Chernosky, J. V., Berman, R. G., and Bryndzia, L. T.: Stability, phase
relations, and thermodynamic properties of chlorite and serpentine group
minerals, Rev. Mineral. Geochem., 19, 295–346, 1988.
Cottrell, E., Lanzirotti, A., Mysen, B., Birner, S., Kelley, K. A.,
Botcharnikov, R., Davis, F. A., and Newville, M.: A Mössbauer-based
XANES calibration for hydrous basalt glasses reveals radiation-induced
oxidation of Fe, Am. Mineral., 103, 489–501, https://doi.org/10.2138/am-2018-6268,
2018.
Debret, B. and Sverjensky, D.: Highly oxidising fluids generated during
serpentinite breakdown in subduction zones, Sci. Rep., 7, 10351, https://doi.org/10.1038/s41598-017-09626-y,
2017.
Debret, B., Andreani, M., Munoz, M., Bolfan-Casanova, N., Carlut, J.,
Nicollet, C., Schwartz, S., and Trcera, N.: Evolution of Fe redox state in
serpentine during subduction, Earth Planet. Sc. Lett., 400,
206–218, https://doi.org/10.1016/j.epsl.2014.05.038, 2014.
Debret, B., Bolfan-Casanova, N., Padron-Navarta, J. A., Martin-Hernandez,
F., Andreani, M., Garrido, C. J., Sanchez-Vizcaino, V. L., Gomez-Pugnaire,
M. T., Munoz, M., and Trcera, N.: Redox state of iron during high-pressure
serpentinite dehydration, Contrib. Mineral. Petr., 169, 36,
https://doi.org/10.1007/s00410-015-1130-y, 2015.
De Grave, E., Vandenbruwaene, J., and Van Bockstael, M.: 57Fe Mössbauer
spectroscopic analysis of chlorite, Phys. Chem. Mineral., 15,
173–180, https://doi.org/10.1007/bf00308781, 1987.
Drago, V., Baggio Saitovitch, E., and Danon, J.: Mössbauer spectroscopy
of electron irradiated natural layered silicates, J. Inorg.
Nucl. Chem., 39, 973–979,
https://doi.org/10.1016/0022-1902(77)80246-7, 1977.
Dyar, M. D., Gunter, M. E., Delaney, J. S., Lanzarotti, A., and Sutton, S.
R.: Systematics in the structure and XANES spectra of pyroxenes, amphiboles,
and micas as derived from oriented single crystals, Can.
Mineral., 40, 1375–1393, https://doi.org/10.2113/gscanmin.40.5.1375, 2002.
Ehlmann, B. L., Mustard, J. F., Swayze, G. A., Clark, R. N., Bishop, J. L.,
Poulet, F., Marais, D. J. D., Roach, L. H., Milliken, R. E., Wray, J. J.,
Barnouin-Jha, O., and Murchie, S. L.: Identification of hydrated silicate
minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and
implications for aqueous alteration, J. Geophys.
Res.-Planet., 114, E00d08, https://doi.org/10.1029/2009je003339, 2009.
Ellison, E. T., Mayhew, L. E., Miller, H. M., and Templeton, A. S.: Quantitative microscale Fe redox imaging by multiple energy X-ray fluorescence mapping at the Fe K pre-edge peak, Am. Mineral., 105, 1812–1829, https://doi.org/10.2138/am-2020-7359, 2020.
Etiope, G., Schoell, M., and Hosgormez, H.: Abiotic methane flux from the
Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation
from low temperature serpentinization and implications for Mars, Earth
Planet. Sc. Lett., 310, 96–104, https://doi.org/10.1016/j.epsl.2011.08.001, 2011.
Evans, B. W.: The serpentinite multisystem revisited: Chrysotile is
metastable, Int. Geol. Rev., 46, 479–506, 2004.
Evans, K. A.: The redox budget of subduction zones, Earth-Sci. Rev.,
113, 11–32, https://doi.org/10.1016/j.earscirev.2012.03.003, 2012.
