90089-4, 1983.
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., and Welch, M. D.: Nomenclature of amphibole supergroup, Am. Mineral., 97, 2031–2048, https://doi.org/10.2138/am.2012.4276, 2012.
Irvine, T. N. and Baragar, W. R. A.: A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 8, 523–548, https://doi.org/10.1139/e71-055, 1971.
Janoušek, V., Bowes, D. R., Rogers, G., Farrow, C. M., and Jelínek, E.: Modelling Diverse Processes in the Petrogenesis of a Composite Batholith: the Central Bohemian Pluton, Central European Hercynides, J. Petrol., 41, 511–543, https://doi.org/10.1093/petrology/41.4.511, 2000.
Janoušek, V., Braithwaite, C. J. R., Bowes, D. R., and Gerdes, A.: Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic, Lithos, 78, 67–99, https://doi.org/10.1016/j.lithos.2004.04.046, 2004.
Jia, L., Wang, L., Wang, G., Lei, S., and Wu, X.: Petrogenesis of the Late Triassic shoshonitic Shadegai pluton from the northern North China Craton: Implications for crust-mantle interaction and post-collisional extension, Geosci. Front., 10, 595–610, https://doi.org/10.1016/j.gsf.2018.08.002, 2019.
Kessel, R., Schmidt, M. W., Ulmer, P., and Pettke, T.: Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth, Nature, 437, 724–727, https://doi.org/10.1038/nature03971, 2005.
Key, C. H.: Origin for appinitic pockets in the diorites of Jersey. Channel Islands, Mineral. Mag., 41, 183–192, https://doi.org/10.1180/minmag.1977.041.318.05, 1977.
Klötzli, U. S., Sinigoi, S., Quick, J. E., Demarchi, G., Tassinari, C. C. G., Sato, K., and Günes, Z.: Duration of igneous activity in the Sesia Magmatic System and implications for high-temperature metamorphism in the Ivrea–Verbano deep crust, Lithos, 206–207, 19–33, https://doi.org/10.1016/j.lithos.2014.07.020, 2014.
Kuno, H.: Lateral variation of basalt magma types across continental margins and island arcs, B. Volcanol., 29, 195–222, https://doi.org/10.1007/BF02597153, 1966.
Kuvínová, S., Faryad, S. V., Verner, K., Schmiz, M., and Holub, F.: Ultrapotassic dykes in the Moldanubian Zone and their significance for understanding of the post-collisional mantle dynamics during Variscan orogeny in the Bohemian Massif, Lithos, 272–273, 205–221, https://doi.org/10.1016/j.lithos.2016.12.007, 2017.
Lameyre, J. and Bowden, P.: Plutonic rock types series: discrimination of various granitoid series and related rocks, J. Volcanol. Geoth. Res., 14, 169–186, https://doi.org/10.1016/0377-0273(82)90047-6, 1982.
Laurent, O., Couzinié, S., Zeh, A., Vanderhaeghe, O., Moyen, J.-F., Villaros, A., Gardien, V., and Chelle-Michou, C.: Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U–Pb dating in the eastern French Massif Central, Int. J. Earth Sci., 106, 421–451, https://doi.org/10.1007/s00531-016-1434-9, 2017.
Le Maitre, R. W. (Ed.): Igneous Rocks: A Classification and Glossary of Terms Recommendations of the International Union of Geological Sciences, Sub-Commission on the Systematics of Igneous Rocks, Cambridge University Press, Cambridge, 236 pp., https://doi.org/10.1017/CBO9780511535581, 2002.
Leterrier, J., Maury, R. C., Thonon, P., Girard, D., and Marchal, M.: Clinopyroxene composition as a method of identification of the magmatic affinities of Paleo-volcanic series, Earth Planet. Sc. Lett., 59, 139–154, https://doi.org/10.1016/0012-821X(82)90122-4, 1982.
Llana Fúnez, S. and Marcos, A.: The Malpica-Lamego Line: a major crustal-scale shear zone in the Variscan belt of Iberia, J. Struct. Geol., 23, 1015–1030, https://doi.org/10.1016/S0191-8141(00)00173-5, 2001.
López-Moro, F.-J. and López-Plaza, M.: Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): petrogenetic evolution from monzogabbro to granite magmas, Lithos, 72, 19–44, https://doi.org/10.1016/j.lithos.2003.08.002, 2004.
