Anderson, O. L. and Isaak, D.: Elastic constants of mantle minerals at high
temperatures, in: Mineral Physics and Crystallography, A
Handbook of Physical Constants, edited by: Ahrens, T. J., American Geophysical Union, Washington D.C., ISBN 0-87590-852-7,
64–97, 1995.
Andersson, P.: Thermal conductivity under pressure and through phase
transitions in solid alkali halides, I. Experimental results for KCl, KBr,
KI, RbCl, RbBr and RbI, J. Phys. C Solid State, 18, 3943–3955, 1985.
Andersson, S. and Bäckström, G.: Techniques for determining thermal
conductivity and heat capacity under hydrostatic pressure, Rev. Sci.
Instrum., 57, 1633–1639, 1986.
Andersson, S. and Dzhavadov, L.: Thermal conductivity and heat capacity of
amorphous SiO
2: Pressure and volume dependence, J. Phys. Condensed
Matter., 4, 6209–6216, 1992.
Bass, J. D.: Elasticity of minerals, glasses, and melts, in: Mineral Physics and Crystallography, A Handbook of Physical Constants, edited by: Ahrens, T. J.,
American Geophysical Union, Washington D.C., 29–44, ISBN 0-87590-852-7, 1995.
Bercovici, D.: Mantle Dynamics Past, Present and Future: An Introduction and Overview, in: Treatise on Geophysics, Vol. 7, edited by: Schubert,
G., 1–30, ISBN 9780444534569, 2007.
Blumm, J., Henderson, J. B., Nilson, O., and Fricke, J.: Laser flash
measurement of the phononic thermal diffusivity of glasses in the presence
of ballistic radiative transfer, High Temp.-High Pres., 34, 555–560, 1997.
Cammarano, F., Goesa, S., Vacher, P., and Giardini, D.: Inferring upper-mantle
temperatures from seismic velocities, Phys. Earth Planet.
In., 138, 197–222, 2003.
Chase Jr., M. W.: NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem.
Ref. Data Monogr., 9, 1–1951, 1998.
Criss, E. M. and Hofmeister, A. M.: Isolating lattice from electronic
contributions in thermal transport measurements of metals and alloys and a
new model, Int. J. Modern Phys. B, 31, 75 pp., 2017.
Ditmars, D. A., Ishihara, S., Chang, S. S., Bernstein, G., and West, E. D.: Enthalpy and
Heat-Capacity Standard Reference Material: Synthetic Sapphire (
α-A1203) from 10 to 2250 K, J. Res. Natl. Bur. Standards, 87, 159–163, 1982.
Dorfman, S. M., Meng, Y., Prakapenka, V. B., and Duffy, T. S.: Effects of
Fe-enrichment on the equation of state and stability of (Mg, Fe)SiO
3
perovskite, Earth Planet. Sc. Lett., 361, 249–257, 2013.
Falloon, T. J., Green, D. H., Danyushevsky, L. V., and McNeill, A. W.: The
composition of near-solidus partial melts of fertile peridotite at 1 and
15 GPa: implications for the petrogenesis of MORB, J. Petrol., 49, 591–613,
2008.
Fei, Y.: Thermal Expansion, in: Mineral Physics
and Crystallography, A Handbook of Physical Constants, edited by: Ahrens, T. J., American Geophysical
Union, Washington D.C., 29–44, ISBN 0-87590-852-7, 1995.
Fiquet, G., Richet, P., and Montagnac, G.: High-temperature thermal expansion of
lime, periclase, corundum and spinel, Phys. Chem. Mineral., 27, 103–111, 1997.
Fiquet, G., Auzenda, A. L., Siebert, J., Corgne, A., Bureau, H., Ozawa, H.,
and Garbarino, G.: Melting of peridotite to 140 Gigapascals, Science, 329,
1516–1518, 2010.
Hahn, O., Hofmann, R., Raether, F., Mehling, H., and Fricke, J.: Transient
heat transfer in coated diathermic media: a theoretical study, High Temp.-High Press., 29, 693–701, 1997.
Helffrick, G.: A finite strain approach to thermal expansivity's pressure
dependence, Am. Mineral., 102, 1690–1695, 2017.
Hofmeister, A. M.: Interatomic Potentials Calculated from Equations of
State: Limitation of Finite Strain to Moderate K
′, Geophys. Res. Lett., 20,
635–638, 1993.