Fruh-Green, G. L., Connolly, J. A. D., Plas, A., Kelley, D. S., and Grobety,
B.: Serpentinization of oceanic peridotites: Implications for geochemical
cycles and biological activity, in: Subseafloor Biosphere at Mid-Ocean
Ranges, edited by: Wilcock, W. S. D., DeLong, E. F., Kelley, D. S., Baross,
J. A., and Cary, S. C., Geophys. Monogr. Ser., 144, 119–136,
https://doi.org/10.1029/144gm08, 2004.
Fuchs, Y., Linares, J., and Mellini, M.: Mössbauer and infrared
spectroscopy of lizardite-1T from Monte Fico, Elba, Phys. Chem.
Mineral., 26, 111–115, 1998.
Gaborieau, M., Laubier, M., Bolfan-Casanova, N., McCammon, C. A., Vantelon, D., Chumakov, A. I., Schiavi, F., Neuville, D. R., and Venugopal, S.: Determination of Fe
3+ ΣFe of olivine-hosted melt inclusions using Mössbauer and XANES spectroscopy, Chem. Geol., 547, 119646, https://doi.org/10.1016/j.chemgeo.2020.119646, 2020.
Galvez, M. E., Beyssac, O., Martinez, I., Benzerara, K., Chaduteau, C.,
Malvoisin, B., and Malavieille, J.: Graphite formation by carbonate
reduction during subduction, Nat. Geosci., 6, 473–477,
https://doi.org/10.1038/ngeo1827, 2013.
Ganzhorn, A.-C., Pilorgé, H., Le Floch, S., Montagnac, G., Cardon, H.,
and Reynard, B.: Deuterium-hydrogen inter-diffusion in chlorite, Chem.
Geol., 493, 518–524, https://doi.org/10.1016/j.chemgeo.2018.07.010, 2018.
Garenne, A., Beck, P., Montes-Hernandez, G., Bonal, L., Quirico, E., Proux,
O., and Hazemann, J. L.: The iron record of asteroidal processes in
carbonaceous chondrites, Meteorit. Planet. Sci., 54, 2652–2665,
https://doi.org/10.1111/maps.13377, 2019.
Goodman, B. A. and Bain, D. C.: Mössbauer Spectra of Chlorites and Their
Decomposition Products, in: Developments in Sedimentology, edited by:
Mortland, M. M. and Farmer, V. C., Elsevier, 65–74,
https://doi.org/10.1016/S0070-4571(08)70702-7, 1979.
Guggenheim, S. and Eggleton, R. A.: Modulated crystal structures of
greenalite and caryopilite; a system with long-range, in-plane structural
disorder in the tetrahedra sheet, Can. Mineral., 36, 163–179,
1998.
Hilairet, N., Daniel, I., and Reynard, B.: Equation of state of antigorite,
stability field of serpentines, and seismicity in subduction zones,
Geophys. Res. Lett., 33, L02302, https://doi.org/10.1029/2005GL024728, 2006.
Kelley, D. S., Karson, J. A., Blackman, D. K., Fruh-Green, G. L.,
Butterfield, D. A., Lilley, M. D., Olson, E. J., Schrenk, M. O., Roe, K. K.,
Lebon, G. T., Rivizzigno, P., and Party, A. T. S.: An off-axis hydrothermal
vent field near the Mid-Atlantic Ridge at 30
∘ N, Nature, 412,
145–149, https://doi.org/10.1038/35084000, 2001.
Lainé, M., Allard, T., Balan, E., Martin, F., Von Bardeleben, H. J.,
Robert, J.-L., and Caër, S. L.: Reaction Mechanisms in Talc under
Ionizing Radiation: Evidence of a High Stability of H Atoms, J.
Phys. Chem. C, 120, 2087–2095, https://doi.org/10.1021/acs.jpcc.5b11396, 2016.
