Articles | Volume 35, issue 5
https://doi.org/10.5194/ejm-35-831-2023
https://doi.org/10.5194/ejm-35-831-2023
Research article
 | 
04 Oct 2023
Research article |  | 04 Oct 2023

Very-low-grade phyllosilicates in the Aravis massif (Haute-Savoie, France) and the di-trioctahedral substitution in chlorite

Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste

Related authors

The composition of metapelitic biotite, white mica, and chlorite: a review with implications for solid-solution models
Benoît Dubacq and Jacob B. Forshaw
Eur. J. Mineral., 36, 657–685, https://doi.org/10.5194/ejm-36-657-2024,https://doi.org/10.5194/ejm-36-657-2024, 2024
Short summary
Partitioning of chromium between garnet and clinopyroxene: first-principle modelling versus metamorphic assemblages
Sarah Figowy, Benoît Dubacq, Yves Noël, and Philippe d'Arco
Eur. J. Mineral., 32, 387–403, https://doi.org/10.5194/ejm-32-387-2020,https://doi.org/10.5194/ejm-32-387-2020, 2020
Short summary
Deformation mechanisms in mafic amphibolites and granulites: record from the Semail metamorphic sole during subduction infancy
Mathieu Soret, Philippe Agard, Benoît Ildefonse, Benoît Dubacq, Cécile Prigent, and Claudio Rosenberg
Solid Earth, 10, 1733–1755, https://doi.org/10.5194/se-10-1733-2019,https://doi.org/10.5194/se-10-1733-2019, 2019
Short summary

Related subject area

Metamorphic petrology
The composition of metapelitic biotite, white mica, and chlorite: a review with implications for solid-solution models
Benoît Dubacq and Jacob B. Forshaw
Eur. J. Mineral., 36, 657–685, https://doi.org/10.5194/ejm-36-657-2024,https://doi.org/10.5194/ejm-36-657-2024, 2024
Short summary
Comparison between 2D and 3D microstructures and implications for metamorphic constraints using a chloritoid–garnet-bearing mica schist
Fabiola Caso, Alessandro Petroccia, Sara Nerone, Andrea Maffeis, Alberto Corno, and Michele Zucali
Eur. J. Mineral., 36, 381–395, https://doi.org/10.5194/ejm-36-381-2024,https://doi.org/10.5194/ejm-36-381-2024, 2024
Short summary
Sedimentary protolith and high-P metamorphism of oxidized manganiferous quartzite from the Lanterman Range, northern Victoria Land, Antarctica
Taehwan Kim, Yoonsup Kim, Simone Tumiati, Daeyeong Kim, Keewook Yi, and Mi Jung Lee
Eur. J. Mineral., 36, 323–343, https://doi.org/10.5194/ejm-36-323-2024,https://doi.org/10.5194/ejm-36-323-2024, 2024
Short summary
Metamorphic evolution of sillimanite gneiss in the high-pressure terrane of the Western Gneiss Region (Norway)
Ane K. Engvik and Johannes Jakob
Eur. J. Mineral., 36, 345–360, https://doi.org/10.5194/ejm-36-345-2024,https://doi.org/10.5194/ejm-36-345-2024, 2024
Short summary
Halogen-bearing metasomatizing melt preserved in high-pressure (HP) eclogites of Pfaffenberg, Bohemian Massif
Alessia Borghini, Silvio Ferrero, Patrick J. O'Brien, Bernd Wunder, Peter Tollan, Jarosław Majka, Rico Fuchs, and Kerstin Gresky
Eur. J. Mineral., 36, 279–300, https://doi.org/10.5194/ejm-36-279-2024,https://doi.org/10.5194/ejm-36-279-2024, 2024
Short summary

Cited articles

Abad, I., Nieto, F., Peacor, D. R., and Velilla, N.: Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espuña (Spain), Clay. Clay Miner., 38, 1–23, https://doi.org/10.1180/0009855033810074, 2003. 
Abad, I., Nieto, F., Gutierrez-Alonso, G., do Campo, M., Lopez-Munguira, A., and Velilla, N.: Illitic substitution in micas of very low-grade metamorphic clastic rocks, Eur. J. Miner., 18, 59–69, https://doi.org/10.1127/0935-1221/2006/0018-0059, 2006. 
Aleksandrova, V. A., Drits, V. A., and Sokolova, G. V.: Crystal structure of ditrioctahedral chlorite, Sov. Phys. Crystallogr., 18, 50–53, 1973. 
Bailey, S. and Lister, J.: Structures, compositions, and X-ray-diffraction identification of dioctahedral chlorites, Clay. Clay Miner., 37, 193–202, https://doi.org/10.1346/CCMN.1989.0370301, 1989. 
Battaglia, S.: Variations in the chemical composition of illite from five geothermal fields: a possible geothermometer, Clay Miner., 39, 501–510, https://doi.org/10.1180/0009855043940150, 2004. 
Download
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.