López-Sánchez, M. A., Marcos, A., Martínez, F. J., Iriondo, A., and Llana-Fúnez, S.: Setting new constrains on the age of crustal-scale extensional shear zone (Vivero fault): implications for the evolution of Variscan orogeny in the Iberian massif, Int. J. Earth Sci., 104, 927–962, https://doi.org/10.1007/s00531-014-1119-1, 2015.
Loucks, R. R.: A precise olivine-augite Mg-Fe exchange geothermometer, Contrib. Mineral. Petr., 125, 140–150, 1996.
MacDonald, G. A.: Composition and origin of Hawaiian lavas, in: Studies in volcanology: A memoir in honour of Howel Williams, edited by: Coats, R. R., Hay, R. L., and Anderson, C. A., Geol. Soc. Am. Mem., 116, 477–522, https://doi.org/10.1130/MEM116, 1968.
MacKenzie, W. S, Donaldson, C. H., and Guilford, C.: Atlas of Igneous Rocks and Their Textures, Longman, London, 142 pp., ISBN 0582300827, 1982.
Marcos, A.: Un nuevo mapa geoloìgico de la parte septentrional del Domo de Lugo (Galicia oriental, NO de EspanÞa): implicaciones sobre la estratigrafiìa, estructura y evolucioìn tectoìnica del Manto de MondonÞedo, Trabajos Geol., Universidad de Oviedo, 33, 171–200, 2013.
Martínez Catalán, J. R.: Estratigrafía y estructura del domo de Lugo (sector oeste de la zona asturoccidental-leonesa). Corpus Geologicum Gallaeciae, Segunda Serie II. Fundación Pedro Barrié de la Maza, La Coruña, 324 pp., ISBN 84-85728-45-9, 1985.
McDonough, W. F. and Rudnick, R.: Mineralogy and composition of the upper mantle, in: Ultrahigh Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior, edited by: Hemley, R. J., Rev. Mineral., 37, 139–164, Mineralogical Society of America, Washington DC, https://doi.org/10.1515/9781501509179-006, 1998.
McDonough, W. F. and Sun, S.-S.: The composition of the Earth, Chem. Geol., 120, 223–253, https://doi.org/10.1016/0009-2541(94)00140-4, 1995.
Michel-Lévy, A. and Lacroix, A.: Sur le granite à amphibole de Vaugneray (Vaugnérite de Fournet), B. Soc. Fr. Minéral., 10, 27–31, 1887.
Molina, J. F., Scarrow, J. H., Montero, P. G., and Bea, F.: High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia, Contrib. Mineral. Petr., 158, 69–98, https://doi.org/10.1007/s00410-008-0371-4, 2009.
Molina, J. F., Montero, P., Bea, F., and Scarrow, J. H.: Anomalous xenocryst dispersion during tonalite–granodiorite crystal mush hybridization in the mid crust: Mineralogical and geochemical evidence from Variscan appinites (Avila Batholith, Central Iberia), Lithos, 153, 224–242, https://doi.org/10.1016/j.lithos.2012.03.021, 2012.
Montel, J. M. and Weisbrod, A.: Characteristics and evolution of “vaugneritic magmas”: an analytical and experimental approach, on the example of the Cévennes Médianes (French Massif Central), B. Minéral., 109, 575–587, 1986.
Murphy, B. J.: Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma, Earth-Sci. Rev., 119, 35–59, https://doi.org/10.1016/j.earscirev.2013.02.002, 2013.
Nachit, H., Razafimahefa, N., Stussi, J. M., and Caron, J. P.: Composition chimique des biotites et typologie magmatique des granitoids, C.R. Acad. Sci. II, 301, 813–818, 1985.
Pe-Piper, G. and Piper, D. J. W.: The Jeffers Brook diorite–granodiorite pluton: style of emplacement and role of volatiles at various crustal levels in Avalonian appinites, Canadian Appalachians, Int. J. Earth Sci., 107, 863–883, https://doi.org/10.1007/s00531-017-1536-z, 2018.
Pietranik, A. and Koepke, J.: Plagioclase transfer from a host granodiorite to mafic microgranular enclaves: diverse records of magma mixing, Miner. Petrol., 108, 681–694, https://doi.org/10.1007/s00710-014-0326-6, 2014.
Pin, C. and Bassin, C.: Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials, Anal. Chim. Acta, 269, 249–255, https://doi.org/10.1016/0003-2670(92)85409-y, 1992.
