Articles | Volume 33, issue 5
https://doi.org/10.5194/ejm-33-571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uniform “water” content in quartz phenocrysts from silicic pyroclastic fallout deposits – implications on pre-eruptive conditions
ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Physical Geography,
Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
Tamás Biró
ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Physical Geography,
Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
István János Kovács
MTA EK Lendület Pannon LitHOscope Research Group,
Konkoly-Thege Miklós út 29-33, 1121, Budapest, Hungary
Roland Stalder
Institute of Mineralogy and Petrography, University of Innsbruck,
Innrain 52f, 6020, Innsbruck, Austria
Károly Németh
School of Agriculture and Environment, Massey University, Private Bag
11, 222 Palmerston North, 4442, New Zealand
Institute of Earth Physics and Space Sciences, Csatkai E. u. 6-8,
Sopron, 9400, Hungary
Alexandru Szakács
Department of Endogene
Processes, Natural Hazard and Risk, Romanian Academy, Institute of Geodynamics, 19-21 Jean-Louis Calderon St., 020032,
Bucharest-37, Romania
Zsófia Pálos
Department of Earth Sciences, Mineral Resources
and Geofluids Group, University of Geneva, 13, Rue des Maraîchers, 1205 Geneva, Switzerland
Zoltán Pécskay
Institute of Nuclear Research (ATOMKI), Isotope Climatology and
Environmental Research Centre (ICER), K-Ar Group, Bem tér 18/c, 4026,
Debrecen, Hungary
Dávid Karátson
ELTE Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Physical Geography,
Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
Related authors
No articles found.
Roland Stalder
Eur. J. Mineral., 33, 145–163, https://doi.org/10.5194/ejm-33-145-2021, https://doi.org/10.5194/ejm-33-145-2021, 2021
Short summary
Short summary
Hydrous defects in quartz contain important information regarding the origin and history of individual grains. This article summarises the findings from experimental work and analysis of natural material over the past 60 years, and results are interpreted with respect to igneous, metamorphic, and sedimentary processes.
Eszter Szűcs, Sándor Gönczy, István Bozsó, László Bányai, Alexandru Szakacs, Csilla Szárnya, and Viktor Wesztergom
Nat. Hazards Earth Syst. Sci., 21, 977–993, https://doi.org/10.5194/nhess-21-977-2021, https://doi.org/10.5194/nhess-21-977-2021, 2021
Short summary
Short summary
Sinkhole formation and post-collapse deformation in the Solotvyno salt mining area was studied where the salt dissolution due to water intrusion poses a significant risk. Based on a Sentinel-1 data set, remarkable surface deformation with a maximum rate of 5 cm/yr was revealed, and it was demonstrated that the deformation process has a linear characteristic although the mining activity was ended more than 10 years ago.
Related subject area
Defects in minerals and phase transitions
Defects in olivine
OH point defects in quartz – a review
Partitioning of chromium between garnet and clinopyroxene: first-principle modelling versus metamorphic assemblages
Sylvie Demouchy
Eur. J. Mineral., 33, 249–282, https://doi.org/10.5194/ejm-33-249-2021, https://doi.org/10.5194/ejm-33-249-2021, 2021
Short summary
Short summary
Olivine, a ferromagnesian orthosilicate, is the most abundant mineral in Earth’s upper mantle but also in Mars' and Venus'. The olivine atomic structure is also used to manufacture lithium batteries. Like any other crystalline solid, olivine never occurs with a perfect crystalline structure: defects in various dimensions are ubiquitous. In this contribution, I review the current state of the art of defects in olivine and several implications for key processes in geodynamics.
Roland Stalder
Eur. J. Mineral., 33, 145–163, https://doi.org/10.5194/ejm-33-145-2021, https://doi.org/10.5194/ejm-33-145-2021, 2021
Short summary
Short summary
Hydrous defects in quartz contain important information regarding the origin and history of individual grains. This article summarises the findings from experimental work and analysis of natural material over the past 60 years, and results are interpreted with respect to igneous, metamorphic, and sedimentary processes.
Sarah Figowy, Benoît Dubacq, Yves Noël, and Philippe d'Arco
Eur. J. Mineral., 32, 387–403, https://doi.org/10.5194/ejm-32-387-2020, https://doi.org/10.5194/ejm-32-387-2020, 2020
Short summary
Short summary
Partition coefficients are key to petrological modelling yet hard to estimate independently of measurements. Here we model the partitioning of Cr between garnet and clinopyroxene ab initio. Incorporation of Cr into crystal structures causes strain, and its energetic toll defines whether Cr favours one mineral or another. Comparing to Cr content in metamorphic rocks shows how mineral composition and structure set equilibrium partition coefficients and how kinetics hampers equilibrium.
Cited articles
Aines, R. D. and Rossman, G. R.: Water in minerals? A peak in the infrared, J. Geophys. Res.-Earth, 89, 4059–4071, https://doi.org/10.1029/JB089iB06p04059, 1984.
Allabar, A., Salis Gross, E., and Nowak, M.: The effect of initial H2O
concentration on decompression-induced phase separation and degassing of
hydrous phonolitic melt, Contrib. Mineral. Petr., 175, 1–19,
https://doi.org/10.1007/s00410-020-1659-2, 2020.
Anderson, A. T., Davis, A. M., and Lu, F.: Evolution of Bishop Tuff Rhyolitic
Magma Based on Melt and Magnetite Inclusions and Zoned Phenocrysts, J.
Petrol., 41/3, 449–473, https://doi.org/10.1093/petrology/41.3.449, 2000.