Hofmeister, A. M.: Comment on “measurement of thermal diffusivity at high
pressure using a transient heating technique” in Appl. Phys. Lett. 91,
181914, 2007, Appl. Phys. Lett., 95, 096101, https://doi.org/10.1063/1.3196374, 2009.
Hofmeister, A. M.: Thermal diffusivity of perovskite-type compounds at
elevated temperature, J. Appl. Phys., 107, 103532, https://doi.org/10.1063/1.3371815, 2010a.
Hofmeister, A. M.: Scale aspects of heat transport in the diamond anvil cell,
in spectroscopic modeling, and in Earth's mantle, Phys. Earth
Planet. In., 180, 138–147, 2010b.
Hofmeister, A. M.: Measurements, Mechanisms, and Models of Heat Transport, Amsterdam, New York, 427 pp., ISBN 978-0-12-809981-0,
2019
Hofmeister, A. M.: Heat Transport and Energetics of the Earth and Rocky
Planets, Elsevier, Amsterdam, 350 pp., ISBN 978-0-12-818430-1,
2020.
Hofmeister, A. M.: Dependence of Heat Transport in Solids on Length-scale,
Pressure, and Temperature: Implications for Mechanisms and Thermodynamics, Materials,
14, 449, https://doi.org/10.3390/ma14020449, 2021.
Hofmeister, A. M. and Criss, R. E.: A thermodynamic model for formation of the
Solar System via 3-dimensional collapse of the dusty nebula, Planet. Space Sci.,
62, 111–131, 2012.
Hofmeister, A. M., Dong, J. J., Branlund, J. M.: Thermal diffusivity of
electrical insulators at high temperatures: evidence for diffusion of
phonon-polaritons at infrared frequencies augmenting phonon heat conduction,
J. Appl. Phys., 115, 163517,
https://doi.org/10.1063/1.4873295, 2014.
Hofmeister, A. M., Criss, R. E., and Criss, E. M.: Link of planetary energetics
to moon size, orbit, and planet spin: a new mechanism for plate tectonics,
in: In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science:
Geological Society of America Special Paper 553, edited by: Foulger, G. R., Hamilton,
L. C., Jurdy, D. M., Stein, C. A., Howard, K. A., and Stein, S., Geological Society of America,
Boulder, CO, https://doi.org/10.1130/2021.2553(18), 2022.
Hsieh, W. P., Chen, B., Li, J., Keblinski, P., and Cahill, D. G.: Pressure tuning
of the thermal conductivity of the layered muscovite crystal, Phys. Rev. B,
80, 180302, https://doi.org/10.1103/PhysRevB.80.180302, 2009.
Katsura, T.: Thermal diffusivity of silica glass at pressures up to 9 GPa,
Phys. Chem. Miner., 20, 201–208, 1993.
Kennett, B. L. N.: On seismological reference models and the perceived
nature of heterogeneity, Phys. Earth Planet. Interiors, 159, 129–139, 2006.
Knittle, E.: Static compression measurements of equations of state, in:
Mineral Physics and Crystallography: A Handbook of Physical Constants, edited by: Ahrens, T. J., American Geophysical Union, Washington D.C., 98–142, ISBN 0-87590-852-7,
1995.
Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N., and Goncharov,
A. F.: Direct measurement of thermal conductivity in solid iron at planetary
core conditions, Nature, 534, 99–101, 2016.
MacDonald, G. J. F.: Calculations on the thermal history of the Earth, J.
Geophys. Res., 64, 1967–2000, 1959.
Merriman, J. M., Hofmeister, A. M., Whittington, A. G., and Roy, D. J.:
Temperature-dependent thermal transport properties of carbonate minerals and
rocks, Geophere, 27, 27 pp., https://doi.org/10.1130/GES01581.1, 2018.
Morard, G., Andrault, D., Guignot, N., Siebert, J., and Garbarino, G.: Melting
of Fe–Ni–Si and Fe–Ni–S alloys at megabar pressures: implications for
the core–mantle boundary temperature, Phys. Chem. Miner., 38, 767–776,
2011.
Mori, Y., Ozawa, H., Hirose, K., Sinmyo, R., Tateno, S., Morard, G., and Ohishi,
Y.: Melting experiments on Fe–Fe
3S system to 254 GPa, Earth Planet.
Sc. Lett., 464, 135–141, 2017.