Pin, C. and Santos Zalduegui, J. F.: Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks, Anal. Chim. Acta, 339, 79–89, https://doi.org/10.1016/s0003-2670(96)00499-0, 1997.
Putirka, K. D.: Thermometers and Barometers for Volcanic Systems, in: Mineral, Inclusions and Volcanic Processes, edited by: Putirka, K. D. and Tepley, F., Rev. Mineral. Geochem., 69, Mineralogical Soc. Am., Washington DC, 61–120, https://doi.org/10.2138/rmg.2008.69.3, 2008.
Reche, J., Martínez, F. J., and Arboleya, M. L.: Low- to medium-pressure Variscan metamorphism in Galicia (NW Spain): evolution of a kyanite-bearing synform and associated bounding antiformal domains, in: What Drives Metamorphism and Metamorphic Reactions?, edited by: Treloar, P. J. and O'Brian, P. J., Special Publication, 138, Geol. Soc. London, 61–79, https://doi.org/10.1144/GSL.SP.1996.138.01.05, 1998.
Rickwood, P. C.: Boundary lines within petrologic diagrams which use oxides of major and minor elements, Lithos, 22, 247–263, https://doi.org/10.1016/0024-4937(89)90028-5, 1989.
Roberts, M., Pin, C., Clemens, J. D., and Paquette, J.-L.: Petrogenesis of Mafic to Felsic Plutonic Rock Associations: the Calc-alkaline Quérigut Complex, French Pyrenees, J. Petrol., 41, 809–844, https://doi.org/10.1093/petrology/41.6.809, 2000.
Rodríguez, J., Gil Ibarguchi, J., and Paquette, J.: Sincroniìa del magmatismo varisco en el Macizo Ibeìrico: nuevas edades U-Pb en granitoides de la regioìn de Finisterre (La CorunÞa, EspanÞa), in: XV Semana – VI Congreso Ibeìrico de Geoquiìmica, Vila Real, Portugal, 16–21 July 2007, DVD-ROM, 146–149, ISBN 978-972-669-805-0, 2007.
Roeder, P. L. and Emslie, R. F.: Olivine-Liquid Equilibrium, Contrib. Mineral. Petr., 29, 275–289, https://doi.org/10.1007/BF00371276, 1970.
Sabatier, H.: Vaugnérites et granites magnésiens dans le Massif Central français: une association particulière des roches grenues acides et basiques, Thèse d'État, Univ P. et M. Curie, Paris, 559 pp., 1984.
Sabatier, H.: Vaugnerites: Special lamprophyre-derived mafic enclaves in some Hercynian granites from Western and Central Europe, in: Enclaves and granite petrology, edited by: Didier, J. and Barbarin, B., Dev. Petrol., 13, Elsevier, Amsterdam, 63–81, ISBN 0444891455, 1991.
Scarrow, J. H., Bea, F., Montero, P., and Molina, J. F.: Shoshonites, vaugnerites and potassic lamprophyres: similarities and differences between “ultra”-high-K rocks, Earth Env. Sci. T. R. So., 99, 159–175, https://doi.org/10.1017/S1755691009008032, 2009a.
Scarrow, J. H., Molina, J. F., Bea, F., and Montero, P.: Within-plate calc-alkaline rocks: Insights from alkaline mafic magma–peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision, Lithos, 110, 50–64, https://doi.org/10.1016/j.lithos.2008.12.007, 2009b.
Schmidt, M. W., Vielzeuf, D., and Auzanneau, E.: Melting and dissolution of subducting crust at high pressures: the key role of white mica, Earth Planet. Sc. Lett., 228, 65–84, https://doi.org/10.1016/j.epsl.2004.09.020, 2004.
Steiger, R. H. and Jäger, E.: Subcommision on geochronology: Convention on the use of decay constants in geo and cosmochronology, Earth Planet. Sc. Lett., 36, 359–362, https://doi.org/10.1016/0012-821X(77)90060-7, 1997.
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., and Dragusanu, C.: JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium, Chem. Geol., 168, 279–281, https://doi.org/10.1016/S0009-2541(00)00198-4, 2000.
Ubide, T., Galé, C., Arranz, E., Lago, M., and Larrea, P.: Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): A record of magma history and a window to mineral-melt partitioning, Lithos, 184, 225–242, https://doi.org/10.1016/j.lithos.2013.10.029, 2014.