Lougear, A., Grodzicki, M., Bertoldi, C., Trautwein, A. X., Steiner, K., and
Amthauer, G.: Mössbauer and molecular orbital study of chlorites,
Phys. Chem. Mineral., 27, 258–269, https://doi.org/10.1007/s002690050255, 2000.
Malmström, M., Banwart, S., Lewenhagen, J., Duro, L., and Bruno, J.: The
dissolution of biotite and chlorite at 25
∘C in the near-neutral
pH region, J. Contamin. Hydrol., 21, 201–213,
https://doi.org/10.1016/0169-7722(95)00047-X, 1996.
Masci, L., Dubacq, B., Verlaguet, A., Chopin, C., De Andrade, V., and
Herviou, C.: A XANES and EPMA study of Fe
3+ in chlorite: Importance of
oxychlorite and implications for cation site distribution and
thermobarometry, Am. Mineral., 104, 403–417, https://doi.org/10.2138/am-2019-6766,
2019.
Mayhew, L. E. and Ellison, E. T.: A synthesis and meta-analysis of the Fe
chemistry of serpentinites and serpentine minerals, Philos.
T. R. Soc. A, 378, 20180420, https://doi.org/10.1098/rsta.2018.0420, 2020.
Mellini, M., Fuchs, Y., Viti, C., Lemaire, C., and Linarès, J.: Insights
into the antigorite structure from Mössbauer and FTIR spectroscopies,
Europ. J. Mineral., 14, 97–104, 2002.
Mitra, S. and Bidyananda, M.: Crystallo-chemical characteristics of
chlorites from the greenstone belt of South India, and their geothermometric
signiificance, Clay Sci., 11, 479–501,
https://doi.org/10.11362/jcssjclayscience1960.11.479, 2001.
Moore, T.: Petrology and tectonic implications of the blueschist-bearing
Puerto Nuevo melange complex, Vizcaino Peninsula, Baja California Sur,
Mexico, Geol. Soc. Am. Memoir, 164, 43–58, 1986.
Muñoz, M., De Andrade, V., Vidal, O., Lewin, E., Pascarelli, S., and
Susini, J.: Redox and speciation micromapping using dispersive X-ray
absorption spectroscopy: Application to iron in chlorite mineral of a
metamorphic rock thin section, Geochem. Geophy. Geosy., 7, Q11020,
https://doi.org/10.1029/2006GC001381, 2006.
Muñoz, M., Vidal, O., Marcaillou, C., Pascarelli, S., Mathon, O., and
Farges, F.: Iron oxidation state in phyllosilicate single crystals using
Fe-K pre-edge and XANES spectroscopy: Effects of the linear polarization of
the synchrotron X-ray beam, Am. Mineral., 98, 1187–1197,
https://doi.org/10.2138/am.2013.4289, 2013.
Padrón-Navarta, J. A., López Sánchez-Vizcaíno, V., Garrido,
C. J., and Gómez-Pugnaire, M. T.: Metamorphic Record of High-pressure
Dehydration of Antigorite Serpentinite to Chlorite Harzburgite in a
Subduction Setting (Cerro del Almirez, Nevado–Filábride Complex,
Southern Spain), J. Petrol., 52, 2047–2078,
https://doi.org/10.1093/petrology/egr039, 2011.
Peretti, A., Dubessy, J., Mullis, J., Frost, B. R., and Trommsdorff, V.:
Highly reducing conditions during Alpine metamorphism of the Malenco
peridotite (Sondrio, northern Italy) indicated by mineral paragenesis and H
2
in fluid inclusions, Contrib. Mineral. Petr., 112,
329–340, https://doi.org/10.1007/BF00310464, 1992.
Piccoli, F., Hermann, J., Pettke, T., Connolly, J. A. D., Kempf, E. D., and
Vieira Duarte, J. F.: Subducting serpentinites release reduced, not
oxidized, aqueous fluids, Sci. Rep., 9, 19573,
https://doi.org/10.1038/s41598-019-55944-8, 2019.
