Articles | Volume 35, issue 5
https://doi.org/10.5194/ejm-35-831-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-831-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Very-low-grade phyllosilicates in the Aravis massif (Haute-Savoie, France) and the di-trioctahedral substitution in chlorite
Benoît Dubacq
CORRESPONDING AUTHOR
Institut des Sciences de la Terre
de Paris, ISTeP, UMR 7193, Sorbonne Université, CNRS-INSU, 75005 Paris, France
Guillaume Bonnet
Institut des Sciences de la Terre
de Paris, ISTeP, UMR 7193, Sorbonne Université, CNRS-INSU, 75005 Paris, France
Manon Warembourg
Institut des Sciences de la Terre
de Paris, ISTeP, UMR 7193, Sorbonne Université, CNRS-INSU, 75005 Paris, France
Benoît Baptiste
Institut de Minéralogie, de Physique des Matériaux et de
Cosmochimie, IMPMC, UMR 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, 75005 Paris, France
Related authors
Benoît Dubacq and Jacob B. Forshaw
Eur. J. Mineral., 36, 657–685, https://doi.org/10.5194/ejm-36-657-2024, https://doi.org/10.5194/ejm-36-657-2024, 2024
Short summary
Short summary
This article reviews the crystal chemistry of chlorite, biotite, and white mica in metamorphosed sediments. These minerals have complex compositions because many atom exchanges may take place in their structure. Such exchanges include easily measured cations but also structurally bound H2O, notoriously hard to measure; iron oxidation; and vacancies. Consequently, formula units are often calculated from incomplete measurements and some exchanges may appear solely due to normalization issues.
Benoît Dubacq and Jacob B. Forshaw
Eur. J. Mineral., 36, 657–685, https://doi.org/10.5194/ejm-36-657-2024, https://doi.org/10.5194/ejm-36-657-2024, 2024
Short summary
Short summary
This article reviews the crystal chemistry of chlorite, biotite, and white mica in metamorphosed sediments. These minerals have complex compositions because many atom exchanges may take place in their structure. Such exchanges include easily measured cations but also structurally bound H2O, notoriously hard to measure; iron oxidation; and vacancies. Consequently, formula units are often calculated from incomplete measurements and some exchanges may appear solely due to normalization issues.
Quentin Bollaert, Mathieu Chassé, Guillaume Morin, Benoît Baptiste, Alexandra Courtin, Laurence Galoisy, Gautier Landrot, Cécile Quantin, and Georges Calas
Eur. J. Mineral., 36, 55–72, https://doi.org/10.5194/ejm-36-55-2024, https://doi.org/10.5194/ejm-36-55-2024, 2024
Short summary
Short summary
X-ray absorption spectroscopy (XAS) was successfully used to investigate the atomic-scale environment of niobium (Nb) in ore minerals and Nb-doped compounds of technological importance. The demonstrated sensitivity of this technique to Nb minerals could help decipher Nb speciation in mining contexts such as hydrothermal and lateritic deposits and rationalize the origin of the enhanced physico-chemical properties of Nb-doped materials.
Karina P. P. Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Eur. J. Mineral., 35, 383–395, https://doi.org/10.5194/ejm-35-383-2023, https://doi.org/10.5194/ejm-35-383-2023, 2023
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on sub-millimeter grains that allows us to quantify the hematite and goethite content and hematite / goethite ratio of grains prior to (U–Th) / He geochronological analysis. (U–Th) / He data performed on different aliquots with different acquisition times show no remarkable differences in age, opening a new way to investigate the (U–Th) / He data evolution in supergene lateritic duricrusts.
Etienne Balan, Lorenzo Paulatto, Qianyu Deng, Keevin Béneut, Maxime Guillaumet, and Benoît Baptiste
Eur. J. Mineral., 34, 627–643, https://doi.org/10.5194/ejm-34-627-2022, https://doi.org/10.5194/ejm-34-627-2022, 2022
Short summary
Short summary
The near-infrared spectra of hydrous minerals involve OH stretching vibrations, but their interpretation is not straightforward due to anharmonicity and vibrational coupling. We analyze the spectra of well-ordered samples of talc, brucite and lizardite to better assess the various factors contributing to the absorption bands. The results clarify the relations between the overtone spectra and their fundamental counterparts and provide a sound interpretation of the two-phonon combination bands.
Karina Patricia Prazeres Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-9, https://doi.org/10.5194/gchron-2022-9, 2022
Preprint withdrawn
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on inframilimetric grains that allows to quantify the hematite and goethite content and hematite/goethite ratio of grains prior to (U-Th)/He geochronological analysis. (U-Th)/He data performed on different aliquots with different acquisition time shows no remarkable differences in age, opening a new way to investigate the (U-Th)/He data evolution in supergene lateritic duricrusts.
