Articles | Volume 33, issue 5
https://doi.org/10.5194/ejm-33-591-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-591-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deformation of NaCoF3 perovskite and post-perovskite up to 30 GPa and 1013 K: implications for plastic deformation and transformation mechanism
Jeffrey P. Gay
CORRESPONDING AUTHOR
Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 - UMET - Unité
Matériaux et Transformations, 59000 Lille, France
Lowell Miyagi
Department of Geology and
Geophysics, University of Utah, Salt Lake City, UT 84108, USA
Samantha Couper
Department of Geology and
Geophysics, University of Utah, Salt Lake City, UT 84108, USA
Christopher Langrand
Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 - UMET - Unité
Matériaux et Transformations, 59000 Lille, France
David P. Dobson
Department of Earth Sciences, University College London, Gower Street,
London WC1E 6BT, UK
Hanns-Peter Liermann
Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
Sébastien Merkel
CORRESPONDING AUTHOR
Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 - UMET - Unité
Matériaux et Transformations, 59000 Lille, France
Related authors
No articles found.
Marie D. Jackson, Magnús T. Gudmundsson, Tobias B. Weisenberger, J. Michael Rhodes, Andri Stefánsson, Barbara I. Kleine, Peter C. Lippert, Joshua M. Marquardt, Hannah I. Reynolds, Jochem Kück, Viggó T. Marteinsson, Pauline Vannier, Wolfgang Bach, Amel Barich, Pauline Bergsten, Julia G. Bryce, Piergiulio Cappelletti, Samantha Couper, M. Florencia Fahnestock, Carolyn F. Gorny, Carla Grimaldi, Marco Groh, Ágúst Gudmundsson, Ágúst T. Gunnlaugsson, Cédric Hamlin, Thórdís Högnadóttir, Kristján Jónasson, Sigurdur S. Jónsson, Steffen L. Jørgensen, Alexandra M. Klonowski, Beau Marshall, Erica Massey, Jocelyn McPhie, James G. Moore, Einar S. Ólafsson, Solveig L. Onstad, Velveth Perez, Simon Prause, Snorri P. Snorrason, Andreas Türke, James D. L. White, and Bernd Zimanowski
Sci. Dril., 25, 35–46, https://doi.org/10.5194/sd-25-35-2019, https://doi.org/10.5194/sd-25-35-2019, 2019
Short summary
Short summary
Three new cored boreholes through Surtsey volcano, an isolated island in southeastern Iceland, provide fresh insights into understanding how explosive submarine volcanism and the earliest alteration of basaltic deposits proceed in a pristine oceanic environment. The still-hot volcano was first sampled through a drill core in 1979. The time-lapse drill cores record the changing geochemical, mineralogical, microbiological, and material properties of the basalt 50 years after eruptions terminated.
Related subject area
High-pressure study of minerals
The use of MgO–ZnO ceramics to record pressure and temperature conditions in the piston–cylinder apparatus
The miscibility gap between the rock salt and wurtzite phases in the MgO–ZnO binary system to 3.5 GPa
High-pressure and high-temperature structure and equation of state of Na3Ca2La(CO3)5 burbankite
In situ reinvestigation of reaction phase A plus high-pressure clinoenstatite to forsterite plus water in the system MgO-SiO2-H2O (MSH)
Melt–rock interactions in a veined mantle: pyroxenite–peridotite reaction experiments at 2 GPa
New insights in the mechanisms of the reaction 3.65 Å phase = clinoenstatite + water down to nanoscales
Equation of state and high-pressure phase behaviour of SrCO3
Nicholas Farmer and Hugh St. C. O'Neill
Eur. J. Mineral., 36, 473–489, https://doi.org/10.5194/ejm-36-473-2024, https://doi.org/10.5194/ejm-36-473-2024, 2024
Short summary
Short summary
The piston–cylinder apparatus is widely used to investigate rock properties at the conditions of the interior of the Earth, but uncertainty in its calibration of pressure persists, with substantial differences between laboratories. We use a ceramic of magnesium and zinc oxides to measure the conditions experienced by a sample. Routine use of such ceramics provides an archive of experimental conditions, enables interlaboratory comparisons, and resolves long-standing controversies in calibration.