Balázs, A., Matenco, L., Magyar, I., Horváth, F., and Cloetingh,
S. A. P. L.: The link between tectonics and sedimentation in back-arc basins:
New genetic constraints from the analysis of the Pannonian Basin, Tectonics,
35, 1526–1559, https://doi.org/10.1002/2015tc004109, 2016.
Barker, S. J., Wilson, C. J. N., Illsley-Kemp, F., Leonard, G. S., Mestel,
E. R. H., Mauriohooho, K., and Charlier, B. L. A.: Taupō: an overview of New
Zealand's youngest supervolcano, New Zealand J. Geol. Geophys., 64,
1–27, https://doi.org/10.1080/00288306.2020.1792515, 2020.
Baron, M. A., Stalder, R., Konzett, J., and Hauzenberger, C. A.: OH-point
defects in quartz in B-and Li-bearing systems and their application to
pegmatites, Phys. Chem. Miner., 42, 53–62, https://doi.org/10.1007/s00269-014-0699-4,
2015.
Barth, A., Newcombe, M., Plank, T., Gonnermann, H., Hajimirza, S., Soto, G.,
Saballos, A., and Hauri, E.: Magma decompression rate correlates with
explosivity at basaltic volcanoes – constraints from water diffusion in
olivine, J. Volcanol. Geoth. Res., 387, 106664,
https://doi.org/10.1016/j.jvolgeores.2019.106664, 2019.
Biró, T., Kovács, I. J., Király, E., Falus, Gy., Karátson,
D., Bendő, Z., Fancsik, T., and Sándorné, K. J.: Concentration
of hydroxyl defects in quartz from various rhyolitic ignimbrite horizons:
results from unpolarized micro-FTIR analyses on unoriented phenocryst
fragments, Eur. J. Mineral., 28, 313–327, https://doi.org/10.1127/ejm/2016/0028-2515,
2016.
Biró, T., Kovács, I. J., Karátson, D., Stalder, R., Király,
E., Falus, Gy., Fancsik, T., and Kovács, S. J.: Evidence for
post-depositional diffusional loss of hydrogen in quartz phenocryst
fragments within ignimbrites, Am. Mineral., 102, 1187–1201,
https://doi.org/10.2138/am-2017-5861, 2017.
Biró, T., Hencz, M., Németh, K., Karátson, D., Márton, E.,
Szakács, A., Bradák, B., Szalai, Z., Pécskay, Z., and
Kovács, I. J.: A Miocene Phreatoplinian eruption in the North-Eastern
Pannonian Basin, Hungary: the Jató Member, J. Volcanol. Geoth. Res.,
401, 1–21, https://doi.org/10.1016/j.jvolgeores.2020.106973, 2020.
Blake, S.: Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger, J. Geophys. Res., 89, 8237–8244, 1984.
Blundy, J. and Cashman, K.: Ascent driven crystallisation of dacite magmas
at Mt St Helens, 1980–1986, Contrib. Mineral. Petr., 140, 631–650,
https://doi.org/10.1007/s004100000219, 2001.
Briggs, R., Houghton, B., McWilliams, M., and Wilson, C.: 40Ar/39Ar ages of
silicic volcanic rocks in the Tauranga-Kaimai area, New Zealand: Dating the
transition between volcanism in the Coromandel Arc and the Taupo Volcanic
Zone, New Zealand J. Geol. Geophys., 48, 459–469,
https://doi.org/10.1080/00288306.2005.9515126, 2005.
Capaccioni, B., Coradossi, N., Harangi, R., Harangi, Sz., Karátson, D.,
Sarocchi, D., and Valentini, L.: Early Miocene pyroclastic rocks of the
Bükkalja Ignimbrite Field (North Hungary) – A preliminary stratigraphic
report, Acta Vulcanologica, 7, 119–124, 1995.
Cashman, K.: Volatile Controls on Magma Ascent and Eruption, Geoph. Monog. Series, 150, 109–124,
https://doi.org/10.1029/150GM10, 2004.
Cherniak, D. J. and Dimanov, A.: Diffusion in pyroxene, mica and amphibole,
Rev. Miner. Geochem., 72, 641–690, https://doi.org/10.1515/9781501508394-015, 2010.
Cooper, G. F., Wilson, C. J. N., Millet, M. A., and Baker, J. A.: Generation and
Rejuvenation of a Supervolcanic Magmatic System: a Case Study from Mangakino
Volcanic Centre, New Zealand J. Petrol., 57, 1135–1170,
https://doi.org/10.1093/petrology/egw035, 2016.
Csontos, L., Nagymarosy, A., and Horváth, F.: Tertiary evolution of the
Intra-Carpathian area: A model, Tectonophysics, 208, 221–241,
https://doi.org/10.1016/b978-0-444-89912-5.50017-x, 1992.
Deering, C., Bachmann, O., Dufek, J., and Gravley, D.: Rift-related
transition from andesite to rhyolite volcanism in the Taupo Volcanic Zone
(New Zealand) controlled by crystal–melt dynamics in mush zones with
variable mineral assemblages, J. Petrol., 52, 2243–2263,
https://doi.org/10.1093/petrology/egr046, 2011.
Dingwell, D. B.: Volcanic dilemma: Flow or blow?, Science, 273, 1054–1055,
https://doi.org/10.1126/science.273.5278.1054, 1996.
Dixon, J. E. and Stolper, E. M.: An Experimental Study of Water and Carbon
Dioxide Solubilities in Mid-Ocean Ridge Basaltic Liquids. Part II:
Applications to Degassing, J. Petrol., 36, 1633–1646, 1995.