Cited articles
Abad, I., Nieto, F., Peacor, D. R., and Velilla, N.: Prograde and retrograde
diagenetic and metamorphic evolution in metapelitic rocks of Sierra
Espuña (Spain), Clay. Clay Miner., 38, 1–23, https://doi.org/10.1180/0009855033810074, 2003.
Abad, I., Nieto, F., Gutierrez-Alonso, G., do Campo, M., Lopez-Munguira, A.,
and Velilla, N.: Illitic substitution in micas of very low-grade metamorphic
clastic rocks, Eur. J. Miner., 18, 59–69, https://doi.org/10.1127/0935-1221/2006/0018-0059, 2006.
Aleksandrova, V. A., Drits, V. A., and Sokolova, G. V.: Crystal
structure of ditrioctahedral chlorite, Sov. Phys. Crystallogr., 18, 50–53, 1973.
Bailey, S. and Lister, J.: Structures, compositions, and X-ray-diffraction
identification of dioctahedral chlorites, Clay. Clay Miner., 37, 193–202, https://doi.org/10.1346/CCMN.1989.0370301, 1989.
Battaglia, S.: Variations in the chemical composition of illite from five geothermal fields: a possible geothermometer, Clay Miner., 39, 501–510, https://doi.org/10.1180/0009855043940150, 2004.
Bellahsen, N., Mouthereau, F., Boutoux, A., Bellanger, M., Lacombe, O.,
Jolivet, L., and Rolland, Y.: Collision kinematics in the western external
Alps, Tectonics, 33, 1055–1088, https://doi.org/10.1002/2013TC003453, 2014.
Bourdelle, F., Parra, T., Beyssac, O., Chopin, C., and Vidal, O.: Clay
minerals as geo-thermometer: A comparative study based on high spatial
resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas,
U.S.A.), Am. Mineral., 98, 914–926, https://doi.org/10.2138/am.2013.4238, 2013a.
Bourdelle, F., Parra, T., Chopin, C., and Beyssac, O.: A new chlorite
geothermometer for diagenetic to low-grade metamorphic conditions, Contrib. Mineral. Petr., 165,
723–735, https://doi.org/10.1007/s00410-012-0832-7, 2013b.
Bourdelle, F. and Cathelineau, M.: Low-temperature chlorite geothermometry: a
graphical representation based on a T–R2+–Si diagram, Eur. J. Mineral., 27, 617–626,
https://doi.org/10.1127/ejm/2015/0027-2467, 2015.
Butler, R. W. H.: Hydrocarbon maturation, migration and tectonic loading in
the Western Alpine foreland thrust belt Geol. Soc., London, Spec. Publ., 59, 227–244, https://doi.org/10.1144/GSL.SP.1991.059.01.15, 1991.
Cathelineau, M.: Cation Site Occupancy in Chlorites and Illites as a
Function of Temperature, Clay. Clay Miner., 23, 471–485, 1988.
Černý, P.: Compositional variations in cookeite, Can. Mineral., 10, 636–647,
1970.
Charollais, J., Plancherel, R., Monjuvent, G., and Debelmas, J.: Notice
explicative, Carte géol. France (1/50000), feuille Annemasse (654) –
Orléans: Bureau de recherches géologiques et minières, 130 pp., ISBN 2-7159-1654-X,
1998.
Connolly, J. A. D.: The geodynamic equation of state: What and how,
Geochem. Geophy. Geosy., 10, Q10014, https://doi.org/10.1029/2009GC002540, 2009.
Deville, E. and Sassi, W.: Contrasting thermal evolution of thrust systems: An
analytical and modeling approach in the front of the western Alps, AAPG Bull., 90,
887–907, https://doi.org/10.1306/01090605046, 2006.
Dubacq, B., Vidal, O., and De Andrade, V.: Dehydration of dioctahedral
aluminous phyllosilicates: thermodynamic modelling and implications for
thermobarometric estimates, Contrib. Mineral. Petr., 159, 159–174, https://doi.org/10.1007/s00410-009-0421-6,
2010.
Dubacq, B., Bickle, M. J., and Evans, K. A.: An activity model for phase
equilibria in the H2O-CO2-NaCl system, Geochim. Cosmochim. Ac., 110, 229–252, https://doi.org/10.1016/j.gca.2013.02.008, 2013.
Dowty, E.: Crystal structure and crystal growth: II. sector zoning in
minerals, Am. Miner., 61, 460–469, 1976.
Dumont, T., Champagnac, J.-D., Crouzet, C., and Rochat, P.: Multistage
shortening in the Dauphiné zone (French Alps): the record of Alpine
collision and implications for pre-Alpine restoration, Swiss J. Geosci., 101, 89–110, https://doi.org/10.1007/s00015-008-1280-2, 2008.