Murakami, M., Ohishi, Y., Hirao, N., and Hirose, K.: Elasticity of
MgO to 130 GPa: Implications for lower mantle mineralogy, Earth
Planet. Sc. Lett., 277, 123–129, 2009.
Nestola, F., Burnham, A., Peruzzo, L., Tauro, L., Alvaro, M., Walter, M.,
and Kohn, S.: Tetragonal Almandine-Pyrope Phase, TAPP: Finally a name for it,
the new mineral jeffbenite, Mineral. Mag., 80, 1219–1232, 2016.
Nestola, F., Jung, H., and Taylor, L. A.: Mineral inclusions in diamonds may be
synchronous but not syngenetic, Nat. Commun., 8, 14168,
https://doi.org/10.1038/ncomms14168, 2017.
Osako, M., Ito, E., and Yoneda, A.: Simultaneous measurements of thermal
conductivity and thermal diffusivity for garnet and olivine under high
pressure, Phys. Earth Planet., 143/144, 311–320, 2004.
Sehlke, A., Hofmeister, A. M., and Whittington, A. G.: Thermal properties of
glassy and molten planetary candidate lavas, Planet. Space Sci., 193, 105089, https://doi.org/10.1016/j.pss.2020.105089, 2020.
Shankland, T. J.: Velocity-density systematics: Derivation from Debye theory
and the effect of ionic size, J. Geophys. Res., 77, 3750–3758, https://doi.org/10.1029/JB077i020p03750, 1972.
Schijve, J.: Fatigue of Structures and Materials, 2nd Edn. with Cd-Rom,
Springer, Berlin/Heidelberg, Germany, ISBN 978-1-4020-6807-2, 2009.
Spinner, S.: Elastic moduli of glasses at elevated temperature by a
dynamic method, J. Am. Ceram. Soc., 39, 113–118,
10.1111/j.1151-2916.1956.tb15634.x, 2006.
Stachel, T., Harris, J. W., Brey, G. P., and Joswig, W.: Kankan diamonds
(Guinea): II. Lower mantle inclusion parageneses, Contrib. Min. Petrol., 140,
16–27, 2000.
Takahashi, E.: Melting of a dry peridotite KLB-1 up to 14 GPa:
Implications on the origin of peridotitic upper mantle, J. Geophys. Res., 91,
9367–9382, 1986.
Takeuechi, H., Uyeda, S., and Kanamori, H.: Debate About the Earth.
Freeman, Cooper and Co, San Francisco, chap. 6, Is the Earth heating
or cooling?, 253 pp., 1967.
Tye, R. P. (Ed.): Thermal Conductivity, Vol. 1–2, Academic Press,
London, ISBN 10 0127054014, ISBN 13 9780127054018, 1969.
Vieira, F. and Hamza, V.: Global heat flow: new estimates using digital
maps and GIS techniques, Int. J. Terr. Heat Flow Appl. Geotherm.,
1, 6–13, 10.31214/ijthfa.v1i1.6, 2018.
Vozár, L. and Hohenauer, W.: Flash method of measuring the thermal
diffusivity, A Review, High Temperatures-High Pressures, 35/36, 253–264, https://doi.org/10.1068/htjr119, 2003.
Wallace, D. C.: Thermodynamics of Crystals, John-Wiley and Sons Inc., New
York, ISBN 13 978-0486402123,
ISBN 10 0486402126, 1972.
Yoneda, A.: Pressure derivatives of elastic constants of single crystal MgO
and MgAl
2O
4, J. Phys. Earth, 38, 19–55, 1990.
Zhang, J. and Herzberg, C.: Melting experiments on anhydrous peridotite
KLB-1 from 5.0 to 22.5 GPa, J. Geophys. Res., 99, 17729–17742, 1994.
Zhao, D., Qian. X., Gu, X., Jajja, S. A., and Yang, R.: Measurement
techniques for thermal conductivity and interfacial thermal conductance of
bulk and thin film materials, J. Electron. Packag., 138, 040802, https://doi.org/10.1115/1.4034605,
2016.
Zhu, F., Liu, J., Lai, X., Xiao, Y., Prakapenka, V., Bi, W., Alp, E., Przemyslaw, D., Chen, B., and Li, L.:
Synthesis, elasticity, and spin state of an intermediate MgSiO
3-FeAlO
3
bridgmanite: Implications for iron in Earth's lower mantle, J.
Geophys. Res.-Sol. Ea., 125, e2020JB019964, https://doi.org/10.1029/2020JB019964, 2020.