Ewart, A., Hildreth, W., and Carmichael, I. S. E.: Quaternary acid magma in
New Zealand, Contrib. Mineral. Petr. 51, 1–27, 1975.
Frigo, C., Stalder, R., and Hauzenberger, C. A.: OH defects in quartz in
granitic systems doped with spodumene, tourmaline and/or apatite:
experimental investigations at 5–20 kbar Phys. Chem. Miner., 43, 717–729,
https://doi.org/10.1007/s00269-016-0828-3, 2016.
Gleadow, A., Harrison, M., Kohn, B., Lugo-Zazueta, R., and Phillips, D.: The
Fish Canyon Tuff: A new look at an old low-temperature thermochronology
standard, Earth Planet. Sc. Lett. 424, 95–108,
https://doi.org/10.1016/j.epsl.2015.05.003, 2015.
Graeter, K. A., Beane, R. J., Deering, C. D., Gravley, D., and Bachmann, O.:
Formation of rhyolite at the Okataina Volcanic Complex, New Zealand: New
insights from analysis of quartz clusters in plutonic lithics, Am. Mineral.,
100, 1778–1789, https://doi.org/10.2138/am-2015-5135, 2015.
Graham, I. H., Cole, J. W., Briggs, R. M., Gamble, J. A., and Smith, I. E. M.:
Petrology and petrogenesis of volcanic rocks from the Taupo Volcanic Zone: A
review, J. Volcanol. Geoth. Res., 68, 59–87,
https://doi.org/10.1016/0377-0273(95)00008-I, 1995.
Grant, K. J., Kohn, S. C., and Brooker, R. A.: The partitioning of water
between olivine, orthopyroxene and melt synthesised in the system
albite–forsterite–H2O, Earth Planet. Sc. Lett., 260, 227–241,
https://doi.org/10.1016/j.epsl.2007.05.032, 2007.
Gravley, D. M., Deering, C. D., Leonard, G. S., and Rowland, J. V.: Ignimbrite flare-ups and their drivers: A New Zealand perspective, Earth Sci. Rev., 162, 65–82, https://doi.org/10.1016/j.earscirev.2016.09.007, 2016.
Gualda, G. A. R., Pamukçu, A. S., Ghiorso, M. S., Anderson Jr, A. T., Sutton,
S. R., and Rivers, M. L.: Timescales of Quartz Crystallization and the
Longevity of the Bishop Giant Magma Body, PLoS ONE, 7, e37492,
https://doi.org/10.1371/journal.pone.0037492, 2012.
Gualda, G. A. R., Gravley, D. M., Connor, M., Hollmann, B., Pamukçu, A. S.,
Bégué, F., Ghiorso, M. S., and Deering, C. D.: Climbing the crustal
ladder: Magma storage-depth evolution during a volcanic flare-up, Sci.
Adv., 4, 1–9, https://doi.org/10.1126/sciadv.aap7567, 2018.
Gualda, G. A. R, Gravley, D. M., Deering, C. D., and Ghiorso, M. S.: Magma
extraction pressures and the architecture of volcanic plumbing systems,
Earth Planet. Sc. Lett., 522, 118–124, https://doi.org/10.1016/j.epsl.2019.06.020,
2019.
Hamada, M., Kawamoto, T., Takahashi, E., and Fujii, T.: Polybaric degassing
of island arc low-K tholeiitic basalt magma recorded by OH concentrations in
Ca-rich plagioclase, Earth Planet. Sc. Lett., 308, 259–266,
https://doi.org/10.1016/j.epsl.2011.06.005, 2011.
Hamada, M., Ushioda, M., Fujii, T., and Takahashi, E.: Hydrogen
concentration in plagioclase as a hygrometer of arc basaltic melts:
Approaches from melt inclusion analyses and hydrous melting experiments,
Earth Planet. Sc. Lett., 365, 253–262, https://doi.org/10.1016/j.epsl.2013.01.026,
2013.
Harangi, S., Mason, P. R. D., and Lukács, R.: Correlation and
petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin,
Eastern-Central Europe: In situ trace element data of glass shards and
mineral chemical constraints, J. Volcanol. Geoth. Res., 143, 237–257,
https://doi.org/10.1016/j.jvolgeores.2004.11.012, 2005.
Hauri, E. H., Gaetani, G. A., and Green, T. H.: Partitioning of water during
melting of the Earth's upper mantle at H2O-undersaturated conditions,
Earth Planet. Sc. Lett., 248, 715–734, https://doi.org/10.1016/j.epsl.2006.06.014,
2006.
Hencz, M., Biró, T., Cseri, Z., Karátson, D., Márton, E.,
Németh, K., Szakács, A., Pécskay, Z., and Kovács, I. J.: A
Lower Miocene pyroclastic-fall deposit from the Bükk Foreland Volcanic
Area, Northern Hungary – clues for an eastward-located source, Geol.
Carpath., 72, 26–47, https://doi.org/10.31577/geolcarp.72.1.3, 2021a.
Hencz, M., Biró, T., Cseri, Z., Németh, K., Szakács, A.,
Márton, E., Pécskay, Z., and Karátson, D.: Signs of complex eruption
events at the Bükk Foreland (Northern-Hungary): the Kács Member,
Extended abstract, Conference of Mining, Metallurgy and Geology 2021,
Romania, 1–5,
available at: https://ojs.emt.ro/index.php/bkf/article/view/513, 2021b (in Hungarian with English abstract).