Piilonen, P. C., Rancourt, D. G., Evans, R. J., Lalonde, A. E., McDonald, A. M., and Shabani, A. A. T.: The relationships between crystal-chemical and hyperfine parameters in members of the astrophyllite-group: A combined57Fe Mossbauer spectroscopy and single-crystal X-ray diffraction study, European J. Mineral., 16, 989–1002, https://doi.org/10.1127/0935-1221/2004/0016-0989, 2004.
Pons, M., Quitté, G., Fujii, T., Rosing, M., Reynard, B., Moynier, F.,
Douchet, C., and Albarède, F.: Early Archean serpentine mud volcanoes at
Isua, Greenland, as a niche for early life, P. Natl.
Acad. Sci. USA, 108, 17639–17643, https://doi.org/10.1073/pnas.1108061108, 2011.
Potapkin, V., Chumakov, A. I., Smirnov, G. V., Celse, J.-P., Ruffer, R., McCammon, C., and Dubrovinsky, L.: The 57Fe Synchrotron Mossbauer Source at the ESRF, J. Synchrot. Rad., 19, 559–569, https://doi.org/10.1107/S0909049512015579, 2012.
Prescher, C., McCammon, C., and Dubrovinsky, L.: MossA: a program for
analyzing energy-domain Mossbauer spectra from conventional and synchrotron
sources, J. Appl. Crystallogr., 45, 329–331,
https://doi.org/10.1107/S0021889812004979, 2012.
Rancourt, D. G.: Mössbauer spectroscopy of minerals, Phys. Chem. Mineral., 21, 244–249, https://doi.org/10.1007/BF00202138, 1994.
Reynard, B., Mibe, K., and Van de Moortele, B.: Electrical conductivity of
the serpentinised mantle and fluid flow in subduction zones, Earth
Planet. Sc. Lett., 307, 387–394, https://doi.org/10.1016/j.epsl.2011.05.013, 2011.
Reynard, B., Bezacier, L., and Caracas, R.: Serpentines, talc, chlorites,
and their high-pressure phase transitions: a Raman spectroscopic study,
Phys. Chem. Mineral., 42, 641–649, 10.1007/s00269-015-0750-0,
2015.
Rigault, C.: Cristallochimie du fer dans les chlorites de basse température: implications pour la géothermométrie et la détermination des paléoconditions redox dans les gisements d’uranium, Université de Poitiers, France, 280 pp., 2010.
Scambelluri, M., Piccardo, G. B., Philippot, P., Robbiano, A., and Negretti,
L.: High salinity fluid inclusions formed from recycled seawater in deeply
subducted alpine serpentinite, Earth Planet. Sc. Lett., 148,
485–499, 1997.
Schulte, M., Blake, D., Hoehler, T., and McCollom, T.: Serpentinization and
its implications for life on the early Earth and Mars, Astrobiology, 6,
364–376, https://doi.org/10.1089/ast.2006.6.364, 2006.
Schwartz, S., Guillot, S., Reynard, B., Lafay, R., Debret, B., Nicollet, C.,
Lanari, P., and Auzende, A. L.: Pressure-temperature estimates of the
lizardite/antigorite transition in high pressure serpentinites, Lithos, 178,
197–210, https://doi.org/10.1016/j.lithos.2012.11.023, 2013.
Sedlock, R. L.: Four phases of Mesozoic deformation in the Sierra de San Andres Ophiolite, Vizcaíno Peninsula, west-central Baja California, México, in: Tectonic evolution of northwestern Mexico and the Southwestern USA, edited by: Johnson, S. E., Paterson, S. R., Fletcher, J. M., Girty, G. H., Kimbrough, D. L., and Martín-Barajas, A., Geological Society of America, https://doi.org/10.1130/0-8137-2374-4.73, 2003.
Smyth, J. R., Dyar, M. D., May, H. M., Bricker, O. P., and Acker, J. G.:
Crystal Structure Refinement and Mössbauer Spectroscopy of an Ordered,
Triclinic Clinochlore, Clay. Clay Mineral., 45, 544–550,
https://doi.org/10.1346/CCMN.1997.0450406, 1997.
