Articles | Volume 35, issue 5
https://doi.org/10.5194/ejm-35-755-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-755-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Genetic model for the color anomalies at the termination of pegmatitic gem tourmaline crystals from the island of Elba, Italy
Alessandra Altieri
CORRESPONDING AUTHOR
Department of Earth Sciences, Sapienza University of Rome, Piazzale
Aldo Moro 5, 00185 Rome, Italy
Federico Pezzotta
MUM – Mineralogical Museum “Luigi Celleri”, Via Cavour 73, San
Piero in Campo, Campo nell'Elba, 57034 Livorno, Italy
Giovanni B. Andreozzi
Department of Earth Sciences, Sapienza University of Rome, Piazzale
Aldo Moro 5, 00185 Rome, Italy
Henrik Skogby
Department of Geosciences, Swedish Museum of Natural History, Box
50007, 10405, Stockholm, Sweden
Ferdinando Bosi
Department of Earth Sciences, Sapienza University of Rome, Piazzale
Aldo Moro 5, 00185 Rome, Italy
Related authors
Giovanni B. Andreozzi, Claudia Gori, Henrik Skogby, Ulf Hålenius, Alessandra Altieri, and Ferdinando Bosi
Eur. J. Mineral., 37, 1–12, https://doi.org/10.5194/ejm-37-1-2025, https://doi.org/10.5194/ejm-37-1-2025, 2025
Short summary
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 549–553, https://doi.org/10.5194/ejm-37-549-2025, https://doi.org/10.5194/ejm-37-549-2025, 2025
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Giovanni B. Andreozzi, Dario Di Giuseppe, Alessandro F. Gualtieri, Valentina Scognamiglio, Laura Fornasini, Danilo Bersani, Tommaso Giovanardi, Federico Lugli, and Federico Pezzotta
Eur. J. Mineral., 37, 437–453, https://doi.org/10.5194/ejm-37-437-2025, https://doi.org/10.5194/ejm-37-437-2025, 2025
Short summary
Short summary
An unusual tourmaline was studied using a multi-analytical approach. The sample comes from a granitic pegmatite on the island of Elba and consists of three generations of tourmaline: green prismatic tourmaline, a dark fibrous cap, and colourless acicular single crystals. The most likely scenario for its formation involves the miarolitic cavity fracturing due to mechanical shock, the subsequent circulation of the highly reactive cavity fluids, and the leaching of accessory biotite in the surrounding pegmatite.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 337–342, https://doi.org/10.5194/ejm-37-337-2025, https://doi.org/10.5194/ejm-37-337-2025, 2025
Erik Jonsson, Ulf Hålenius, Jaroslaw Majka, and Ferdinando Bosi
Eur. J. Mineral., 37, 269–277, https://doi.org/10.5194/ejm-37-269-2025, https://doi.org/10.5194/ejm-37-269-2025, 2025
Short summary
Short summary
Skogbyite, with the chemical formula Zr(Mg2+2Mn3+4)SiO12, is a new species in the braunite group of minerals. It was discovered in a complex mineral assemblage, essentially a very poor manganese ore, from the Långban Fe–Mn oxide deposit, Värmland County, Bergslagen ore province, Sweden. It is named after the Swedish mineralogist Henrik Skogby (b. 1956). It is a new mineral attesting to the localised mobility and reactivity of zirconium under very special geological conditions.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 249–255, https://doi.org/10.5194/ejm-37-249-2025, https://doi.org/10.5194/ejm-37-249-2025, 2025
Dan Holtstam, Fernando Cámara, Henrik Skogby, Andreas Karlsson, and Alessandro De Leo
Eur. J. Mineral., 37, 221–231, https://doi.org/10.5194/ejm-37-221-2025, https://doi.org/10.5194/ejm-37-221-2025, 2025
Short summary
Short summary