Nicholas Farmer and Hugh St. C. O'Neill
Eur. J. Mineral., 35, 1051–1071, https://doi.org/10.5194/ejm-35-1051-2023, https://doi.org/10.5194/ejm-35-1051-2023, 2023
Short summary
Short summary
The chemical compositions of the synthetic minerals periclase and zincite in the MgO–ZnO binary system change smoothly and systematically with pressure when they exist together in equilibrium. We have studied these changes experimentally over a wide range of conditions and fitted the results to a thermodynamic model. The model may be used to predict the compositions of the coexisting phases accurately at high pressures and temperatures corresponding to the Earth’s crust and uppermost mantle.
Sula Milani, Deborah Spartà, Patrizia Fumagalli, Boby Joseph, Roberto Borghes, Valentina Chenda, Juliette Maurice, Giorgio Bais, and Marco Merlini
Eur. J. Mineral., 34, 351–358, https://doi.org/10.5194/ejm-34-351-2022, https://doi.org/10.5194/ejm-34-351-2022, 2022
Short summary
Short summary
This work presents new thermoelastic parameters and the structural evolution of burbankite at high pressure and high temperature, obtained by in situ synchrotron radiation single-crystal diffraction measurements. Burbankite is a carbonate that may potentially play a key role as an upper-mantle reservoir of light REE3+. We observed that the density of burbankite is greater with respect to carbonatitic magmas, indicating a possible fractionation of this phase in upper-mantle conditions.
Christian Lathe, Monika Koch-Müller, Bernd Wunder, Oona Appelt, Shrikant Bhat, and Robert Farla
Eur. J. Mineral., 34, 201–213, https://doi.org/10.5194/ejm-34-201-2022, https://doi.org/10.5194/ejm-34-201-2022, 2022
Short summary
Short summary
The equilibrium phase of A + HP clinoenstatite = forsterite + water was experimentally investigated at aH2O = 1 in situ. In cold subducting slabs, it is of relevance to transport water to large depths, initiating the formation of dense hydrous magnesium silicate (DHMS). At normal gradients, the huge water amount from this reaction induces important processes within the overlying mantle wedge. We additionally discuss the relevance of this reaction for intermediate-depth earthquake formation.
Giulio Borghini, Patrizia Fumagalli, and Elisabetta Rampone
Eur. J. Mineral., 34, 109–129, https://doi.org/10.5194/ejm-34-109-2022, https://doi.org/10.5194/ejm-34-109-2022, 2022
Short summary
Short summary
The mineralogical and chemical heterogeneity of the mantle is poorly known because it is not able to be directly investigated. Melt–peridotite interaction processes play a fundamental role in controlling the mantle composition. The results of our reaction experiments help us to evaluate the role of temperature and melt composition in the modification of the mantle through the interaction with pyroxenite-derived melts with implications for the evolution of a veined mantle.
Monika Koch-Müller, Oona Appelt, Bernd Wunder, and Richard Wirth
Eur. J. Mineral., 33, 675–686, https://doi.org/10.5194/ejm-33-675-2021, https://doi.org/10.5194/ejm-33-675-2021, 2021
Short summary
Short summary
Dense hydrous magnesium silicates, like the 3.65 Å phase, are thought to cause deep earthquakes. We investigated the dehydration of the 3.65 Å phase at P and T. In both directions of the investigated simple reaction, additional metastable water-rich phases occur. The observed extreme reduction in grain size in the dehydration experiments might cause mechanical instabilities in the Earth’s mantle and, finally, induce earthquakes.
Nicole Biedermann, Elena Bykova, Wolfgang Morgenroth, Ilias Efthimiopoulos, Jan Mueller, Georg Spiekermann, Konstantin Glazyrin, Anna Pakhomova, Karen Appel, and Max Wilke
Eur. J. Mineral., 32, 575–586, https://doi.org/10.5194/ejm-32-575-2020, https://doi.org/10.5194/ejm-32-575-2020, 2020
Short summary
Short summary
Carbonates play a key role in the chemistry and dynamics of our planet. The role of SrCO3 in the deep mantle has received little attention due to its low abundance. However, knowing the high-pressure phase behaviour of natural carbonates across its full compositional range is essential to evaluate effects of chemical substitution in the system of deep-Earth carbonates. We performed powder and single-crystal X-ray diffraction up to 49 GPa and observed a phase transition in SrCO3 at around 26 GPa.
Cited articles
Ammann, M. W., Brodholt, J. P., Wookey, J., and Dobson, D. P.:
First-principles constraints on diffusion in lower-mantle minerals and a
weak D′′ layer, Nature, 465, 462–465,
https://doi.org/10.1038/nature09052,
2010.