Hildreth, W. and Moorbath, S.: Crustal contributions to arc magmatism in
the Andes of Central Chile, Contrib. Mineral. Petr., 98, 455–489,
https://doi.org/10.1007/bf00372365, 1988.
Hogg, A. G., Higham, T. F. G., Lowe, D. J., Palmer, J. G., Reimer, P. J., and
Newnham, R. M.: A wiggle-match date for Polynesian settlement of New Zealand,
Antiquity, 77, 116–125, https://doi.org/10.1017/s0003598x00061408, 2003.
Horváth, F.: Towards a mechanical model for the formation of the
Pannonian basin, Tectonophysics, 226, 333–357,
https://doi.org/10.1016/0040-1951(93)90126-5, 1993.
Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A.,
Nádor, A., Koroknai, B., Pap, N., Tóth, T., and Wórum, G.:
Evolution of the Pannonian Basin and its geothermal resources, Geothermics,
53, 328–352, https://doi.org/10.1016/j.geothermics.2014.07.009, 2015.
Huber, C., Townsend, M., Degruyter, W., and Bachmann, O.: Optimal depth of
subvolcanic magma chamber growth controlled by volatiles and crust rheology,
Nat. Geosci., 12, 762–768, https://doi.org/10.1038/s41561-019-0415-6, 2019.
Johnson, E. A. E.: Water in nominally anhydrous crustal minerals: Speciation,
concentration, and geologic significance, Rev. Mineral. Geochem., 62,
117–154, https://doi.org/10.1515/9781501509476-010, 2006.
Johnson, E. A. E. and Rossman, G. R.: The concentration and speciation of
hydrogen in feldspars using FTIR and H-MAS-NMR-spectroscopy, Am. Mineral.,
88, 901–911, https://doi.org/10.2138/am-2003-5-620, 2003.
Johnson, E. A. E. and Rossman, G. R.: The diffusion behavior of hydrogen in
plagioclase feldspar at 800–1000 ∘C: Implications for
re-equilibration of hydroxyl in volcanic phenocrysts, Am. Mineral., 98,
1–10, https://doi.org/10.2138/am.2013.4521, 2013.
Jollands, M. C., Blanchard, M., and Balan, E.: Structure and theoretical infrared spectra of OH defects in quartz, Eur. J. Mineral., 32, 311–323, https://doi.org/10.5194/ejm-32-311-2020, 2020a.
Jollands, M. C., Ellis, B., Tollan, P. M. E., and Müntener, O.: An eruption
chronometer based on experimentally determined H-Li and H-Na diffusion in
quartz applied to the Bishop Tuff, Earth Planet. Sc. Lett., 551, 1–12,
https://doi.org/10.1016/j.epsl.2020.116560, 2020b.
Kats, A.: Hydrogen in alpha quartz, Philips Res. Rep., 17, 133–279, 1962.
Kennedy, B. M., Holohan, E. P., Stix, J., Gravley, D. M., Davidson, J. R. J., and
Cole, J. W.: Magma plumbing beneath collapse caldera volcanic systems,
Earth-Sci. Rev., 177, 404–424, https://doi.org/10.1016/j.earscirev.2017.12.002, 2018.
Klemetti, E. W. and Cooper, K. M.: U-series crystal ages of plagioclase and
zircon from the 1300 CE Kaharoa eruption, New Zealand, Geochim. Cosmochim.
Ac., 71, A491–A491, 2007.
Kósik, Sz.: Parasitic versus individual vents in the Central North
Island, New Zealand: Small-volume volcanism associated with polygenetic
volcanoes, PhD thesis, Massey University, Palmerston North, New Zealand,
350 pp., 2018.
Kósik, Sz., Németh, K., Lexa, J., and Procter, J. N.: Understanding
the evolution of a small-volume silicic fissure eruption: Puketerata
Volcanic Complex, Taupo Volcanic Zone, New Zealand, J. Volcanol. Geoth.
Res., 383, 28–46, https://doi.org/10.1016/j.jvolgeores.2017.12.008, 2019.
Kósik, Sz., Bebbington, M., and Németh, K.: Spatio-temporal hazard
estimation in the central silicic part of Taupo Volcanic Zone, New Zealand,
based on small to medium volume eruptions, Bull. Volcanol., 82, 50,
https://doi.org/10.1007/s00445-020-01392-6, 2020.
Kovács, I. and Szabó, Cs.: Middle Miocene volcanism in the vicinity
of the Middle Hungarian zone: Evidence for an inherited enriched mantle
source, J. Geodyn., 45, 1–15, https://doi.org/10.1016/j.jog.2007.06.002, 2008.
Kovács, I., Hermann, J., O'Neill, H. St. C., FitzGerald, J., Sambridge,
M., and Horváth, G.: Quantitative IR spectroscopy with unpolarized light
Part II: Empirical evidence and practical application, Am. Mineral., 93,
765–778, https://doi.org/10.2138/am.2008.2656, 2008.
Kovács, I., O'Neill, H. C., Hermann, J., and Hauri, E. H.: Site-specific
infrared O-H absorption coefficients for water substitutions into olivine,
Am. Mineral., 95, 292–299, https://doi.org/10.2138/am.2010.3313, 2010.
Kovács, I., Falus, Gy., Stuart, G., Hidas, K., Szabó, Cs., Flower,
M. F. J., Hegedűs, E., Posgay, K., and Zilahi-Sebess, L.: Seismic
anisotropy and deformation patterns in upper mantle xenoliths from the
central Carpathian–Pannonian region: Asthenospheric flow as a driving force
for Cenozoic extension and extrusion?, Tectonophysics, 514–517, 168–179,
https://doi.org/10.1016/j.tecto.2011.10.022, 2012.
