Articles | Volume 34, issue 1
https://doi.org/10.5194/ejm-34-149-2022
https://doi.org/10.5194/ejm-34-149-2022
Research article
 | 
28 Feb 2022
Research article |  | 28 Feb 2022

Lower mantle geotherms, flux, and power from incorporating new experimental and theoretical constraints on heat transport properties in an inverse model

Anne M. Hofmeister

Viewed

Total article views: 526 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
361 149 16 526 9 9
  • HTML: 361
  • PDF: 149
  • XML: 16
  • Total: 526
  • BibTeX: 9
  • EndNote: 9
Views and downloads (calculated since 28 Feb 2022)
Cumulative views and downloads (calculated since 28 Feb 2022)

Viewed (geographical distribution)

Total article views: 510 (including HTML, PDF, and XML) Thereof 510 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 18 Apr 2024
Download
Short summary
The previously unknown temperature gradient in Earth's largest layer is uniquely extracted from a seismology average, the only information available. Data used from laboratory studies are minimal and describe general behavior. Adding a new theory and data on heat transport properties provides flux (heat per area per time) and power (total wattage) vs. depth. Temperature vs. depth instead uses an additive constant, which is constrained by data on melting. I show the lower mantle is heating up.