Bachmann, F., Hielscher, R., and Schaeben, H.: Solid State Phenomena, Texture Analysis with MTEX – Free and Open Source Software Toolbox, 160, 63–68, https://doi.org/10.4028/www.scientific.net/SSP.160.63 (last access 21 September 2021) 2010 (code available at: https://mtex-toolbox.github.io, last access: 21 September 2021).
Beghein, C., Trampert, J., and van Heijst, H. J.: Radial anisotropy in
seismic reference models of the mantle, J. Geophys. Res.-Sol. Ea., 111, B02303, https://doi.org/10.1029/2005JB003728, 2006.
Boioli, F., Carrez, P., Cordier, P., Devincre, B., Gouriet, K., Hirel, P.,
Kraych, A., and Ritterbex, S.: Pure climb creep mechanism drives flow in
Earth's lower mantle, Science Advances, 3, 1–7, https://doi.org/10.1126/sciadv.1601958, 2017.
Carrez, P., Ferré, D., and Cordier, P.: Implications for plastic flow in
the deep mantle from modelling dislocations in MgSiO3 minerals, Nature, 446,
68–70, https://doi.org/10.1038/nature05593, 2007.
Carrez, P., Goryaeva, A. M., and Cordier, P.: Prediction of Mechanical
Twinning in Magnesium Silicate Post-Perovskite, Sci. Rep., 7,
17640, https://doi.org/10.1038/s41598-017-18018-1, 2017.
Chen, G., Liebermann, R. C., and Weidner, D. J.: Elasticity of
single-crystal MgO to 8 Gigapascals and 1600 Kelvin, Science, 280,
1913–1916, https://doi.org/10.1126/science.280.5371.1913, 1998.
Chenine, D., Aziz, Z., Benstaali, W., Bouadjemi, B., Youb, O., Lantri, T.,
Abbar, B., and Bentata, S.: Theoretical Investigation of Half-Metallic
Ferromagnetism in Sodium-Based Fluoro-perovskite NaXF3 (X = V, Co),
J. Supercond. Nov. Magn., 31, 285–295,
https://doi.org/10.1007/s10948-017-4204-4, 2018.
Christian, J. W., Olson, G. B., and Cohen, M.: Classification of Displacive
Transformations: What is a Martensitic Transformation?, J. Phys. IV France, 05, C8-3–C8-10, https://doi.org/10.1051/jp4:1995801, 1995.
Čížková, H., Čadek, O., Matyska, C., and
Yuen, D. A.: Implications of post-perovskite transport properties for
core-mantle dynamics, Phys. Earth Planet. In., 180, 235–243,
https://doi.org/10.1016/j.pepi.2009.08.008, 2010.
Cobden, L., Thomas, C., and Trampert, J.: The earth's heterogeneous mantle:
A geophysical, geodynamical, and geochemical perspective, Springer
International Publishing Switzerland, Cham, Switzerland,
https://doi.org/10.1007/978-3-319-15627-9_13, 2015.
Cordier, P., Ungár, T., Zsoldos, L., and Tichy, G.: Dislocation creep in
MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle,
Nature, 428, 837–840, https://doi.org/10.1038/nature02472, 2004.
Couper, S., Speziale, S., Marquardt, H., Liermann, H. P., and Miyagi, L.:
Does Heterogeneous Strain Act as a Control on Seismic Anisotropy in Earth's
Lower Mantle?, Front. Earth Sci., 8, 540449,
https://doi.org/10.3389/feart.2020.540449, 2020.
Crichton, W., Bernal, F., Guignard, J., Hanfland, M., and Margadonna, S.:
Observation of Sb2S3-type post-post-perovskite
in NaFeF3. Implications for ABX3 and A2X3 systems at ultrahigh pressure, Mineral. Mag.,
80, 659–674, 2016.
Dobson, D. P., Hunt, S. A., Lindsay-Scott, A., and Wood, I. G.: Towards
better analogues for MgSiO3 post-perovskite: NaCoF3 and NaNiF3, two new
recoverable fluoride post-perovskites, Phys. Earth Planet.
In., 189, 171–175, https://doi.org/10.1016/j.pepi.2011.08.010, 2011.
Dobson, D. P., McCormack, R., Hunt, S. A., Ammann, M. W., Weidner, D., Li,
L., and Wang, L.: The relative strength of perovskite and post-perovskite
NaCoF3, Mineral. Mag., 76, 925–932,
https://doi.org/10.1180/minmag.2012.076.4.09, 2012.