Vaughan, A. P. and Scarrow, J. H.: K-rich mantle metasomatism control of localization and initiation of lithospheric strike-slip faulting, Terra Nova, 15, 163–169, https://doi.org/10.1046/j.1365-3121.2003.00485.x, 2003.
Vernon, R. H.: A Practical Guide to Igneous Microstructure, Cambridge University Press, Cambridge, 594 pp., https://doi.org/10.1017/CBO9780511807206, 2004.
Vilà, M., Pin, C., Enrique, P., and Liesa, M.: Telescoping of three distinct magmatic suites in an orogenic setting: Generation of Hercynian igneous rocks of the Albera Massif (Eastern Pyrenees), Lithos, 83, 97–127, https://doi.org/10.1016/j.lithos.2005.01.002, 2005.
Villaseca, C., Downes, H., Pin, C., and Barbero, L.: Nature and Composition of the Lower Continental Crust in Central Spain and the Granulite–Granite Linkage: Inferences from Granulitic Xenoliths, J. Petrol., 40, 1465–1496, https://doi.org/10.1093/petroj/40.10.1465, 1999.
von Raumer, J. F., Finger, F., Veselá, P., and Stampfli, G. M.: Durbachites–Vaugnerites – a geodynamic marker in the central European Variscan orogen, Terra Nova, 26, 85–95, https://doi.org/10.1111/ter.12071, 2014.
Wang, X., Zhang, J., Rushmer, T., Adam, J., Turner, S., and Xu, W.: Adakite-Like Potassic Magmatism and Crust-Mantle Interaction in a Postcollisional Setting: An Experimental Study of Melting Beneath the Tibetan Plateau, J. Geophys. Res.-Sol. Ea., 124, 12782–12798, https://doi.org/10.1029/2019JB018392, 2019.
Wasserburg, G. J., Jacobsen, S. B., DePaolo, D. J., McCulloch, M. T., and Wen, T.: Precise determination of ratios, Sm and Nd isotopic abundances in standard solutions, Geochim. Cosmochim. Ac., 45, 2311–2323, https://doi.org/10.1016/0016-7037(81)90085-5, 1981.
Wells, A. K. and Bishop, A. C.: An appinitic facies associated with certain granites in Jersey, Channel Islands, J. Geol. Soc. Lond., 111, 143–166, https://doi.org/10.1144/gsjgs.140.6.0921, 1955.
Whitney, D. L. and Evans, B. W.: Abbreviations for names of rock-forming minerals, Am. Mineral., 95, 185–187, https://doi.org/10.2138/am.2010.3371, 2010.
Wise, S. A. and Waters, R. L.: Certificate of Analysis. Standard Reference Material 987. Strontium Carbonate (Isotopic Standard), https://tsapps.nist.gov/srmext/certificates/archives/987. May 1, 2000.pdf (last access: 9 October 2023), 2007.
Woodhead, J. D., Hergt, J. M., Davidson, J. P., and Eggins, S. M.: Hafnium isotope evidence for “conservative” element mobility during subduction zone processes, Earth Planet. Sc. Lett., 192, 331–346, https://doi.org/10.1016/S0012-821X(01)00453-8, 2001.
Xiong, F., Ma, C., Wu, L., Jiang, H., and Liu, B.: Geochemistry, zircon U–Pb ages and Sr–Nd–Hf isotopes of an Ordovician appinitic pluton in the East Kunlun orogen: New evidence for Proto-Tethyan subduction, J. Asian Earth Sci., 111, 681–697, https://doi.org/10.1016/j.jseaes.2015.05.025, 2015.
Zhang, X., Xue, F., Yuan, L., Ma, Y., and Wilde, S. A.: Late Permian appinite–granite complex from northwestern Liaoning, North China Craton: Petrogenesis and tectonic implications, Lithos, 155, 201–217, https://doi.org/10.1016/j.lithos.2012.09.002, 2012.
Short summary
Two examples of granites in the Variscan Iberian Massif were studied because they are associated with mafic rocks (appinites and vaugnerites), which raise the question of the role of mantle magma in the formation of granitic rocks. We conclude that appinites and vaugnerites derived from melting of different mantle sources, both previously modified by interaction with crustal materials. Subsequent differentiation of appinites and vaugnerites was influenced by contamination with coeval granites.
Two examples of granites in the Variscan Iberian Massif were studied because they are associated...