Kronenberg, A. K., Kirby, S. H., Aines, R. D., and Rossman, G. R.: Solubility
and Diffusional Uptake of Hydrogen in Quartz at High Pressures: Implications
for Hydrolytic Weakening, J. Geophys. Res., 91, 12723–12744,
https://doi.org/10.1029/JB091iB12p12723, 1986.
Leonard, G. S., Cole, J. W., Nairn, I. A., and Self, S.: Basalt triggering of
the c. AD 1305 Kaharoa rhyolite eruption, Tarawera Volcanic Complex, New
Zealand, J. Volcanol. Geoth. Res., 115, 461–486,
https://doi.org/10.1016/s0377-0273(01)00326-2, 2002.
Liu, J., Xia, Q., Deloule, E., Chen, H., and Feng, M.: Recycled oceanic
crust and marine sediment in the source of alkali basalts in Shandong,
Eastern China: Evidence from magma water content and oxygen isotopes, J.
Geophys. Res.-Sol. Ea., 120, 8281–8303, https://doi.org/10.1002/2015jb012476, 2015.
Lloyd, A. S., Plank, T., Ruprecht, P., Hauri, E. H., and Rose, W.: Volatile
loss from melt inclusions in pyroclasts of differing sizes, Contrib.
Mineral. Petr., 165, 129–153, https://doi.org/10.1007/s00410-012-0800-2, 2013.
Lloyd, A. S., Ruprecht, P., Hauri, E. H., Rose, W., Gonnermann, H. M., and
Plank, T.: NanoSIMS results from olivine-hosted melt embayments: Magma
ascent rate during explosive basaltic eruptions, J. Volcanol. Geoth. Res.,
283, 1–18, https://doi.org/10.1016/j.jvolgeores.2014.06.002, 2014.
Lloyd, A. S., Ferriss, E., Ruprecht, P., Hauri, E. H., Jicha, B. R., and
Plank, T.: An Assessment of Clinopyroxene as a Recorder of Magmatic Water
and Magma Ascent Rate, J. Petrol., 57, 1865–1886,
https://doi.org/10.1093/petrology/egw058, 2016.
Lowe, D. K., McFadgen, B. G., Higham, T. F. G., Hogg, A. G., Frogatt, P. C., and
Nairn, I. A.: Radiocarbon age of the Kaharoa tephra, a key marker for late
Holocene stratigraphy and archaeology in New Zealand, The Holocene, 8,
499–507, https://doi.org/10.1191/095968398667037879, 1998.
Lukács, R., Harangi, Sz., Ntaflos, T., and Mason, P. R. D.: Silicate melt
inclusions in the phenocrysts of the Szomolya Ignimbrite, Bükkalja
Volcanic Field (Northern Hungary): Implications for magma chamber processes,
Chem. Geol., 223, 46–67, https://doi.org/10.1016/j.chemgeo.2005.03.013, 2005.
Lukács, R., Harangi, Sz., Bachmann, O., Guillong, M., Danisik, M.,
Buret, Y, von Quadt, A., Dunkl, I., Fodor, L., Sliwinski, J., Soós, I.,
and Szepesi, J.: Zircon geochronology and geochemistry to constrain the
youngest eruption events and magma evolution of the Mid-Miocene ignimbrite
flare-up in the Pannonian Basin, eastern-central Europe, Contrib. Mineral.
Petr., 170, 1–26, https://doi.org/10.1007/s00410-015-1206-8, 2015.
Lukács, R., Harangi, Sz., Guillong, M., Bachmann, O., Fodor, L., Buret,
Y., Dunkl, I., Sliwinski, J., von Quadt, A., Peytcheva, I., and Zimmerer,
M.: Early to Mid-Miocene syn-extensional massive silicic volcanism in the
Pannonian Basin (East-Central Europe): Eruption chronology, correlation
potential and geodynamic implications, Earth Sci. Rev., 179, 1–19,
https://doi.org/10.1016/j.earscirev.2018.02.005, 2018.
Madden-Nadeau, A. L. and Genge, M. J.: Fiamme degassing structures and their
implications for the post-emplacement temperatures and H2O contents of
high-grade ignimbrites, J. Volcanol. Geoth. Res., 384, 251–262,
https://doi.org/10.1016/j.jvolgeores.2019.08.003, 2019.
Márton, E. and Márton, P.: Large scale rotations in North Hungary
during the Neogene as indicated by paleomagnetic data, in: Paleomagnetism and Tectonics of the Mediterranean
Region, edited by: Morris, A. and
Tarling, D. H., Geol. Soc. Spec. Publ., 105, 153–173,
https://doi.org/10.1144/gsl.sp.1996.105.01.15, 1996.
Márton, E., Márton, P., and Zelenka, T.: Paleomagnetic correlation
of Miocene pyroclastics of the Bükk Mts and their forelands, Central
European Geology, 50, 47–57, https://doi.org/10.1556/ceugeol.50.2007.1.4, 2007.
Matthews, N. E., Pyle, D. M., Smith, V. C., Wilson, C. J. N., Huber, C., and van
Hinsberg, V.: Quartz zoning and the pre-eruptive evolution of the
∼ 340-ka Whakamaru magma systems, New Zealand, Contrib.
Mineral. Petr., 163, 87–107, https://doi.org/10.1007/s00410-011-0660-1, 2012.
Miyoshi, N., Yamaguchi, Y., and Kuniaki, M.: Successive zoning of Al and H
in hydrothermal vein quartz, Am. Mineral., 90, 310–315,
https://doi.org/10.2138/am.2005.1355, 2005.