Dobson, D. P., Miyajima, N., Nestola, F., Alvaro, M., Casati, N., Liebske,
C., Wood, I. G., and Walker, A. M.: Strong inheritance of texture between
perovskite and post-perovskite in the D′′ layer, Nat. Geosci., 6,
575–578, https://doi.org/10.1038/ngeo1844, 2013.
Dorfman, S. M., Shieh, S. R., and Duffy, T. S.: Strength and texture of Pt
compressed to 63 GPa, J. Appl. Phys., 117, 065901,
https://doi.org/10.1063/1.4907866,
2015.
Duffy, T. S.: Strength of materials under static loading in the diamond
anvil cell, AIP Conf. Proc., 955, 639–644,
https://doi.org/10.1063/1.2833175, 2007.
Ferré, D., Carrez, P., and Cordier, P.: First principles determination
of dislocations properties of MgSiO3 perovskite at 30 GPa based on the
Peierls-Nabarro model, Phys. Earth Planet. In., 163,
283–291, https://doi.org/10.1016/j.pepi.2007.05.011, 2007.
Ferreira, A. M., Faccenda, M., Sturgeon, W., Chang, S. J., and Schardong,
L.: Ubiquitous lower-mantle anisotropy beneath subduction zones, Nat.
Geosci., 12, 301–306, https://doi.org/10.1038/s41561-019-0325-7, 2019.
Garnero, E. J., Maupin, V., Lay, T., and Fouch, M. J.: Variable azimuthal
anisotropy in earth's lowermost mantle, Science, 306, 259–261,
https://doi.org/10.1126/science.1103411, 2004.
Gay, J. P., Miyagi, L., Couper, S., Langrand, C., Dobson, D. P., Liermann, H.-P., and Merkel, S.: Data for deformation and transformation of NaCoF3 perovskite and post-perovskite up to 30 GPa and 1013 K, Zenodo [data set], https://doi.org/10.5281/zenodo.5513910, 2021.
Girard, J., Amulele, G., Farla, R., Mohiuddin, A., and Karato, S. I.: Shear
deformation of bridgmanite and magnesiowüstite aggregates at lower
mantle conditions, Science, 351, 144–147,
https://doi.org/10.1126/science.aad3113, 2016.
Gonzalez-Platas, J., Alvaro, M., Nestola, F., and Angel, R.: EosFit7-GUI: A
new graphical user interface for equation of state calculations, analyses
and teaching, J. Appl. Crystallogr., 49, 1377–1382,
https://doi.org/10.1107/S1600576716008050, 2016.
Hernlund, J. W., Thomas, C., and Tackley, P. J.: A doubling of the
post-perovskite, Nature, 434, 882–886,
https://doi.org/10.1038/nature03472, 2005.
Hunt, S. A., Weidner, D. J., Li, L., Wang, L., Walte, N. P., Brodholt, J.
P., and Dobson, D. P.: Weakening of calcium iridate during its
transformation from perovskite to post-perovskite, Nat. Geosci., 2,
794–797, https://doi.org/10.1038/ngeo663, 2009.
Hunt, S. A., Walker, A. M., and Mariani, E.: In-situ measurement of texture
development rate in CaIrO3 post-perovskite, Phys. Earth
Planet. In., 257, 91–104,
https://doi.org/10.1016/j.pepi.2016.05.007, 2016.
Immoor, J., Marquardt, H., Miyagi, L., Speziale, S., Merkel, S., Schwark,
I., Ehnes, A., and Liermann, H.-P.: An improved setup for radial diffraction
experiments at high pressures and high temperatures in a resistive
graphite-heated diamond anvil cell, Rev. Sci. Instrum., 91,
045121, https://doi.org/10.1063/1.5143293, 2020.
Kaercher, P., Miyagi, L., Kanitpanyacharoen, W., Zepeda-Alarcon, E., Wang,
Y., Parkinson, D., Lebensohn, R. A., De Carlo, F., and Wenk, H. R.:
Two-phase deformation of lower mantle mineral analogs, Earth Planet. Sc. Lett., 456, 134–145, https://doi.org/10.1016/j.epsl.2016.09.030, 2016.
Koelemeijer, P., Schuberth, B. S., Davies, D. R., Deuss, A., and Ritsema,
J.: Constraints on the presence of post-perovskite in Earth's lowermost
mantle from tomographic-geodynamic model comparisons, Earth Planet. Sc. Lett., 494, 226–238, https://doi.org/10.1016/j.epsl.2018.04.056, 2018.