The mineral clino-ferro-suenoite, with the chemical formula ◻Mn2Fe2+5Si8O22(OH)2, was historically named “dannemorite” or “manganogrunerite” and is a member of the amphibole supergroup. It is now formally approved by the International Mineralogical Association. It occurs in iron–manganese-bearing rock from the Hilläng mines, Dalarna, Sweden, and is associated with the minerals fayalite, spessartine, ferro-actinolite, calcite, magnetite and pyrite. It formed by replacement of Mn-bearing fayalite.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 75–78, https://doi.org/10.5194/ejm-37-75-2025, https://doi.org/10.5194/ejm-37-75-2025, 2025
Giovanni B. Andreozzi, Claudia Gori, Henrik Skogby, Ulf Hålenius, Alessandra Altieri, and Ferdinando Bosi
Eur. J. Mineral., 37, 1–12, https://doi.org/10.5194/ejm-37-1-2025, https://doi.org/10.5194/ejm-37-1-2025, 2025
Short summary
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, https://doi.org/10.5194/ejm-36-1005-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Beatrice Celata, Ferdinando Bosi, Kira A. Musiyachenko, Andrey V. Korsakov, and Giovanni B. Andreozzi
Eur. J. Mineral., 36, 797–811, https://doi.org/10.5194/ejm-36-797-2024, https://doi.org/10.5194/ejm-36-797-2024, 2024
Short summary
Short summary
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested its ultrahigh-pressure formation. We analyzed the role of K in the tourmaline structure, with a special focus on its stability. High pressure is necessary to squeeze the large cation K+ in the stiff framework of tourmaline, although K is the underdog component if Na+ is present in the mineralizing fluid. K-tourmaline is stable at high pressure, overcoming the stereotype of a mere crustal component.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Daniel Atencio, Andrezza A. Azzi, Kai Qu, Ritsuro Miyawaki, Ferdinando Bosi, and Koichi Momma
Eur. J. Mineral., 35, 1027–1030, https://doi.org/10.5194/ejm-35-1027-2023, https://doi.org/10.5194/ejm-35-1027-2023, 2023
Short summary
Short summary
This article introduces a new nomenclature system for the cerite group minerals. This system was necessary to allow the nomenclature of new species of minerals that are currently being described.
Ian E. Grey, Stephanie Boer, Colin M. MacRae, Nicholas C. Wilson, William G. Mumme, and Ferdinando Bosi
Eur. J. Mineral., 35, 909–919, https://doi.org/10.5194/ejm-35-909-2023, https://doi.org/10.5194/ejm-35-909-2023, 2023
Short summary
Short summary
The paper describes the formal establishment of the paulkerrite group of minerals and its nomenclature. It includes the application of a site-merging procedure, coupled with a site-total-charge analysis, to obtain unambiguous end-member formulae. Application of the procedure has resulted in the revision of the end-member formulae for several of the group members.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022, https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
Cited articles
Altieri, A., Pezzotta, F., Skogby, H., Hålenius, U., and Bosi, F.:
Blue-growth zones caused by Fe2+ in tourmaline crystals from the San
Piero in Campo gem-bearing pegmatites, Elba Island, Italy, Mineral Mag., 86,
910–919, https://doi.org/10.1180/mgm.2022.101, 2022.
Altieri, A., Pezzotta, F., Skogby, H., Hålenius, U., and Bosi, F.:
Dark-coloured Mn-rich overgrowths in an elbaitic tourmaline crystal from the
Rosina pegmatite, San Piero in Campo, Elba Island, Italy: witness of
late-stage opening of the geochemical system, Mineral Mag., 87, 130–142, https://doi.org/10.1180/mgm.2022.125, 2023.
Andreozzi, G. B., Bosi, F., and Longo, M.: Linking Mossbauer and structural
parameters in elbaite-schorl-dravite tourmalines, Am. Mineral., 93, 658–666,
https://doi.org/10.2138/am.2008.2721, 2008.
Aurisicchio, C., Ottolini, L., and Pezzotta, F.: Electron- and ion-microprobe
analyses, and genetic inferences of tourmalines of the foitite–schorl solid
solution, Elba Island (Italy), Eur. J. Mineral., 11, 217–225, https://doi.org/10.1127/EJM/11/2/0217, 1999.
