Articles | Volume 34, issue 1
Eur. J. Mineral., 34, 149–165, 2022
https://doi.org/10.5194/ejm-34-149-2022

Special issue: Probing the Earth: experiments and mineral physics at mantle...

Eur. J. Mineral., 34, 149–165, 2022
https://doi.org/10.5194/ejm-34-149-2022

Research article 28 Feb 2022

Research article | 28 Feb 2022

Lower mantle geotherms, flux, and power from incorporating new experimental and theoretical constraints on heat transport properties in an inverse model

Anne M. Hofmeister

Related subject area

Mineral physics
Vibrational anisotropy of δ-(Al,Fe)OOH single crystals as probed by nuclear resonant inelastic X-ray scattering
Johannes Buchen, Wolfgang Sturhahn, Takayuki Ishii, and Jennifer M. Jackson
Eur. J. Mineral., 33, 485–502, https://doi.org/10.5194/ejm-33-485-2021,https://doi.org/10.5194/ejm-33-485-2021, 2021
Short summary
Reply to Kroll and Schmid-Beurmann's comment on “Water decreases displacive phase transition temperature in alkali feldspar” by Liu et al. (2018)
Wendi Liu, Yan Yang, and Qunke Xia
Eur. J. Mineral., 32, 305–310, https://doi.org/10.5194/ejm-32-305-2020,https://doi.org/10.5194/ejm-32-305-2020, 2020

Cited articles

Aitta, A.: Iron melting curve with a tricritical point, J. Stat. Mech.-Theory E., 12, P12015, https://doi.org/10.1088/1742-5468/2006/12/P12015, 2006. 
Aizawa, Y., Yoneda, A., Katsura, T., Ito, E., Saito, T., and Suzuki, I.: Temperature derivatives of elastic moduli of MgSiO3 perovskite, J. Geophys. Res., 31, L01602, https://doi.org/10.1029/2003GL018762, 2004. 
Akaogi, M. and Ito, E.: Heat capacity of MgSiO3 perovskite, Geophys. Res. Lett., 20, 105–108, 1993. 
Anderson, D. L.: New Theory of the Earth, 2nd Edn., Cambridge University Press, Cambridge, ISBN 0-86542-335-0, 2007. 
Anderson, O. L. and Isaak, D.: Elastic constants of mantle minerals at high temperatures, in: Mineral Physics and Crystallography, A Handbook of Physical Constants, edited by: Ahrens, T. J., American Geophysical Union, Washington D.C., ISBN 0-87590-852-7, 64–97, 1995. 
Download
Short summary
The previously unknown temperature gradient in Earth's largest layer is uniquely extracted from a seismology average, the only information available. Data used from laboratory studies are minimal and describe general behavior. Adding a new theory and data on heat transport properties provides flux (heat per area per time) and power (total wattage) vs. depth. Temperature vs. depth instead uses an additive constant, which is constrained by data on melting. I show the lower mantle is heating up.