Kraych, A., Carrez, P., and Cordier, P.: On dislocation glide in MgSiO3
bridgmanite at high-pressure and high-temperature, Earth Planet. Sc. Lett., 452, 60–68, https://doi.org/10.1016/j.epsl.2016.07.035, 2016.
Liermann, H.-P., Merkel, S., Miyagi, L., Wenk, H.-R., Shen, G., Cynn, H.,
and Evans, W. J.: Experimental method for in situ determination of material
textures at simultaneous high pressure and high temperature by means of
radial diffraction in the diamond anvil cell, Rev. Sci.
Instrum., 80, 104501, https://doi.org/10.1063/1.3236365, 2009.
Liermann, H.-P., Konôpková, Z., Morgenroth, W., Glazyrin, K.,
Bednarcik, J., McBride, E. E., Petitgirard, S., Delitz, J. T., Wendt, M.,
Bican, Y., Ehnes, A., Schwark, I., Rothkirch, A., Tischer, M., Heuer, J.,
Schulte-Schrepping, H., Kracht, T., and Franz, H.: The Extreme Conditions
Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA
III, J. Synchrotron Radiat., 22, 908–924,
https://doi.org/10.1107/S1600577515005937, 2015.
Lutterotti, L., Matthies, S., Wenk, H. R., Schultz, A. S., and Richardson,
J. W.: Combined texture and structure analysis of deformed limestone from
time-of-flight neutron diffraction spectra, J. Appl. Phys., 81,
594–600, https://doi.org/10.1063/1.364220, 1997 (data available at: http://maud.radiographema.eu, last access: 17 September 2021).
Mainprice, D., Barruol, G., Isma, W. B., Mainprice, D., Barruol, G., Isma,
W. B., Mainprice, D., Barruol, G., and Isma, W. B.: The Seismic anisotropy
of the Earth's mantle: From single crystal to polycrystal, vol. 117, American Geophysical Union, Washington D.C., USA,
https://doi.org/10.1029/GM117, 2000.
Mainprice, D., Tommasi, A., Ferré, D., Carrez, P., and Cordier, P.:
Predicted glide systems and crystal preferred orientations of
polycrystalline silicate Mg-Perovskite at high pressure: Implications for
the seismic anisotropy in the lower mantle, Earth Planet. Sc.
Lett., 271, 135–144, https://doi.org/10.1016/j.epsl.2008.03.058, 2008.
McCormack, R., Dobson, D. P., Walte, N. P., Miyajima, N., Taniguchi, T., and
Wood, I. G.: The development of shape- and crystallographic-preferred
orientation in CaPtO3 post-perovskite deformed in pure shear, Am.
Mineral., 96, 1630–1635, https://doi.org/10.2138/am.2011.3881, 2011.
Merkel, S., Wenk, H. R., Badro, J., Montagnac, G., Gillet, P., Mao, H. K.,
and Hemley, R. J.: Deformation of (Mg0.9,Fe0.1)SiO3 Perovskite aggregates up
to 32 GPa, Earth Planet. Sc. Lett., 209, 351–360,
https://doi.org/10.1016/S0012-821X(03)00098-0, 2003.
Merkel, S., Kubo, A., Miyagi, L., Speziale, S., Duffy, T. S., Mao, H. K.,
and Wenk, H. R.: Plastic deformation of MgGeO3 post-perovskite at lower
mantle pressures, Science, 311, 644–646,
https://doi.org/10.1126/science.1121808, 2006.
Merkel, S., McNamara, A. K., Kubo, A., Speziale, S., Miyagi, L., Meng, Y.,
Duffy, T. S., and Wenk, H. R.: Deformation of (Mg,Fe)SiO3 post-perovskite
and D′′ anisotropy, Science, 316, 1729–1732,
https://doi.org/10.1126/science.1140609, 2007.
Metsue, A., Carrez, P., Mainprice, D., and Cordier, P.: Numerical modelling
of dislocations and deformation mechanisms in CaIrO3 and MgGeO3
post-perovskites – Comparison with MgSiO3 post-perovskite, Phys.
Earth Planet. In., 174, 165–173,
https://doi.org/10.1016/j.pepi.2008.04.003, 2009.
Miyagi, L. and Wenk, H. R.: Texture development and slip systems in
bridgmanite and bridgmanite + ferropericlase aggregates, Phys.
Chem. Miner., 43, 597–613,
https://doi.org/10.1007/s00269-016-0820-y, 2016.