Bačík, P. and Fridrichová, G.: Cation partitioning among
crystallographic sites based on bond-length constraints in
tourmaline-supergroup minerals, Am. Mineral., 106, 851–861,
https://doi.org/10.2138/am-2021-7804, 2021.
Bosi, F.: Octahedrally coordinated vacancies in tourmaline: A theoretical
approach, Mineral. Mag., 74, 1037–1044, https://doi.org/10.1180/minmag.2010.074.6.1037,
2010.
Bosi, F.: Tourmaline crystal chemistry, Am. Mineral., 103, 298–306, https://doi.org/10.2138/am-2018-6289, 2018.
Bosi, F., Pezzotta, F., Altieri, A., Andreozzi, G. B., Ballirano, P., Tempesta,
G., Cempírek, J., Škoda, R., Filip, J., Čopjacová, R.,
Novák, M., Kampf, A. R., Scribner, E. D., Groat, L. A., and Evans, R. J.:
Celleriite,
□(Mn Al)Al6(Si6O18)(BO3)3(OH)3(OH),
a new mineral species of the tourmaline supergroup, Am. Mineral., 107, 31–42,
https://doi.org/10.2138/am-2021-7818, 2022.
Buřival, Z. and Novák, M.: Hydrothermal replacement of garnet by
tourmaline in elbaite subtype LCT pegmatites, 7th International
Symposium on Granitic Pegmatites, PEG 2015 Ksiąz, Poland, 2015.
Černý, P.: Constitution, petrology, affìliations and categories
of miarolitic pegmatites, Memorie della Società Italiana di Scienze
Naturali e del Museo Civico di Storia Naturale di Milano, 30, 5–12, 2000.
Dini, A., Innocenti, F., Rocchi, S., Tonarini, S., and Westerman, D. S.: Magmatic
evolution of the laccolith-pluton-dyke complex of Elba Island, Italy, Geol.
Mag., 139, 257–279, 2002.
Dutrow, B. L. and Henry, D. J.: Complexly zoned fibrous tourmaline, Cruzeiro
mine, Minas Gerais, Brazil: a record of evolving magmatic and hydrothermal
fluids, Can. Mineral., 38, 131–143, https://doi.org/10.2113/gscanmin.38.1.131, 2000.
Dutrow, B. L. and Henry, D. J.: Fibrous tourmaline: a sensitive probe of fluid
compositions and petrologic environments, Can. Mineral., 54, 311–335, https://doi.org/10.3749/canmin.1600019, 2016.
Dutrow, B. L. and Henry, D. J.: Tourmaline compositions and textures:
reflections of the fluid phase, J. Geosci., 63, 99–110, https://doi.org/10.3190/jgeosci.256, 2018.
Farina, F., Dini, A., Innocenti, F., Rocchi, S., and Westerman, D. S.: Rapid
incremental assembly of the Monte Capanne pluton (Elba Island, Tuscany) by
downward stacking of magma sheets, GSA Bulletin, 120, 1463–1479, https://doi.org/10.1130/B30112.1,
2010.
Felch, M., Falster, A. U., and Simmons, W. B.: Iron-bearing pollucite and
tourmaline replacement of garnet in the garnet line in the Mt. Mica and
Havey pegmatites, Western Maine, Can. Mineral., 54, 1071–1086, https://doi.org/10.3749/canmin.1600013, 2016.
Foord, E. E.: Mineralogy and Petrogenesis of Layered Pegmatite–Aplite Dikes
in the Mesa Grande District, San Diego County, California, PhD thesis,
Stanford University, Stanford, California, 1976.
Grew, E. S., Krivovichev, S. V., Hazen, R. M., and Hystad, G.: Evolution of
structural complexity in boron minerals, Can. Mineral., 54, 125–143, https://doi.org/10.3749/canmin.1500072, 2016.
Henry, D. J. and Dutrow, B. L.: Metamorphic tourmaline and its petrologic applications, in: Boron: Mineralogy, Petrology and Geochemistry, edited by: Grew, E. S. and Anovitz, L. M., Mineralogical Society of America Reviews in Mineralogy, 33, 503–557, 1996.