Eggleton, R. A. and Bailey, S. W.: Structural aspects of dioctahedral chlorite,
Am. Mineral., 52, 673–689, 1967.
Féraud, J.: La fluorine des Aravis, Bulletin du club de Minéralogie de Chamonix, du Mont Blanc et des Alpes du Nord, Bulletin du club de Minéralogie de Chamonix, 71, 51–60, 2021.
Gonzalez-Lopez, J. M., Subias Perez, I., Fernandez-Nieto, C., and Gonzalez,
I. F.: Lithium-bearing hydrothermal alteration phyllosilicates related to
Portalet fluorite ore (Pyrenees, Huesca, Spain), Clay. Clay Miner., 28, 275–283, 1993.
Hammersley, A. P.: FIT2D: a multi-purpose data reduction, analysis and
visualization program, J. Appl. Crystallogr., 49, 646–652, https://doi.org/10.1107/S1600576716000455, 2016.
Hazen, R. M., Hystad, G., Downs, R. T., Golden, J. J., Pires, A. J., and
Grew, E. S.: Earth's “missing” minerals, Am. Mineral., 100, 2344–2347, https://doi.org/10.2138/am-2015-5417, 2015.
Holland, T. J. B. and Powell, R.: An internally consistent thermodynamic
data set for phases of petrological interest, J. Metamorp. Geol., 16, 309–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x, 1998.
Holland, T. and Powell, R.: Activity-composition relations for phases in
petrological calculations: an asymmetric multicomponent formulation,
Contrib. Mineral. Petr., 145, 492–501, https://doi.org/10.1007/s00410-003-0464-z, 2003.
Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D., and
Vieillard, P.: Application of chemical geothermometry to low-temperature
trioctahedral chlorites, Clay. Clay Miner., 57, 371–382 https://doi.org/10.1346/CCMN.2009.0570309, 2009.
Lacroix, A.: Minéralogie de la France et de ses colonies : description physique et chimique des minéraux, étude des conditions géologiques de leurs gisements. Eds: Librairie Polytechnique, Baudry et Cie (Paris), 2, p. 799, 1896.
Lanari, P., Wagner, T., and Vidal, O.: A thermodynamic model for
di-trioctahedral chlorite from experimental and natural data in the system
MgO-FeO-Al2O3-SiO2-H2O: applications to P–T sections
and geothermometry, Contrib. Mineral. Petr., 167, 968, https://doi.org/10.1007/s00410-014-0968-8, 2014.
Mangenot, X., Deçoninck, J.-F., Bonifacie, M., Rouchon, V., Collin,
P.-Y., Quesne, D., Gasparrini, M., and Sizun, J.-P.: Thermal and exhumation
histories of the northern subalpine chains (Bauges and Bornes – France):
Evidence from forward thermal modeling coupling clay mineral diagenesis,
organic maturity and carbonate clumped isotope (Δ47) data, Basin Res., 31,
361–379, https://doi.org/10.1111/bre.12324, 2019.
Masci, L., Dubacq, B., Verlaguet, A., Chopin, C., De Andrade, V., and
Herviou, C. : A XANES and EPMA study of Fe3+ in chlorite: Importance of
oxychlorite and implications for cation site distribution and
thermobarometry, Am. Mineral., 104, 403–417, https://doi.org/10.2138/am-2019-6766, 2019.
Merceron, T., Inoue, A., Bouchet, A., and Meunier, A.: Lithium-bearing
donbassite and tosudite from Echassieres, Massif Central, France, Clay. Clay Miner., 36,
39–46 https://doi.org/10.1346/CCMN.1988.0360106, 1988.
Meunier, A. and Velde, B.: Solid-Solutions, in: I/S Mixed-Layer Minerals And
Illite, Am. Miner., 74, 1106–1112, 1989.
Moss, S.: Organic maturation in the French Subalpine Chains: regional
differences in burial history and the size of tectonic loads, J. Geol. Soc., London, 149,
503–515, https://doi.org/10.1144/gsjgs.149.4.0503, 1992.
Muirhead, D. K., Bond, C. E., Watkins, H., Butler, R. W. H., Schito, A.,
Crawford, Z., and Marpino, A.: Raman spectroscopy: an effective thermal
marker in low temperature carbonaceous fold-thrust belts, Geol. Soc., London, Spec. Publ., 490, 135–151,
https://doi.org/10.1144/SP490-2019-27, 2020.
Pairis, J. L., Pairis, B., Bellière, J., Rosset, J., Détraz, H., Muller, A., Muller, D., Villars, F., Mennessier, G., Charollais, J., Kindler, P., Pierre, X., and Uselle, J. P.: Carte géol. France (1/50000), feuille Cluses, Bureau de recherches géologiques et minières, Orléans, Map 679, 1992a.