Miyagi, L., Nishiyama, N., Wang, Y., Kubo, A., West, D. V., Cava, R. J.,
Duffy, T. S., and Wenk, H. R.: Deformation and texture development in
CaIrO3 post-perovskite phase up to 6 GPa and 1300 K, Earth Planet.
Sc. Lett., 268, 515–525, https://doi.org/10.1016/j.epsl.2008.02.005,
2008.
Miyagi, L., Merkel, S., Yagi, T., Sata, N., Ohishi, Y., and Wenk, H. R.:
Diamond anvil cell deformation of CaSiO3 perovskite up to 49 GPa, Phys. Earth Planet. In., 174, 159–164,
https://doi.org/10.1016/j.pepi.2008.05.018, 2009.
Miyagi, L., Kanitpanyacharoen, W., Kaercher, P., Lee, K. K., and Wenk, H.
R.: Slip systems in MgSiO3 post-perovskite: Implications for D′′ anisotropy,
Science, 329, 1639–1641, https://doi.org/10.1126/science.1192465, 2010.
Miyagi, L., Kanitpanyacharoen, W., Stackhouse, S., Militzer, B., and Wenk,
H. R.: The enigma of post-perovskite anisotropy: Deformation versus
transformation textures, Phys. Chem. Miner., 38, 665–678,
https://doi.org/10.1007/s00269-011-0439-y, 2011.
Miyagi, L., Kanitpanyacharoen, W., Raju, S. V., Kaercher, P., Knight, J.,
MacDowell, A., Wenk, H. R., Williams, Q., and Alarcon, E. Z.: Combined
resistive and laser heating technique for in situ radial X-ray diffraction
in the diamond anvil cell at high pressure and temperature, Rev.
Sci. Instrum., 84, 025118, https://doi.org/10.1063/1.4793398, 2013.
Miyajima, N. and Walte, N.: Burgers vector determination in deformed
perovskite and post-perovskite of CaIrO3 using thickness fringes in
weak-beam dark-field images, Ultramicroscopy, 109, 683–692,
https://doi.org/10.1016/j.ultramic.2009.01.010, 2009.
Murakami, M., Hirose, K., Kawamura, K., Sata, N., and Ohishi, Y.:
Post-Perovskite Phase Transition in MgSiO3, Science, 304, 855–858,
https://doi.org/10.1126/science.1095932, 2004.
Nakagawa, T. and Tackley, P. J.: Effects of low-viscosity post-perovskite on
thermo-chemical mantle convection in a 3-D spherical shell, Geophys.
Res. Lett., 38, L04309, https://doi.org/10.1029/2010GL046494, 2011.
Niwa, K., Yagi, T., Ohgushi, K., Merkel, S., Miyajima, N., and Kikegawa, T.:
Lattice preferred orientation in CaIrO3 perovskite and post-perovskite
formed by plastic deformation under pressure, Phys. Chem.
Miner., 34, 679–686, https://doi.org/10.1007/s00269-007-0182-6, 2007.
Nowacki, A., Wookey, J., and Kendall, J. M.: Deformation of the lowermost
mantle from seismic anisotropy, Nature, 467, 1091–1094,
https://doi.org/10.1038/nature09507,
2010.
Nowacki, A., Walker, A. M., Wookey, J., and Kendall, J. M.: Evaluating
post-perovskite as a cause of D′′ anisotropy in regions of palaeosubduction, Geophys. J. Int., 192, 1085–1090,
https://doi.org/10.1093/gji/ggs068, 2013.
Oganov, A. R. and Ono, S.: Theoretical and experimental evidence for a
post-perovskite phase of MgSiO3 in Earth's D′′ layer, Nature, 430,
445–448, https://doi.org/10.1038/nature02701, 2004.
Oganov, A. R., Martoňák, R., Laio, A., Raiteri, P., and Parrinello, M.:
Anisotropy of earth's D′′ layer and stacking faults in the MgSiO3
post-perovskite phase, Nature, 438, 1142–1144,
https://doi.org/10.1038/nature04439, 2005.
Okada, T., Yagi, T., Niwa, K., and Kikegawa, T.: Lattice-preferred
orientations in post-perovskite-type MgGeO3 formed by transformations from
different pre-phases, Phys. Earth Planet. In., 180,
195–202, https://doi.org/10.1016/j.pepi.2009.08.002, 2010.
Panning, M. and Romanowicz, B.: A three-dimensional radially anisotropic
model of shear velocity in the whole mantle, Geophys. J.
Int., 167, 361–379,
https://doi.org/10.1111/j.1365-246X.2006.03100.x, 2006.
Pisconti, A., Thomas, C., and Wookey, J.: Discriminating Between Causes of
D′′ Anisotropy Using Reflections and Splitting Measurements
for a Single Path, J. Geophys. Res.-Sol. Ea., 124,
4811–4830, https://doi.org/10.1029/2018JB016993, 2019.
Popa, N. C.: The (hkl) Dependence of Diffraction-Line Broadening Caused by
Strain and Size for all Laue Groups in Rietveld Refinement, J.
Appl. Crystallogr., 31, 176–180,
https://doi.org/10.1107/S0021889897009795, 1998.
Romanowicz, B. and Wenk, H. R.: Anisotropy in the deep Earth, Phys.
Earth Planet. In., 269, 58–90,
https://doi.org/10.1016/j.pepi.2017.05.005, 2017.
Savage, M. S.: Seismic anisotropy and mantle deformation: What have we
learned from shear wave splitting?, Rev. Geophys., 37, 65–106,
https://doi.org/10.1029/98RG02075, 1999.
Shirako, Y., Shi, Y. G., Aimi, A., Mori, D., Kojitani, H., Yamaura, K.,
Inaguma, Y., and Akaogi, M.: High-pressure stability relations, crystal
structures, and physical properties of perovskite and post-perovskite of
NaNiF3, J. Solid State Chem., 191, 167–174,
https://doi.org/10.1016/j.jssc.2012.03.004, 2012.
Singh, A. K., Balasingh, C., Mao, H. K., Hemley, R. J., and Shu, J.:
Analysis of lattice strains measured under nonhydrostatic pressure, J.
Appl. Phys., 83, 7567–7575, https://doi.org/10.1063/1.367872, 1998.
Tackley, P. J.: Dynamics and evolution of the deep mantle resulting from
thermal, chemical, phase and melting effects, Earth-Sci. Rev., 110,
1–25, https://doi.org/10.1016/j.earscirev.2011.10.001, 2012.
Tschauner, O., Chi, M., Beckett, J. R., Prescher, C., Prakapenka, V. B., and
Rossman, G. R.: Discovery of bridgmanite, the most abundant mineral in
Earth, in a shocked meteorite, Science, 346, 1100–1102,
https://doi.org/10.1126/science.1259369, 2014.
Tsuchiya, T., Tsuchiya, J., Umemoto, K., and Wentzcovitch, R. M.: Phase
transition in MgSiO3 perovskite in the earth's lower mantle, Earth
Planet. Sci. Lett., 224, 241–248,
https://doi.org/10.1016/j.epsl.2004.05.017, 2004.
Tsujino, N., Nishihara, Y., Yamazaki, D., Seto, Y., Higo, Y., and Takahashi,
E.: Mantle dynamics inferred from the crystallographic preferred orientation
of bridgmanite, Nature, 539, 81–84, https://doi.org/10.1038/nature19777, 2016.
Umemoto, K. and Wentzcovitch, R. M.: Ab initio exploration of post-PPV
transitions in low-pressure analogs of MgSiO3, Physical Review Materials, 3,
25–28, https://doi.org/10.1103/PhysRevMaterials.3.123601, 2019.
Walker, A. M., Dobson, D. P., Wookey, J., Nowacki, A., and Forte, A. M.: The
anisotropic signal of topotaxy during phase transitions in D′′, Phys.
Earth Planet. In., 276, 159–171,
https://doi.org/10.1016/j.pepi.2017.05.013, 2018a.
Walker, A. M., Dobson, D. P., Wookey, J., Nowacki, A., and Forte, A. M.: The
anisotropic signal of topotaxy during phase transitions in D′′, Phys.
Earth Planet. In., 276, 159–171,
https://doi.org/10.1016/j.pepi.2017.05.013, 2018b.
Walte, N. P., Heidelbach, F., Miyajima, N., Frost, D. J., Rubie, D. C., and
Dobson, D. P.: Transformation textures in post-perovskite: Understanding
mantle flow in the D′′ layer of the earth, Geophys. Res. Lett., 36,
3–7, https://doi.org/10.1029/2008GL036840, 2009.
Wang, Y., Guyot, F., and Liebermann, R. C.: Electron microscopy of (Mg,
Fe)SiO3 perovskite: evidence for structural phase transitions and
implications for the lower mantle, J. Geophys. Res., 97,
327–347, https://doi.org/10.1029/92jb00870, 1992.
Wang, Y., Hilairet, N., Nishiyama, N., Yahata, N., Tsuchiya, T., Morard, G.,
and Fiquet, G.: High-pressure, high-temperature deformation of CaGeO3
(perovskite)±MgO aggregates: Implications for multiphase rheology of the
lower mantle, Geochem. Geophys. Geosy., 14, 3389–3408,
https://doi.org/10.1002/ggge.20200, 2013.
Wenk, H. R.: A voyage through the deformed Earth with the self-consistent
model, Model. Simul. Mater. Sc., 7,
699, http://stacks.iop.org/0965-0393/7/i=5/a=304 (last access: 13 March 2019), 1999.
Wenk, H. R., Lonardeli, I., Pehl, J., Devine, J., Prakapenka, V., Shen, G.,
and Mao, H. K.: In situ observation of texture development in olivine,
ringwoodite, magnesiowüstite and silicate perovskite at high pressure,
Earth Planet. Sc. Lett., 226, 507–519,
https://doi.org/10.1016/j.epsl.2004.07.033, 2004a.
Wenk, H. R., Lonardeli, I., Pehl, J., Devine, J., Prakapenka, V., Shen, G.,
and Mao, H. K.: In situ observation of texture development in olivine,
ringwoodite, magnesiowüstite and silicate perovskite at high pressure,
Earth Planet. Sc. Lett., 226, 507–519,
https://doi.org/10.1016/j.epsl.2004.07.033, 2004b.
Wenk, H. R., Lonardelli, I., Merkel, S., Miyagi, L., Pehl, J., Speziale, S.,
and Tommaseo, C. E.: Deformation textures produced in diamond anvil
experiments, analysed in radial diffraction geometry, Journal of Physics
Condensed Matter, 18, S933–S947,
https://doi.org/10.1088/0953-8984/18/25/S02, 2006.
Wenk, H. R., Lutterotti, L., Kaercher, P., Kanitpanyacharoen, W., Miyagi,
L., and Vasin, R.: Rietveld texture analysis from synchrotron diffraction
images. II. Complex multiphase materials and diamond anvil cell experiments,
Powder Diffraction, 29, 220–232, https://doi.org/10.1017/S0885715614000360,
2014.
Wookey, J. and Kendall, J. M.: Seismic Anisotropy of Post-Perovskite and the
Lowermost Mantle, 174, 171–189, available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/174GM13 (last access: 23 July 2021), 2007.
Wookey, J.,
Kendall, J. M., and Barruol, G.: Mid-mantle deformation inferred from
seismic anisotropy, Nature, 415, 777–780,
https://doi.org/10.1038/415777a, 2002.
Yamazaki, D. and Karato, S. I.: Lattice-Preferred Orientation of Lower
Mantle Materials and Seismic Anisotropy in the D′′ Layer, Washington
DC American Geophysical Union Geophysical Monograph Series, pp. 69–78, available at:
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/174GM07 (last access: 29 July 2021), 2007.
Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J.-i., and Yoneda, A.: Origin
of seismic anisotropy in the D′′ layer inferred from shear deformation
experiments on post-perovskite phase, Earth Planet. Sc. Lett.,
252, 372–378, https://doi.org/10.1016/j.epsl.2006.10.004, 2006.
Yusa, H., Shirako, Y., Akaogi, M., Kojitani, H., Hirao, N., Ohishi, Y., and
Kikegawwa, T.: Perovskite-to-Postperovskite Transitions in NaNiF3 and NaCoF3
and Disproportionation of NaCoF3 Postperovskite under High Pressure and High
Temperature, Inorg. Chem., 51, 6559–6566, https://doi.org/10.1021/ic300118d, 2012.
Zha, C. S., Mibe, K., Bassett, W. A., Tschauner, O., Mao, H. K., and Hemley,
R. J.: P-V-T equation of state of platinum to 80 GPa and 1900 K from
internal resistive heating/x-ray diffraction measurements, J.
Appl. Phys., 103, 054908, https://doi.org/10.1063/1.2844358, 2008.
Short summary
We examined the experimental deformation and phase transition of a bridgmanite analogue, NaCoF3, using a resistive-heated diamond anvil cell and a synchrotron radiation source. We wanted to observe the behavior of NaCoF3 under uniaxial compression and its plastic properties, as well as to determine if it is a suitable analogue for natural samples. We observe 100 and 001 compression textures and link those to the dominant deformation mechanism in the perovskite structure.
We examined the experimental deformation and phase transition of a bridgmanite analogue, NaCoF3,...