Sobolev, V. N., McCammon, C. A., Taylor, L. A., Snyder, G. A., and Sobolev,
N. V.: Precise Moessbauer milliprobe determination of ferric iron in
rock-forming minerals and limitations of electron microprobe analysis,
Am. Mineral., 84, 78–85, https://doi.org/10.2138/am-1999-1-208, 1999.
Steven, C., Dyar, M. D., McCanta, M., Newville, M., and Lanzirotti, A.: Wave
vector and field vector orientation dependence of Fe K pre-edge X-ray
absorption features in clinopyroxenes, Am. Mineral., https://doi.org/10.2138/am-2022-8547,
2022.
Trincal, V., Lanari, P., Buatier, M., Lacroix, B., Charpentier, D., Labaume,
P., and Muñoz, M.: Temperature micro-mapping in oscillatory-zoned
chlorite: Application to study of a green-schist facies fault zone in the
Pyrenean Axial Zone (Spain), Am. Mineral., 100, 2468–2483,
https://doi.org/10.2138/am-2015-5217, 2015.
Tsujimori, T. and Itaya, T.: Blueschist-facies metamorphism during Paleozoic
orogeny in southwestern Japan: Phengite K–Ar ages of blueschist-facies
tectonic blocks in a serpentinite melange beneath early Paleozoic Oeyama
ophiolite, Island Arc, 8, 190–205, 1999.
Ulmer, P. and Trommsdorff, V.: Serpentine Stability to Mantle Depths and
Subduction-Related Magmatism, Science, 268, 858–861,
https://doi.org/10.1126/science.268.5212.858, 1995.
Vidal, O., De Andrade, V., Lewin, E., Munoz, M., Parra, T., and Pascarelli,
S.: P–T-deformation-Fe
3+ Fe
2+ mapping at the thin section scale and
comparison with XANES mapping: application to a garnet-bearing metapelite
from the Sambagawa metamorphic belt (Japan), J. Metamor. Geol.,
24, 669–683, https://doi.org/10.1111/j.1525-1314.2006.00661.x, 2006.
Vitale Brovarone, A., Martinez, I., Elmaleh, A., Compagnoni, R., Chaduteau,
C., Ferraris, C., and Esteve, I.: Massive production of abiotic methane
during subduction evidenced in metamorphosed ophicarbonates from the Italian
Alps, Nat. Commun., 8, 14134, https://doi.org/10.1038/ncomms14134, 2017.
Vitale Brovarone, A., Sverjensky, D. A., Piccoli, F., Ressico, F.,
Giovannelli, D., and Daniel, I.: Subduction hides high-pressure sources of
energy that may feed the deep subsurface biosphere, Nat. Commun.,
11, 3880, https://doi.org/10.1038/s41467-020-17342-x, 2020.
Votyakov, S. L., Chaschukhin, I. S., Galakhova, O. L., and Gulyaeva, T. Y.:
Crystal chemistry of lizardite as an indicator of early serpentinization in
ultramafic rocks, I. Compositional and structural features of the mineral
according to spectroscopic data, Geochem. Int., 43, 862–880,
2005.
Wilke, M., Farges, F., Petit, P. E., Brown, G. E., and Martin, F.: Oxidation
state and coordination of Fe in minerals: a Fe-XANES spectroscopic study,
Am. Mineral., 86, 714–730, 2001.
Zazzi, Å., Hirsch, T. K., Leonova, E., Kaikkonen, A., Grins, J.,
Annersten, H., and Edeìn, M.: Structural investigations of natural and
synthetic chlorite minerals by X-ray diffraction, Mössbauer
spectropscopy and solid-state nuclear magnetic resonance, Clay. Clay
Mineral., 54, 252–265, https://doi.org/10.1346/CCMN.2006.0540210, 2006.