Pairis, J. L., Bellière J., and Rosset J.: Notice explicative, Carte géol. France (1/50000), feuille Cluses (679), Bureau de recherches géologiques et minières, Orléans, p. 89., ISBN 2-7159-1679-5, 1992b.
Pouchou, J.-L., Pichoir, F.: Heinrich, K. F. J., and Newbury, D. E. (Eds.):
Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the
Model “PAP”, in: Electron Probe Quantitation, Springer US, 31–75,
https://doi.org/10.1007/978-1-4899-2617-3_4, 1991.
Rodríguez-Carvajal, J.: Recent Advances in Magnetic Structure
Determination by Neutron Powder Diffraction, Physica B: Condensed Matter, 192, 55–69, https://doi.org/10.1016/0921-4526(93)90108-I, 1993.
Rosset, J.: Description géologique de la chaîne des Aravis entre
Cluses et le col des Aravis (Haute-Savoie), PhD thesis, Faculté des
Sciences de l'Université de Grenoble, 89 pp., 1954.
Rossi, M., Rolland, Y., Vidal, O., and Cox, S. F.: Geochemical variations
and element transfer during shear-zone development and related episyenites
at middle crust depths: insights from the Mont Blanc granite (French –
Italian Alps) Geol. Soc., London, Spec. Pub., 245, 373–396, https://doi.org/10.1144/GSL.SP.2005.245.01.18, 2005.
Shannon, R. D.: Revised effective ionic radii and systematic studies of
interatomic distances in halides and chalcogenides, Acta Crystallogr. Section A, 32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Soret, F.: Rapport sur les minéraux rares ou offrant des
cristallisations nouvelles, observés dans la collection du Musée
académique de Genève, Mémoires de la société de physique et d'histoire naturelle de Genève, 1, 465–500, 1822.
Van Hinsberg, V. J., Schumacher, J. C., Kearns, S., Mason, P. R., and Franz,
G.: Hourglass sector zoning in metamorphic tourmaline and resultant major
and trace-element fractionation, Am. Miner., 91, 717–728, https://doi.org/10.2138/am.2006.1920,
2006.
Verlaguet, A., Goffé, B., Brunet, F., Poinssot, C., Vidal, O., Findling,
N., and Menut, D. : Metamorphic veining and mass transfer in a chemically
closed system: a case study in Alpine metabauxites (western Vanoise), J. Metamorph. Geol., 29,
275–300, https://doi.org/10.1111/j.1525-1314.2010.00918.x, 2011.
Vidal, O., Parra, T., and Trotet, F.: A Thermodynamic Model for Fe-Mg
Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural
Pelitic Assemblages in the 100∘ to 600 ∘C, 1 to 25 kb
Range, Am. J. Sci., 301, 557–592, https://doi.org/10.2475/ajs.301.6.557, 2001.
Vidal, O., De Andrade, V., Lewin, E., Munoz, M., Parra, T., and Pascarelli,
S.: P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale
and comparison with XANES mapping: application to a garnet-bearing
metapelite from the Sambagawa metamorphic belt (Japan), J. Metamorph. Geol., 24, 669–683,
https://doi.org/10.1111/j.1525-1314.2006.00661.x, 2006.
Vidal, O. and Dubacq, B.: Thermodynamic modelling of clay dehydration,
stability and compositional evolution with temperature, pressure and
H2O activity, Geochim. Cosmochim. Ac., 73, 6544–6564, https://doi.org/10.1016/j.gca.2009.07.035, 2009.
Vidal, O., Baldeyrou, A., Beaufort, D., Fritz, B., Geoffroy, N., and Lanson,
B.: Experimental Study of the Stability and Phase Relations of Clays at High
Temperature in a Thermal Gradient, Clay. Clay Miner., 60, 200–225, https://doi.org/10.1346/CCMN.2012.0600209, 2012.
Walker, J. R. and Bish, D. L.: Application of Rietveld Refinement
Techniques to a Disordered IIb Mg-Chamosite, Clay. Clay Miner., 40, 319–322, https://doi.org/10.1346/CCMN.1992.0400311, 1992.
Walshe, J. L.: A six-component chlorite solid solution model and the
conditions of chlorite formation in hydrothermal and geothermal systems,
Econ. Geol., 81, 681, https://doi.org/10.2113/gsecongeo.81.3.681, 1986.
White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., and Green, E. C.
R.: New mineral activity-composition relations for thermodynamic
calculations in metapelitic systems, J. Metamorph. Geol., 32, 261–286, https://doi.org/10.1111/jmg.12071, 2014.
Whitney, D. L. and Evans, B. W.: Abbreviations for names of rock-forming
minerals, Am. Mineral., 95, 185–187, https://doi.org/10.2138/am.2010.3371, 2009.
Zheng, H. and Bailey, S. W.: Refinement of the cookeite “r” structure, Am. Miner.,
82, 1007–1013, 1997.
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates,...