Müller, A. and Koch-Müller, M.: Hydrogen speciation and trace
element contents of igneous, hydrothermal and metamorphic quartz from
Norway, Mineral. Mag., 73, 569–583, https://doi.org/10.1180/minmag.2009.073.4.569,
2009.
Myers, M. L., Wallace, P. J., Wilson, C. J. N., Watkins, J. M., and Liu, Y.:
Ascent rates of rhyolitic magma at the onset of three caldera-forming
eruptions, Am. Mineral., 103, 952–965, https://doi.org/10.2138/am-2018-6225, 2018.
Myers, M. L., Wallace, P. J., and Wilson, C. J. N.: Inferring magma ascent
timescales and reconstructing conduit processes in explosive rhyolitic
eruptions using diffusive losses of hydrogen from melt inclusions, J.
Volcanol. Geoth. Res., 369, 95–112, https://doi.org/10.1016/j.jvolgeores.2018.11.009,
2019.
Nairn, I. A., Self, S., Cole, J. W., Leonard, G. S., and Scutter, C.:
Distribution, stratigraphy, and history of proximal deposits from the c. AD
1305 Kaharoa eruptive episode at Tarawera Volcano, New Zealand, New Zeal. J.
Geol. Geop., 44, 467–484, https://doi.org/10.1080/00288306.2001.9514950, 2001.
Nairn, I. A., Shane, P. R., Cole, J. W., Leonard, G. J., Self, S., and Pearson,
N.: Rhyolitic magma processes of the ∼ AD 1314 Kaharoa
eruption episode, Tarawera Volcano, New Zealand, J. Volcanol. Geoth. Res.,
131, 265–294, https://doi.org/10.1016/s0377-0273(03)00381-0, 2004.
Nairn, I. A., Hedenquist, J. W., Villamor, P., Berryman, K. R., and Shane,
P. A.: The AD1315 Tarawera and Waiotapu eruptions, New Zealand:
contemporaneous rhyolite and hydrothermal eruptions driven by an arrested
basalt dike system?, Bull. Volcanol., 67, 186–193,
https://doi.org/10.1007/s00445-004-0373-7, 2005.
Newnham, R. M., Lowe, D. J., McGlone, M. S., Wilmshurst, J. M., and Higham,
T. F. G.: The Kaharoa Tephra as a critical datum for earliest human impact in
northern New Zealand, J. Archeol. Sci., 25, 533–544,
https://doi.org/10.1006/jasc.1997.0217, 1998.
Nicholls, I. A., Oba, T., and Conrad, W. K.: The nature of primary rhyolitic
magmas involved in crustal evolution: Evidence from an experimental study of
cummingtonite-bearing rhyolites, Taupo volcanic zone, New Zealand, in:
The Taylor Colloquium; Origin and
Evolution of Planetary Crusts, edited by: McLennan, S. M. and and Rudnick, R. L., Geochim. Cosmochim. Ac., 56, 955–962,
https://doi.org/10.1016/0016-7037(92)90039-l, 1992.
O'Leary, J. A., Gaetani, G. A., and Hauri, E. H.: The effect of tetrahedral
Al3+ on the partitioning of water between clinopyroxene and silicate
melt, Earth Planet. Sc. Lett., 297, 111–120,
https://doi.org/10.1016/j.epsl.2010.06.011, 2010.
Pamukçu, A. S., Wright, K. A., Gualda, G. A. R., and Gravley, D.: Magma
residence and eruption at the Taupo Volcanic Center (Taupo Volcanic Zone,
New Zealand): insights from rhyolite-MELTS geobarometry, diffusion
chronometry, and crystal textures, Contrib. Mineral. Petr., 175, 1–27,
https://doi.org/10.1007/s00410-020-01684-2, 2020.
Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E .H., and Wallace, P. J.: Why
do mafic arc magmas contain ∼ 4 wt % water on average?, Earth
Planet. Sc. Lett., 364, 168–179, https://doi.org/10.1016/j.epsl.2012.11.044, 2013.
Pécskay, Z., Lexa, J., Szakács, A., Seghedi, I., Balogh, K., Konečný, V., Zelenka, T., Kovacs, M., Tóka, T., Fülöp, A., Márton, E., Panaiotu, C., and Cvetkovic, V.: Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area, Geol. Carpath., 57, 511–530, 2006.
Pensa, A., Porreca, M., Corrado, S., Giordano, G., and Cas, R.: Calibrating
the pTRM and charcoal reflectance (Ro %) methods to determine the
emplacement temperature of ignimbrites: Fogo A sequence, Sao Miguel, Azores,
Portugal, as a case study, Bull. Volcanol., 77, 18,
https://doi.org/10.1007/s00445-015-0904-4, 2015.
Petrik, A., Fodor, L., Bereczki, L., Klembala, Z., Lukács, R., Baranyi,
V., Beke, B., and Harangi, Sz.: Variation in style of magmatism and
emplacement mechanism induced by changes in basin environments and stress
fields (Pannonian Basin, Central Europe), Basin Res., 31, 380–404,
https://doi.org/10.1111/bre.12326, 2019.
Póka, T., Zelenka, T., Szakács, A., Seghedi, I., Nagy, G., and Simonits,
A.: Petrology and geochemistry of the Miocene acidic explosive volcanism of
the Bükk Foreland, Pannonian Basin, Hungary, Acta Geologica Hungarica,
41, 437–466, 1998.
Popa, R.-G., Bachmann, O., Ellis, B. E., Degruyter, W., Tollan, P., and
Kyriakopoulos, K.: A connection between magma chamber processes and eruptive
styles revealed at Nisyros-Yali volcano (Greece), J. Volcanol. Geoth.
Res., 387, 106666, https://doi.org/10.1016/j.jvolgeores.2019.106666, 2019.
Popa, R.-G., Dietrich, V. J., and Bachmann, O.: Effusive-explosive
transitions of water-undersaturated magmas. The case study of Methana
Volcano, South Aegean Arc, J. Volcanol. Geoth. Res., 399, 106884,
https://doi.org/10.1016/j.jvolgeores.2020.106884, 2020.
Popa, R.-G., Tollan, P., Bachmann, O., Schenker, V., Ellis, B., and Allaz,
J. M.: Water exsolution in the magma chamber favors effusive eruptions:
Application of Cl-F partitioning behavior at the Nisyros-Yali volcanic area,
Chem. Geol., 570, 120170, https://doi.org/10.1016/j.chemgeo.2021.120170, 2021.
Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F.: Experimental
evidence for rapid water exchange between melt inclusions in olivine and
host magma, Earth Planet. Sc. Lett., 272, 541–552,
https://doi.org/10.1016/j.epsl.2008.05.020, 2008.
Potrafke, A., Stalder, R., Schmidt, B. C., and Ludwig, T.: OH defect contents
in quartz in a granitic system at 1–5 kbar, Contrib. Mineral. Petr., 174,
98, https://doi.org/10.1007/s00410-019-1632-0, 2019.
Potrafke, A., Breiter, K., Ludwig, T., Neuser, R. D., and Stalder, R.:
Variations of OH defects and chemical impurities in natural quartz within
igneous bodies, Phys. Chem. Miner., 47, 24, https://doi.org/10.1007/s00269-020-01091-w,
2020.
Qin, Z., Lu, F., and Anderson, A. T.: Diffusive reequilibration of melt and
fluid inclusions, Am. Mineral., 77, 565–576, 1992.
Reynes, J., Jollands, M., Herman, J., and Ireland, T.: Experimental
constraints on hydrogen diffusion in garnet, Contrib. Mineral. Petr., 173, 69,
https://doi.org/10.1007/s00410-018-1492-z, 2018.
Robertson, D. J.: Paleomagnetism of c. AD 1314 Kaharoa rhyolite and the New
Zealand paleosecular variation master curve NZPSV2007, New Zealand J. Geol.
Geophys., 50, 39–50, https://doi.org/10.1080/00288300709509819, 2007.
Ronov, A. B. and Yaroshevski, A. A.: Chemical composition of the Earth's
crust, in: The Earth's crust and upper mantle, edited by: Hart, P. J., American
Geophysical Union, Washington, 37–57, https://doi.org/10.1029/gm013p0037, 1969.
Sahetapy-Engel, S., Self, S., Carey, R. J., and Nairn, I. A.: Deposition and
generation of multiple widespread fall units from the c. AD 1314 Kaharoa
rhyolitic eruption, Tarawera, New Zealand, Bull. Volcanol., 76, 1–28,
https://doi.org/10.1007/s00445-014-0836-4, 2014.
Sambridge, M., FitzGerald, J., Kovács, I., O'Neill, H. St. C., and
Hermann, J.: Quantitative absorbance spectroscopy with unpolarized light:
Part I. Physical and mathematical development, Am. Mineral., 93, 751–764,
https://doi.org/10.2138/am.2008.2657, 2008.
Schréter, Z.: Geological properties of the southeastern side of the
Bükk Mountains, Annual report of the Geological Institute of Hungary
1933–35, 511–532, 1939 (in Hungarian).
Solleiro-Rebolledo, E., Sedov, S., Gama-Castro, J., Flores-Román, D.,
and Ecamilla-Sarabia, G.: Paleosol-sedimentary sequences of the Glacis de
Buenavista, Central Mexico: interaction of Late Quaternary pedogenesis and
volcanic sedimentation, Quatern. Int., 106–107, 185–201,
https://doi.org/10.1016/s1040-6182(02)00172-6, 2003.
Sparks, R. S. J.: The dynamics of the bubble formation and growth in magmas: a
review and analysis, J. Volcanol. Geoth. Res., 3, 1–37,
https://doi.org/10.1016/0377-0273(78)90002-1, 1978.
Stagpoole, V., Miller, C., Tontini, F. C., Brakenrig, T., and Macdonald, N.:
A two million-year history of rifting and caldera volcanism imprinted in new
gravity anomaly compilation of the Taupō Volcanic Zone, New Zealand, New
Zeal. J. Geol. Geop., 64, 358–371, https://doi.org/10.1080/00288306.2020.1848882, 2020.
Stalder, R.: OH− defect content in detrital quartz grains as an archive
for crystallisation conditions, Sediment. Geol., 307, 1–6,
https://doi.org/10.1016/j.sedgeo.2014.04.002, 2014.
Stalder, R.: OH point defects in quartz – a review, Eur. J. Mineral., 33, 145–163, https://doi.org/10.5194/ejm-33-145-2021, 2021.
Stalder, R. and Konzett, J.: OH defects in quartz in the system
quartz-albite-water and granite-water between 5 and 25 kbar, Phys. Chem.
Miner., 39, 817–827, https://doi.org/10.1007/s00269-012-0537-5, 2012.
Stalder, R. and Neuser, D. R.: OH− defects in detrital quartz grains:
Potential for application as tool for provenance analysis and overview over
crustal average, Sediment. Geol., 294, 118–126,
https://doi.org/10.1016/j.sedgeo.2013.05.013, 2013.
Stalder, R., Potrafke, A., Billström, K., Skogby, H., Meinhold, G.,
Gögele, C., and Berberich, T.: OH defects in quartz as monitor for
igneous, metamorphic, and sedimentary processes, Am. Mineral., 102,
1832–1842, https://doi.org/10.2138/am-2017-6107, 2017.
Stenina, N. G.: Water-related defects in quartz, Bull. Geosci., 79, 251–268,
2004.
Szabó, Cs., Harangi, Sz., and Csontos, L.: Review of Neogene and
Quaternary volcanism of the Carpathian-Pannonian Region, Tectonophysics,
208, 243–256, https://doi.org/10.1016/0040-1951(92)90347-9, 1992.
Szakács, A., Márton, E., Póka, T., Zelenka, T., Pécskay, Z.,
and Seghedi, I.: Miocene acidic explosive volcanism in the Bükk
Foreland, Hungary: Identifying eruptive sequences and searching for source
locations, Acta Geologica Hungarica, 41, 413–435, 1998.
Thomas, S-M., Koch-Müller, M., Reichart, P., Rhede, D., Thomas, R., and Wirth, R.: IR calibrations for water determination in olivine, r-GeO2 and SiO2 polymorphs, Phis. Chem. Mineral., 36, 489–509, https://doi.org/10.1007/s00269-009-0295-1, 2009.
Tollan, P., Ellis, B., Troch, J., and Neukampf, J.: Assessing magmatic
volatile equilibria through FTIR spectroscopy of unexposed melt inclusions
and their host quartz: a new technique and application to the Mesa Falls
Tuff, Yellowstone, Contrib. Mineral. Petr., 174, 1–24,
https://doi.org/10.1007/s00410-019-1561-y, 2019.
Turner, M., Turner, S., Mironov, N., Portnyagin, M., and Hoernle, K.: Can
magmatic water contents be estimated from clinopyroxene phenocrysts in some
lavas? A case study with implications for the origin of the Azores Islands,
Chem. Geol., 466, 436–445, https://doi.org/10.1016/j.chemgeo.2017.06.032, 2017.
Wallace, P. J.: Volatiles in subduction zone magmas: concentrations and
fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geoth.
Res., 140, 217–240, https://doi.org/10.1016/j.jvolgeores.2004.07.023, 2005.
Wallace, P. J., Dufek, J., Anderson, A. T., and Zhang, Y.: Cooling rates of
Plinian-fall and pyroclastic-flow deposits in the Bishop Tuff: inferences
from water speciation in quartz-hosted glass inclusions, Bull. Volcanol.,
65, 105–123, https://doi.org/10.1007/s00445-002-0247-9, 2003.
Weis, F. A., Skogby, H., Troll, V. R., Deegan, F. M., and Dahren, B.: Magmatic
water contents determined through clinopyroxene: Examples from the Western
Canary Islands, Spain, Geochem. Geophy. Geosy., 16, 2127–2146,
https://doi.org/10.1002/2015gc005800, 2015.
Wilson, C. J. N.: Stratigraphy, chronology, styles and dynamics of late
Quaternary eruptions from Taupo volcano, New Zealand, Philos. T. Roy. Soc.
A., 343, 205–306, https://doi.org/10.1098/rsta.1993.0050, 1993.
Wilson, C. J. N.: The 26.5 ka Oruanui eruption, New Zealand: an introduction
and overview, J. Volcanol. Geoth. Res., 112, 133–174,
https://doi.org/10.1016/s0377-0273(01)00239-6, 2001.
Wilson, C. J. N. and Rowland, J. V.: The volcanic, magmatic and tectonic
setting of the Taupo Volcanic Zone, New Zealand, reviewed from a geothermal
perspective, Geothermics, 59, 168–187,
https://doi.org/10.1016/j.geothermics.2015.06.013, 2016.
Wilson, C. J. N. and Walker, G. P. L.: The Taupo eruption, New Zealand, I. General aspects, Phil. Trans. R. Soc. Lond. A., 314, 199–228, 1985.
Wilson, C. J. N., Houghton, B. F., McWilliams, M. O., Lanphere, M. A., Weaver,
S. D., and Briggs, R. M.: Volcanic and structural evolution of Taupo Volcanic
Zone, New Zealand: a review, J. Volcanol. Geoth. Res., 68, 1–28, 1995.
Wright, I. C.: Shallow structure and active tectonism of an offshore
continental back-arc spreading system: the Taupo Volcanic Zone, New Zealand,
Mar. Geol., 103, 287–309, https://doi.org/10.1016/0025-3227(92)90021-9, 1992.
Zhang, Y., Xu, Z., Zhu, M., and Wang, H.: Silicate melt properties and
volcanic eruptions, Rev. Geophys., 45, RG4004, https://doi.org/10.1029/2006RG000216,
2007.
Zhang, Y., Ni, H., and Chen, Y.: Diffusion data in silicate melts, Rev.
Miner. Geochem., 72, 311–408, 2010.
Short summary
We sampled pyroclastic fallout deposits from Hungary and from New Zealand in order to get the original
watercontent of the quartz crystals. Our main results imply no significant change in water content of the quartz phenocrysts. All sampled crystal populations contain identical water contents in case of both the Bükk Foreland and the Kaharoa eruption. Thus, there may have been similar physicochemical conditions in the magmatic system just before the eruption.
We sampled pyroclastic fallout deposits from Hungary and from New Zealand in order to get the...