Henry, D. J. and Dutrow, B. L.: Tourmaline studies through time: contributions
to scientific advancements, J. Geosci., 63, 77–98, https://doi.org/10.3190/jgeosci.255, 2018.
Henry, D. J., Novák, M., Hawthorne, F. C., Ertl, A., Dutrow, B., Uher, P. and
Pezzotta, F.: Nomenclature of the tourmaline supergroup minerals, Am. Mineral.,
96, 895–913, https://doi.org/10.2138/am.2011.3636, 2011.
Lagarec, K. and Rancourt, D. G.: RECOIL, Mössbauer spectral analysis
software for windows (version 1.0), Department of Physics, University of
Ottawa, Canada, 1998.
London, D.: Spessartine from Navegador, Minas Gerais, Brazil: etch or growth
features, http://www.minsocam.org/msa/special/pig/pig_articles/etched_spssrtn.pdf (last access: 11 September 2023), 2006.
Lussier, A. J. and Hawthorne, F. C.: Oscillatory zoned liddicoatite from
Anjanabonoina, central Madagascar. II. Compositional variation and
mechanisms of substitution, Can. Mineral., 49, 89–104, https://doi.org/10.3749/canmin.49.1.63, 2011.
Marinelli, G.: Le intrusioni terziarie dell'Isola d'Elba, Atti Società
Toscana, Scienze Naturali, 66, 50–253, 1959.
Novák, M. and Taylor, M. C.: Foitite: formation during late stages of
evolution of complex granitic pegmatites at Dobrá Voda, Czech Republic,
and Pala, California, U.S.A., Can. Mineral., 38, 1399–1408, https://doi.org/10.2113/gscanmin.38.6.1399, 2000.
Orlandi, P. and Pezzotta, F.: Minerali dell'Isola d'Elba, i minerali dei
giacimenti metalliferi dell'Elba orientale e delle pegmatiti del M.te
Capanne, Ed. Novecento Grafico, Bergamo, 248 pp., 1996.
Pesquera, A., Gil-Crespo, P. P., Torres-Ruiz, F., Torres-Ruiz, J., and Roda-Robles,
E.: A multiple regression method for estimating Li in tourmaline from
electron microprobe analyses, Mineral. Mag., 80, 1129–1133, https://doi.org/10.1180/minmag.2016.080.046a, 2016.
Pezzotta, F.: Internal structures, parageneses and classification of the
miarolitic Li-bearing complex pegmatites of Elba Island (Italy). Mineralogy
and petrology of shallow depth pegmatites, Papers from the First
International Workshop, Memorie della Società Italiana di Scienze
Naturali e del Museo Civico di Storia Naturale di Milano, 30, 29–43, 2000.
Pezzotta, F.: A history of tourmaline from the Island of Elba, Mineral. Rec.,
52, 669–720, 2021.
Pouchou, J. L. and Pichoir, F.: Quantitative analysis of homogeneous or
stratified microvolumes applying the model “PAP”, 31–75, in: Electron
Probe Quantitation, edited by: Heinrich, K. F. J. and Newbury, D. E., Plenum, New
York, https://doi.org/10.1007/978-1-4899-2617-3_4, 1991.
Prescher, C., McCammon, C., and Dubrowinsky, L.: MossA: a program for analyzing
energy-domain Mössbauer spectra from conventional and synchrotron
sources, J. Appl. Crystallogr., 45, 329–331, https://doi.org/10.1107/S0021889812004979,
2012.
Selway, J. B.: Compositional Evolution of Tourmaline in Granitic Pegmatites,
PhD thesis, University Manitoba, Winnipeg, Manitoba, USA, 1999.
van Hinsberg, V. J., Henry, D. J., and Dutrow, B. L.: Tourmaline as a petrologic
forensic mineral: A unique recorder of its geologic past, Elements, 7,
327–332, https://doi.org/10.2113/gselements.7.5.327, 2011a.
van Hinsberg, V. J., Henry, D. J., and Marschall, H. R.: Tourmaline: an ideal
indicator of its host environment, Can. Mineral., 49, 1–16, https://doi.org/10.3749/canmin.49.1.1, 2011b.
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous...