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Abstract. Structural hydroxyl content of volcanic quartz phenocrysts was investigated with unpolarized Fourier-
transform infrared spectroscopy. The phenocrysts originated from five pyroclastic fallout deposits from the Bükk
Foreland Volcanic Area (BFVA), Hungary, and two from the AD 1314 Kaharoa eruption (KH eruption), Okataina
Volcanic Complex (Taupo Volcanic Zone), New Zealand. All investigated quartz populations contain structural
hydroxyl content in a narrow range with an average of 9.3 (±1.7) wt ppm. The earlier correlated horizons in the
BFVA had the same average structural hydroxyl content (within uncertainty). Thus, it can be concluded that the
structural hydroxyl content does not depend on the geographical distance of outcrops of the same units or the
temperature or type of the covering deposit. The rare outlier values and similar structural hydroxyl contents show
that the fallout horizons cooled fast enough to retain their original structural hydroxyl content. The similarity
of the structural hydroxyl contents may be the result of similar P , T , and x (most importantly H2O and the
availability of other monovalent cations) conditions in the magmatic plumbing system just before eruption.
Therefore, we envisage common physical–chemical conditions, which set the structural hydroxyl content in
the quartz phenocrysts and, consequently, the water content of the host magma (∼ 5.5 wt %–7 wt % H2O) in a
relatively narrow range close to water saturation.
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1 Introduction

Water content significantly affects the physical properties
(density, viscosity) of magma and has a large impact on the
magnitude and type of the volcanic eruptions especially by
moderating explosivity (Sparks, 1978; Dixon and Stolper,
1995; Dingwell, 1996; Popa et al., 2019, 2020, 2021; Allabar
et al., 2020). Therefore, it is important to find proxies which
allow estimation of the original water content of the magma,
and for this reason, investigation of the water content of nom-
inally anhydrous minerals (NAMs hereafter) has come to the
forefront of this research. For estimating the original mag-
matic water content, the commonly used NAMs are clinopy-
roxene (Weis et al., 2015; Lloyd et al., 2016; Turner et al.,
2017), olivine (Portnyagin et al., 2008; Kovács et al., 2010;
Barth et al., 2019) and plagioclase (Johnson and Rossman,
2003, 2013; Johnson, 2006; Hamada et al., 2011, 2013).

Quartz is one of the most abundant minerals in the Earth’s
continental crust and occurs very often in the most differenti-
ated, silicic magmatic rocks (Ronov and Yaroshevski, 1969).
Hence, for calculation of magmatic water content quartz
can be a good candidate due to its abundance and resis-
tivity against environmental alteration factors (i.e., weather-
ing). Quartz is nominally anhydrous but incorporates certain
amounts of OH by coupled substitutions (Kats, 1962; Müller
and Koch-Müller, 2009; Stalder and Konzett, 2012; Frigo et
al., 2016; Biró et al., 2016, 2017; Jollands et al., 2020a).
An effective method to determine the structural hydroxyl
content of NAMs is micro-Fourier transform infrared (FTIR
hereafter) due to its sensitivity to the hydroxyl vibrations in
minerals. It is a cost-effective method with a relatively sim-
ple preparation procedure compared to that of melt inclusion
studies. FTIR spectra of quartz have been studied for decades
(e.g., Kats, 1962), and the incorporation of trace species
(most importantly H+) is well-established: the most common
heterovalent substitution in quartz is Si4+←Al3++H+,
which results in AlOH defects causing three characteris-
tic absorption bands at 3310, 3378, and 3430 cm−1, respec-
tively in the FTIR spectra (Kats, 1962; Stalder and Konzett,
2012; Frigo et al., 2016; Biró et al., 2017; Jollands et al.,
2020a). In the case of Li-bearing systems, a sharp band oc-
curs at 3483 cm−1, which is caused by LiOH defects (Frigo
et al., 2016), and commonly appears in the absorption spec-
tra of volcanic quartz phenocrysts (Biró et al., 2017; Jollands
et al., 2020a). A broad and weak absorption band can oc-
cur between ∼ 3480 and 3100 cm−1, centered at 3400 cm−1,
which is usually interpreted as molecular H2O present in
(nano)inclusions (Aines and Rossman, 1984; Stenina, 2004;
Biró et al., 2016). Another subordinated incorporation mech-
anism of H+ is evidenced by a band centered at 3585 cm−1

corresponding to weakly H-bonded silanol groups in pure
quartz (Stalder and Konzett, 2012). In addition, a charac-
teristic peak (centered at ∼ 3200 cm−1) may represent more
strongly bonded H to the mineral surface (Biró et al., 2016;
Stalder, 2021), or it can be assigned to Si–O bonds (Kats,

1962). Nevertheless, assignation of this peak remained con-
troversial (Stalder, 2021). The estimation of original mag-
matic water content using quartz as a NAM and its melt in-
clusions can be challenging due to syn- and post-eruptive
processes, which can modify (reduce in most cases) the struc-
tural hydroxyl content of the NAM (Biró et al., 2017). H
diffusion in natural quartz is isotropic and relatively fast at
volcanic temperatures (700–800 ◦C) on the order of 10−10 to
10−14 m2 s−1 (Kats 1962; Kronenberg et al., 1986; Jollands
et al., 2020b). This diffusivity is fast enough to produce dif-
fusion profiles, which are applicable for the determination of
timescales of magma ascent rates and eruption history (My-
ers et al., 2018, 2019; Tollan et al., 2019; Jollands et al.,
2020b). However, this rapid diffusion is also sufficient to lose
a significant portion of the original H content of the quartz
phenocrysts exposed to high temperatures (300–700 ◦C) for
time intervals ranging from days to months under decreas-
ing water activity (e.g., degassing, slow cooling at the sur-
face; Biró et al., 2017; Stalder et al., 2017). Another problem
is the Li vs. H competition for the charge-balancing posi-
tion connected to Al, because Li is also highly mobile and
can be characterized with fast diffusion (Tollan et al., 2019).
However, recent studies imply that Li compensates for the Al
caveats to the detriment of H, when the water activity in melt
drops significantly, but Li activity remains the same (Tollan
et al., 2019; Jollands et al., 2020b). This means that during
ascension of the magma, a little amount of H diffuses out
from the rims of quartz crystal, and Li enters into the struc-
ture to compensate for the charge balance which was bro-
ken by the dehydration (Tollan et al., 2019). Other elements
(e.g., major elements, like Na) possibly do not play a signif-
icant role in charge balancing of Al in competition with H
because they diffuse much more slowly (Cherniak and Di-
manov, 2010; Zhang et al., 2010).

In volcanic systems, for example, in the case of thick,
pumice-bearing pyroclastic density current (PDC) deposits,
such as ignimbrites, the long-lasting (days to months) high-
temperature conditions (300–700 ◦C, Gleadow et al., 2015;
Pensa et al., 2015; Biró et al., 2017; Madden-Nadeau and
Genge, 2019) after deposition can cause significant (or even
complete) water loss from the quartz phenocrysts (Biró et
al., 2017). In contrast, quartz phenocrysts of pyroclastic fall-
out deposits can keep the original structural hydroxyl con-
tent due to the relatively rapid cooling of the pyroclasts (1
to 10 ◦C s−1; according to Wallace et al., 2003) in compari-
son with the PDCs (Wallace et al., 2003; Lloyd et al., 2013;
Potrafke et al., 2019; Jollands et al., 2020b).

In this study, we report AlOH structural hydroxyl con-
centrations of quartz phenocrysts from five Miocene pyro-
clastic fallout deposits of the Bükk Foreland Volcanic Area
(BFVA hereafter), northern Hungary, Carpathian–Pannonian
region (Fig. 1), and two pyroclastic fallout deposits of the
AD 1314 Kaharoa eruption, Tarawera, New Zealand (KH
eruption hereafter). The studied pyroclastic fallout deposits
were selected in order to minimize the effect of post- and
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Figure 1. Distribution of Miocene felsic pyroclastics within the
Pannonian Basin (Central Europe). BFVA – Bükk Foreland Vol-
canic Area. The map was modified after Pécskay et al. (2006). The
occurrence of buried pyroclastics is based on drillings. The main
structural lines (solid line) and the main faults (black triangles) are
indicated.

syn-eruptive hydrogen loss (Wallace et al., 2003; Jollands
et al., 2020b); thus presumably their AlOH structural hy-
droxyl content can be used to infer the original water con-
tent of the host magma. Furthermore, in this way, we inves-
tigate whether the structural hydroxyl content of quartz phe-
nocrysts depends on any volcanological conditions (such as
lateral distance from the vent, stratigraphic position, weld-
ing of the covering deposit, etc.). The most important factors
controlling the structural hydroxyl content of quartz in fel-
sic volcanic systems producing explosive eruptions are dis-
cussed.

2 Geodynamic setting and volcanism

2.1 Silicic magmatic systems – BFVA eruptions and
KH eruption

In silicic systems the uppermost level of the magmatic
plumbing system is characterized by distinct magma batches
containing crystal mush and melt lenses (Gualda et al., 2018).
The eruptible magma could be stored at around 1.5 to 2 kbar
pressure (i.e., 6–7 km below the surface), characterized by
a bunch of sill- and dyke-shaped bodies and other small,
long-lived magma pockets (Matthews et al., 2012; Kennedy
et al., 2018; Gualda et al., 2019; Huber et al., 2019). How-
ever, recent studies suggest a shallower (0.5–1.5 kbar pres-
sure zone) emplacement of magma bodies, where the last
step of the crystallization and segregation of the eruptible
melt occur just before eruption (Graeter et al., 2015; Tol-

lan et al., 2019). The root of the magmatic plumbing system
may go down as far as the mantle–crust boundary, which is
the so-called MASH zone (melting, assimilation, storage and
homogenization; Hildreth and Moorbath, 1988).

Magmatic storage system of the BFVA was presumably
initiated in the Early Miocene with long-lasting (starting
from ca. 18.5 Ma according to Lukács et al., 2018) subvol-
canic activity, which created a complex, multi-level mag-
matic reservoir in the upper crust (for hundreds of kiloyears)
with several shallow silicic melt pockets, which fed the erup-
tions via magma mingling (Harangi et al., 2005; Lukács
et al., 2005, 2015, 2018). The bimodality of the chemical
composition of some units (andesitic and rhyolitic; Póka et
al., 1998) suggests that the partial melting of the astheno-
sphere and lithospheric mantle produced mafic melts, which
were stalled in the vicinity of the mantle–crust boundary
(Lukács et al., 2005, 2018) and evolved at mid-crustal lev-
els (Póka et al., 1998; Cooper et al., 2016; Kósik et al.,
2019, 2020). The extensional thinning of the lithosphere had
already taken place by the Late Miocene, which favored
the ascent of mafic magmas from lower crustal reservoirs
into the upper crust (Csontos et al., 1992; Lukács et al.,
2018; Petrik et al., 2019). The best analogue for the mag-
matic system and for the volcanism of the BFVA could be
the Taupo Volcanic Zone in terms of volcanic morphology
(nested calderas; Wilson, 1993, 2001), topography (lowland
setting, possible influence of sea or lake water; Wilson, 2001;
Biró et al., 2020), geodynamic setting (extensional back-arc,
normal fault systems), existence of rift zones (Wilson and
Walker, 1985, 1993, 2001; Graham et al., 1995; Szakács et
al., 1998; Nairn et al., 2004; Wilson and Rowland, 2016;
Stagpoole et al., 2020), and volcanic eruption styles (silicic
Plinian ignimbrite-forming eruptions, phreatoplinian erup-
tions, small-scale silicic monogenetic eruptions; Szakács et
al., 1998; Lukács et al., 2005, 2018; Barker et al., 2020; Biró
et al., 2020; Kósik et al., 2020; Hencz et al., 2021a; b).

In recent models of the magmatic system of the KH
eruption, a single, stratified magma chamber was suggested
based on geochemical features of different magmatic prod-
ucts (Nairn et al., 2004). Mafic magma recharge was obvious
throughout the lifetime of the magmatic system, which may
have triggered the eruptions but could not destroy the lay-
ered (in terms of silica content) magma chamber (Leonard et
al., 2002; Nairn et al., 2004, 2005). The depth of the upper-
most level of the Taupo Volcanic Zone (TVZ) system (where
the KH magma originated from) was calculated to be be-
tween 6 and 7 km (1.6–2 kbar pressure) based on mineral
thermobarometry and glass composition (Ewart et al., 1975;
Nicholls et al., 1992; Blundy and Cashman, 2001).

2.2 Tectonic setting of the BFVA

During the Early to Mid-Miocene large-scale silicic volcan-
ism was taking place in the Carpathian–Pannonian region
(Schréter, 1939; Szakács et al., 1998; Lukács et al., 2018).
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This felsic calc-alkaline magmatism was preceded by various
subduction stages, which re-fertilized the lithospheric man-
tle and asthenosphere, allowing partial melting via volatile
fluxing (Szabó et al., 1992; Kovács and Szabó, 2008). Dur-
ing the eastward movement and rotation of the ALCAPA
(Alpine–Carpathian–Pannonian) microplate (Fig. 1), litho-
spheric thinning was taking place in the inner part of the
ALCAPA microplate of which the exact driving mechanism
is still debated (Csontos et al., 1992; Horváth, 1993; Már-
ton and Márton, 1996; Márton et al., 2007; Kovács et al.,
2012; Horváth et al., 2015; Balázs et al., 2016). During the
rotation normal faults were formed in the crustal part of AL-
CAPA (Csontos et al., 1992). Due to the re-fertilization of
the mantle (i), crustal thinning in the ALCAPA block (ii),
and normal fault propagation in the crust (iii), silica-rich
melts formed via fractional crystallization and crustal assim-
ilation, erupting through large-scale ignimbrite-forming ex-
plosive volcanic activity on the eastern part of ALCAPA be-
tween ca. 18 and 14 Ma based on zircon U–Pb ages (Lukács
et al., 2015, 2018). The deposits generated by the pre-
vailingly explosive volcanism (pyroclastic fallout deposits,
PDC deposits, reworked tephras) are now buried under Late
Miocene–Quaternary sediments and crop out continuously
in coherent condition in a narrow (40× 10 km) belt between
the Mesozoic sedimentary block of the Bükk Mountains and
the Great Hungarian Plain (Fig. 1). The most voluminous de-
posits are ignimbrites showing different facies (welded, non-
welded, distal, etc.), but pyroclastic fallout horizons occa-
sionally also occur (Capaccioni et al., 1995; Szakács et al.,
1998; Biró et al., 2020; Hencz et al., 2021a, b).

For the present study, we sampled pyroclastic fallout lay-
ers from two different parts of the stratigraphic column (Ta-
ble 1 and Fig. 2), which represents different episodes (i.e.,
age intervals) of the volcanism: from the middle part of the
Lower Pyroclastic Complex (LPC, base of the Mangó ign-
imbrite unit of Lukács et al., 2018) and from the lowest part
of the Upper Pyroclastic Complex (UPC, right above the Jató
member distinguished by Biró et al., 2020).

2.3 The AD 1314 Kaharoa eruption, New Zealand (KH
eruption)

The KH eruption occurred at AD 1314 (±12) in the North
Island of New Zealand (Lowe et al., 1998; Newnham et
al., 1998; Hogg et al., 2003; Klemetti and Cooper, 2007;
Robertson, 2007) in an extensional geotectonic setting in-
side a continental plate (Graham et al., 1995). The main
rhyolitic volcanic zone in New Zealand is situated in the
Taupo Volcanic Zone (TVZ hereafter), where the volcanic
activity began around 2 Ma with andesitic activity, which
marks the transition of the volcanic activity from the older
Coromandel Volcanic Zone (CVZ) to the TVZ (Wilson et
al., 1995; Gravley et al., 2016) (Fig. 3). The volcanism of
the TVZ can be divided into two large time periods: 2–
0.7 Ma, when andesite-dominated volcanism occurred, and

Figure 2. Simplified stratigraphical column of the BFVA and the
three main pyroclastic complexes with their basic volcanological
description based on former studies (LPC: Lower Pyroclastic Com-
plex, MPC: Middle Pyroclastic Complex, UPC: Upper Pyroclastic
Complex; Szakács et al., 1998; Márton and Pécskay, 1998; Márton
et al., 2007). The sampling points are indicated with stars.

0.7–present, which is dominated by rhyolitic volcanism in
the form of large-scale ignimbrite-forming explosive volcan-
ism and caldera-forming eruptions (Deering et al., 2011).
The ascendent transport of the melts was facilitated by fault
zones (Wright, 1992; Graham et al., 1995). In recent times,
several calderas occupied the central TVZ (e.g., Whakamaru,
Mangakino, Kapenga; Wilson et al., 1995), and the erup-
tion center of the KH eruption occurred at the Tarawera vol-
cano intra-caldera rhyolite-dome complex within the Haro-
haro caldera of the Okataina Volcanic Centre, located at
the northern-central part of the TVZ (Graham et al., 1995;
Lowe et al., 1998; Nairn et al., 2001, 2004; Sahetapy-Engel
et al., 2014) (Fig. 3). Explosive volcanic activity occurred
from seven vents spread along an 8 km long lineament (Gra-
ham et al., 1995; Nairn et al., 2001). The eruptions were
fed by three (and one mixed) rhyolite magma batches with
slightly varying geochemistry (Nairn et al., 2004). Large-
scale pyroclastic fallout activity dominated the volcanism,
producing well-identifiable fallout horizons across the region
(Sahetapy-Engel et al., 2014).

For this study, two pyroclastic fallout horizons of the KH
eruption were sampled representing the early, high-silica
content rhyolitic phase of the volcanism, originating from
well-known outcrops (Table 1).
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Table 1. Location of the sampled pyroclastic fallout deposits and their relative regional stratigraphic positions with basic volcanological
descriptions (based on recent works).

Name of sites
(abbreviation)

Sampling
location

Relative stratigraphic
position

Physical volcanological features Main features of quartz
phenocrysts

Reference

BFVA
Bogács wine
cellars (BG)
Tibolddaróc wine
cellars (TD) –
both Unit III/A/2 of
Biró et al. (2020)

BG
47.8964◦ N,
20.5276◦ E
TD
47.9256◦ N,
20.6317◦ E

Bottom of the Upper
Pyroclastic Complex.
Upper Middle Tuff
Complex of Szakács et
al. (1998),
Right above Jató
member of Biró et
al. (2020)

This sequence (Unit III/subunit A in Biró et
al., 2020) built up by 3–20 cm thick coarse,
well-sorted tuff layers containing pumice
clasts, lithic clasts, and millimeter-sized
quartz, feldspar, and biotite phenocrysts.
These layers were interpreted as pyroclas-
tic fallout horizons.

The separated quartz
phenocrysts are up to
1 mm in diameter and
are euhedral, bipyrami-
dal crystals.

Szakács et al. (1998)
Lukács et al. (2015)
Biró et al. (2020)

BFVA
Eger –
Tufakőbánya (E)
Ostoros – Arany
János street (O)
Sály – Latorvár (S)

E
47.885658◦ N,
20.404073◦ E
O
47.859809◦ N,
20.439418◦ E
S
47.978067◦ N,
20.641505◦ E

Lower Pyroclastic
Complex.
Base of the Mangó ig-
nimbrite unit of Lukács
et al. (2018),
Upper Lower Tuff
Complex of Szakács et
al. (1998)

A pyroclastic fallout horizon was sam-
pled at the base of the Mangó ignimbrite
unit (following the nomenclature of Lukács
et al., 2018). This layer was sampled in
three different geographical sites (E, O, S).
This is a well-sorted, topography-mantling
layer and contains pumice fragments, lithic
clasts, ash matrix in lower volume, and
phenocrysts, such as quartz, biotite, and
feldspar. The deposit is the thickest in the
eastern BFVA at Sály (Latorvár, in the
southern slope of the hill; S), where it is
∼ 70 cm, and it is the thinnest in a mine near
the town of Eger, where it is only 20 cm
thick. Underneath there is a brown paleosol,
and over the fallout horizon there is de-
posit from dilute PDC showing faint cross-
bedding (20 cm in thickness) and topped
with a min. 30 m thick non-welded ign-
imbrite in Eger and Ostoros and with a
welded ignimbrite in Sály. The pyroclas-
tic fallout material was deposited in an
early phase of the eruption which created
the overlying thick Mangó ignimbrite. The
eruption center could have been in the larger
vicinity of Sály.

The separated quartz
phenocrysts are rela-
tively large, over 1 mm
in diameter, euhedral,
and bipyramidal. Melt
inclusions are common.

Capaccioni et
al. (1995)
Szakács et al. (1998)
Biró et al. (2017)
Lukács et al. (2018)
Hencz et al. (2021a)

New Zealand
Kaharoa eruption 1
(KH1)
Kaharoa eruption 2
(KH2)

KH1
38.309475◦ S,
176.530969◦ E
KH2
38.286728◦ S,
176.516217◦ E

KH1 sample originates
from the lowermost bed
of the Kaharoa
eruption, correlatable
with the A bed of
Sahetapy-Engel et
al. (2014). KH2 origi-
nated from the middle
part of the fallout layer
over explosion breccia
of Sahetapy-Engel et
al. (2014)

KH1 sampling site is near K48 of Sahetapy-
Engel et al. (2014).
KH2 sampling site is equivalent of the
K270 location of Sahetapy-Engel et
al. (2014).
The sampled layer is the same in both
cases: layer A of Sahetapy-Engel et
al. (2014), which consists of fallout–lapilli
with the capping ash. The dispersal was
mainly towards the southeast. This is the
first lapilli–ashfall of the KH eruption
with regional dispersal. Below this bed, an
explosion breccia crops out, very visible
in the case of site KH2. The capping
pyroclastic sediment is a lapilli fall deposit
(layer B in Sahetapy-Engel et al., 2014)

The separated quartz
phenocrysts are small,
about 500 µm in di-
ameter, euhedral, and
bipyramidal. Melt
inclusions are very
common and some-
times contain bubbles.

Sahetapy-Engel et
al. (2014)
Nairn et al. (2001,
2004)

3 Methods and sampling

3.1 Sampling and sample preparation

The middle part of individual pyroclastic fallout layers was
sampled. When the rock was slightly cemented, the sampling
was made by using a hammer. Then, the sample was crushed
by hand and washed. After drying (at 60 ◦C for 180 min) the
crushed bulk sample was sieved to separate the 0.5–2 mm
fraction. About 30 quartz phenocrysts were separated from

each layer in the mentioned grain-size fraction under a binoc-
ular microscope. Euhedral and subhedral bipyramidal quartz
phenocrysts were preferred for selection.

The phenocrysts were polished on two sides following the
protocol described in Biró et al. (2016). The phenocrysts
were then placed on a glass plate and were embedded into
gel glue (Loctite® Super Bond Power Flex Gel glue) in an
unoriented manner. The mounts were ground using Al2O3
powder until all the separated phenocrysts became uniformly
exposed (∼ 600–700 µm in thickness), and then they were
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Figure 3. Tectonic environment of the TVZ (Taupo Volcanic Zone)
and the main volcanic centers, including the Tarawera silicic dome
complex, where the AD 1314 Kaharoa eruption occurred. The
main structural lines (solid line) are indicated. CVZ: Coroman-
del Volcanic Zone. Modified after Graham et al. (1995), Briggs et
al. (2005), and Kósik (2018).

polished with Al2O3 suspension. The mounts were dissolved
with acetone from the supporting glass slide and then the
phenocrysts were turned to their other side and were again
attached to the glass slide with liquid adhesive (Loctite® Su-
per Bond Universal liquid glue). The mounts were ground to
∼ 250 µm thickness to be suitable for micro-FTIR measure-
ments (Biró et al., 2016), then they were polished again with
Al2O3. They were separated from the glass plate, washed in
running water, and dried out at 90 ◦C for 2 h.

3.2 Peculiarities of the sample preparation

In the case of quartz phenocrysts with homogenous wa-
ter content (when melt inclusions are relatively rare in the
crystal), unpolarized absorbances of hydroxyl-related bands
should ideally vary between predicted minimum and max-
imum values as follows from the unpolarized absorbance
indicatrix of quartz (Kovács et al., 2008; Sambridge et al.,
2008; Stalder and Konzett, 2012; Biró et al., 2017). A the-
oretical consideration for unpolarized measurements was
given earlier (Kovács et al., 2008; Sambridge et al., 2008),
a recent work also referred to the strategy of polarized mea-
surements on oriented grains (Stalder and Konzett, 2012),
while the connection was given between the polarized and
unpolarized absorbance indicatrix of Al-related hydroxyl de-
fects in quartz (Biró et al., 2016). Applying unpolarized IR
radiation for the measurements, we get the maximum ab-
sorbance when the incident infrared radiation travels paral-
lel to the crystallographic c axis. In contrast, unpolarized
absorbance is minimal when the incoming light travels per-

Figure 4. The theoretical relation between unpolarized absorbance
of quartz and crystal orientation. (a) A hypothetic euhedral quartz
phenocryst (similar to those prepared) as laid on the glass plate onto
its pyramidal facet. “Wafer” refers to the section resulting after sam-
ple preparation (doubly polished thick section). (b) The unpolarized
absorbance indicatrix of a quartz crystal with identical orientation
as in (a) (Biró et al. 2017) (c) quartz wafer in epoxy resin after sam-
ple preparation.

pendicular to the c axis; in this case the absorbance should
be ideally half of what is measured in the former case, be-
cause of the orientation of the hydroxyl dipole perpendicu-
lar to the c axis (as summarized by Biró et al., 2017). Our
first round of measurements implied that the applied sample
preparation will result in an overrepresentation of lower ab-
sorbances (i.e., the incident light is most often almost perpen-
dicular to the c axis). This is due to the fact that the euhedral–
subhedral bipyramidal crystals were laid on the glass plate
on their pyramidal facets or prism surfaces (Fig. 4). Thus,
the measured absorbances may be slightly lower than if the
grains were perfectly unoriented. Perfectly unoriented grains
mean that the direction of the incident light is equally dis-
tributed over a sphere with respect to the absorbance indi-
catrix (see Kovács et al., 2008; Biró et al., 2017, for more
discussion). Since the preparation of the samples was con-
sistent and similar in each case, the results are compara-
ble to each other, and the real concentrations are expected
to be underestimated by the same extent. To follow up this
“unperfect unorientation” issue, manually crushed crystals
were prepared (see Appendix A). The results assured us that
(1) the crushed crystals can retrieve accurate absolute con-
centrations. (2) Thus we could quantitatively constrain the
degree of underestimation with the currently applied method-
ology (in contrast with the one applied in Biró et al., 2017).
(3) The determined concentrations with the applied method-
ology are robust for exploring relative variations quantita-
tively.
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3.3 FTIR methodology

The IR spectra of the quartz wafers were recorded in a
temperature-controlled laboratory at the HAS RCAES with
a Bruker® Hyperion 2000 IR microscope attached to a
Bruker® Vertex 70 spectrometer. We used unpolarized FTIR
methodology in light of indicatrix theory for unpolarized
light (Kovács et al., 2008; Sambridge et al., 2008). This
makes it possible to determine the structural hydroxyl con-
tent of anisotropic crystals when the following conditions are
met: (1) at least a few crystals are measured from the same
population (> 5), (2) the crystals are unoriented with respect
to the incident IR light, (3) structural hydroxyl content is ho-
mogenous within and among crystals, and (4) maximum lin-
ear absorbance of the spectra in the hydroxyl region (roughly
between 3000 and 3500 cm−1) does not exceed 0.15 (Kovács
et al., 2008; Sambridge et al., 2008).

During the FTIR measurements the aperture was 50×
50 µm. The spectra were recorded with 128 scans, with
4 cm−1 spectral resolution between 400–4000 cm−1. During
the measurements, atmospheric compensation of the OPUS®

software was used to eliminate the contribution of water va-
por and CO2 from the atmosphere. The spectra were obtained
carefully from parts of the crystal wafers where melt or fluid
inclusions were not visible. Measurements along transects
and in crystal cores and rims were also acquired in order
to investigate the intra-crystal variations in the structural hy-
droxyl content.

The obtained spectra then were processed using the
OPUS® software. The integration was calculated using the
“B-type” integration method of the OPUS® software (Fig. 5;
see Fig. 2 of Biró et al., 2016, and Fig. S3 of Reynes et al.,
2018). The B-type integration includes the area above a line
connecting the intersections of the lower and upper limits of
integration (Fig. 5). Thus, baseline correction was not neces-
sary, because it could cause a significant underestimation of
the real structural hydroxyl content. Moreover, using the B-
type integration, the possible contribution of molecular wa-
ter can be minimalized, because it takes into account only
the bands that correspond to the structural hydroxyl signal
and not the abovementioned wide and flat band of molecular
H2O. Structural hydroxyl is more stable and better preserved
in the phenocryst than the molecular H2O, which is more
sensitive to external influences (heat, pressure, chemical ac-
tivity, etc.). The integration boundaries are given in Table 2.
The structural hydroxyl content of the quartz phenocrysts
was calculated using the modified Beer–Lambert law (Eq. 1):

c =
Atot ·Mi

εi · ρ · t
, (1)

where c is the calculated water concentration (in
H2O wt ppm); Atot is the total polarized absorbance; Mi is
the molar weight of the water (in g/mol); εi is the integrated
absorption coefficient (where 94 000± 20 000 L/mol cm−2

was used according to Thomas et al. (2009), because this

number had been established from measurements from natu-
ral quartz phenocrysts, of which the spectrum was identical
to the spectra in the case of volcanic quartz phenocrysts);
ρ is the density of the phenocryst (2650 g/L); and t is the
thickness of the sample. The total polarized absorbance was
calculated as 3 times the (average) integrated unpolarized
absorbance of bands caused by AlOH structural hydroxyl
substitution (centered at 3430, 3378, and 3315 cm−1), which
are dominant in the hydroxyl region of the IR spectra. The
minor bands (such as at 3483 or at 3200 cm−1) are negligible
and were not included into the total structural hydroxyl
content. The thickness was calculated using the method
described by Biró et al. (2016) according to Eq. (2):

y = 3.3089x± 15%, (2)

where x is the sample thickness in micrometers and y is
the integrated area of Si–O bands between 2110–1440 cm−1.
The structural hydroxyl contents are expressed in molecu-
lar water equivalent and are related to the AlOH structural
hydroxyl content (Table 2) and characterized by typically
±15 % cumulative uncertainty. The unit we used (“wt ppm”)
means wt ppm H2O. Note that we also calculated “indica-
tive” water concentrations for individual measurements from
a given sample population, which, in the ideal case, varies
only due to the variation in the direction of the incident light
with respect to the absorbance indicatrix. Also note that the
average of these measurements from a population of unori-
ented crystals can be used to estimate the true absolute struc-
tural hydroxyl content.

4 FTIR spectra and structural hydroxyl content of the
quartz phenocrysts

Total evaluation, including the exact calculations, can be
found in Supplement files S1 and S2. The summarized an-
alytical results can be found in Table 3. The average unpolar-
ized spectra for each layer are shown in Fig. 5, including the
calculated structural hydroxyl contents and the cumulative
uncertainty in brackets. The results depicted in the box-and-
whisker plot are displayed in Fig. 6.

4.1 Eger (E), Ostoros (O), and Sály (S) sites (all
samples from the same fallout horizon of the LPC)

The hydroxyl region of the spectra is dominated by three
sharp bands, the largest of which is centered at 3379 cm−1,
and the two smaller ones are centered at 3314 and
3430 cm−1. A minor weak band is present at 3478 cm−1, but
in some wafers it is absent. Another minor band can also be
observed at 3197 cm−1 in the case of all samples. The broad
band centered at∼ 3400 cm−1 associated with molecular wa-
ter was not registered.

The indicative structural hydroxyl content of the phe-
nocrysts is in the range of 6.8–15.1, 7.0–14.1, and 6.4–
12.8 wt ppm in the case of E, O, and S samples, respectively.
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Figure 5. Hydroxyl region of average spectra. The calculated structural hydroxyl content of each sample is indicated with ±15 % analytical
uncertainty. n: number of the measured phenocrysts. Blue areas represent the integrated area using OPUS® B-type integration, on the basis
of which the structural OH contents were calculated.

Figure 6. Box-and-whisker plot of the measured structural hydroxyl
contents. The sampling sites of the same layer are marked as “corre-
lated”. The dashed black line shows the average of the whole dataset
(9.3 wt ppm).

The calculated structural hydroxyl contents are 9.2 (±1.7),
9.4 (±1.6), and 9.2 (±1.6) wt ppm (standard deviations in
brackets).

4.2 Tibolddaróc (TD) and Bogács (BG) sites (all
samples from the same fallout horizon of the UPC)

The triplet with a main band at 3379 cm−1 and minor bands
at 3314 and 3430 cm−1 is clearly visible and dominates the
hydroxyl region of the spectra. The LiOH band (3478 cm−1)
is not visible (or very minor) in both the TD and BG samples.
However, a sharper but minor band can be clearly seen at
3197 cm−1.

The calculated structural hydroxyl content in TD is 9.1
(±1.3) wt ppm, and the indicative concentrations are in the
range of 7.1 to 12.4 wt ppm. In the case of BG, the calculated
value is 9.1 (±1.3) wt ppm, and the measured values are in
the 7.1–12.0 wt ppm range.

4.3 KH eruption sites

The hydroxyl region is dominated by the AlOH triplet cen-
tered at 3314, 3379, and 3430 cm−1, similar to the BFVA
samples. The LiOH band (3478 cm−1) is visible with low in-
tensity. A very minor band can be seen at 3197 cm−1.

The calculated structural hydroxyl content of the KH1
sample is 9.0 (± 1.4) wt ppm. The indicative structural hy-
droxyl contents are in the range of 6.0 to 11.4 wt ppm. In the
case of the KH2 sample, the structural hydroxyl content is
slightly higher, 10.2 (±2.6) wt ppm. The range of the struc-
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Table 2. Integration boundaries and their interpretation. Bands in bold are used for the calculation of structural hydroxyl content of quartz
phenocrysts in this work.

Name Upper limit Lower limit Type of integration Interpretation References
(cm−1) (cm−1) (OPUS® software)

3480 3502 3469 B LiOH defects Stalder and Konzett (2012)
Frigo et al. (2016)
Potrafke et al. (2020)

3430 3467 3413 B AlOH structural hydroxyl de-
fects

Kats (1962)
Stalder and Konzett (2012)

3378 3400 3351 B AlOH structural hydroxyl de-
fects

Kats (1962)
Stalder and Konzett (2012)

3430+ 3378 3467 3351 B The area between 3430 and
3378 cm−1 (AlOH structural
hydroxyl defects) is integrated
together (less conservative than
simple peak integrations)

Biró et al. (2017)

3315 3339 3272 B AlOH structural hydroxyl de-
fects

Kats (1962)
Stalder and Konzett (2012)

3200 3232 3153 B Strongly bonding H at the
quartz crystal surface or Si–O
bonds

Kats (1962); Frigo et
al. (2016); Biró et al. (2016);
Stalder (2021)

Total OH− region 3502 3153 B The whole hydroxyl region in-
tegrated completely with the
widest integration limits

–

Epoxy 3050 2800 B Bands which are connected to
the residual glue

Biró et al. (2016)

SiO2 overtone 2110 1445 A SiO stretching bands (needed
for the thickness calculations)

Biró et al. (2016)

Table 3. The calculated structural hydroxyl and magmatic water content for each layer and the main statistical indicators.

Site/layer No. of Calculated structural Min Max Standard Relative standard Calculated magmatic water
measured hydroxyl content (wt ppm) (wt ppm) deviation deviation contents (using the new

phenocrysts (wt ppm) (wt ppm) (%) partition coefficient) (wt %)

E 30 9.2 6.8 15.1 1.7 18.0 6.0
O 30 9.4 7.0 14.1 1.6 17.2 6.1
S 23 9.2 6.4 12.8 1.6 17.3 6.0
TD 33 9.1 7.1 12.4 1.3 13.7 5.9
BG 33 9.1 7.1 12.0 1.3 13.8 5.9
KH1 25 9.0 6.0 11.4 1.4 15.8 5.9
KH2 25 10.2 1.4 15.7 2.6 25.6 6.7

tural hydroxyl contents is 1.4 to 15.7 wt ppm, but both values
are considered outliers (this is also the reason for the rela-
tively high standard deviation).

4.4 Transect and core–rim measurements

The results of a representative transect measurement (a)
and of two representative core–rim measurements (b, c) are

shown in Fig. 7. In general, no significant variability can be
recognized along the transects. This also stands for the core–
rim measurements, where there is no significant and consis-
tent difference in the structural hydroxyl content of the dif-
ferent parts of the measured crystals in the case of both KH
and BFVA samples. Hence, possibly there is also no signifi-
cant H+ loss via diffusion, so all the sampled fallout deposits
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(BFVA and KH eruption alike) probably cooled down fast
enough to avoid this post-emplacement diffusion loss.

5 Discussion

5.1 Band assignment

In all studied samples the hydroxyl region of the IR spec-
tra is dominated by the AlOH triplet (at 3430, 3378, and
3315 cm−1, respectively) (Kats, 1962; Stalder and Konzett,
2012). These bands are related to coupled Al3++ H+ substi-
tution into the tetrahedral site replacing Si4+. In case of E, O,
S, BG, and TD the band at 3197 cm−1 is very sharp and may
be connected to the strongly bonding H+ at the quartz crystal
surface (Biró et al., 2016; Stalder, 2021) or can be assigned
to Si–O bonds (Kats, 1962). The minor but sharp band at
3478 cm−1 could be linked to the LiOH structural hydroxyl
defects (Potrafke et al., 2020). The results of the measure-
ments along transects and results of core–rim measurements
showed that no intensity growth of the Li band (as described
in the case of quartz from pyroclastic and granitic igneous
bodies by Tollan et al., 2019, and Potrafke et al., 2020) or
significant variations in the AlOH bands are visible in the
spectra (Fig. 7; Tollan et al., 2019; Potrafke et al., 2020).

5.2 Comparison with formerly published results

The water content of natural quartz crystals from several
rock types (sandstone, hydrothermal veins, granite) as well
as of laboratory-grown crystals was in between 0 and a
few hundred weight parts per million (Miyoshi et al., 2005;
Müller and Koch-Müller, 2009; Stalder and Neuser, 2013;
Stalder, 2014; Baron et al., 2015; Frigo et al., 2016; Stalder
et al., 2017; Potrafke et al., 2019, 2020; Jollands et al.,
2020b; Stalder, 2021). Hydroxyl content of volcanic quartz
was investigated only in a few studies. The “water” content
of quartz phenocrysts originating from a pyroclastic fallout
layer of the Bishop Tuff is between 7 and 12 wt ppm (recalcu-
lated from Jollands et al., 2020b). Quartz crystals separated
from rhyolites originating from Germany and Italy (Großer
Inselsberg and Bolzano) showed 1.4 to 12 wt ppm water con-
tent (Stalder and Neuser, 2013). In the BFVA volcanic quartz
from a fallout horizon and several ignimbrite sequences was
investigated recently (Biró et al., 2016, 2017). The results
show a continuous decrease in the hydroxyl content from
∼ 13 to ∼ 3 wt ppm (or even in some cases close to zero)
towards the middle part of the ignimbrite; thus they cannot
be regarded as the original water content of the phenocrysts
(Biró et al., 2017). Quartz phenocrysts from the fallout hori-
zon right below the Mangó ignimbrite at the Eger site showed
12.1 wt ppm structural hydroxyl content (E-1 in Biró et al.,
2017). This is in good agreement with the results obtained on
quartz from the lowest part of the covering ignimbrite with
11.4 wt ppm (E-2 in Biró et al., 2017). The reason for the dif-
ference between this result (12.1 wt ppm) and our calculated

structural hydroxyl content for quartz phenocrysts originat-
ing from this layer (9.2 wt ppm) is due to the different sam-
ple preparation methodology including using whole vs. frag-
mented crystals for the measurements (see Appendix A about
single-crystal measurements).

There are several frequency distribution plots of the mea-
sured structural hydroxyl content of quartz phenocrysts (ob-
tained using FTIR measurements with polarized light) orig-
inating mostly from granite bodies, metamorphic rocks, or
detrital grains reported by Stalder and Neuser (2013), Stalder
(2014) and Stalder et al. (2017). The present OH defect con-
tents are close to the global average of 10 wt ppm (Stalder
and Neuser, 2013; Stalder, 2014; Stalder et al., 2017). The
0–10 wt ppm range dominates these distribution plots (Fig. 7
of Stalder and Neuser, 2013, and Fig. 8 of Stalder et al.,
2017), and the range we measured agrees well with these
values. Quartz-bearing pyroclastic fallout deposits can cover
large areas (up to a few tens of thousands of square kilo-
meters; e.g., Wilson, 1993); hence volcanic quartz popula-
tion originating from explosive eruptions (just like the sed-
iments which formed after reworking of the fallout deposit)
can also contribute to the crustal average. Vice versa, when
a quartz population is found in an accumulated, reworked
deposit with ∼ 10 wt ppm characteristic structural hydroxyl
content, volcanic origin can be assumed in the provenance
analyses.

5.3 Uniform P , T , and x conditions in silicic magma
reservoirs recorded by OH in quartz

The structural hydroxyl contents of the quartz phenocryst
populations are in a narrow range of 9.0–10.2 wt ppm in the
correlated horizons of both BFVA and KH eruption samples
(Figs. 5, 6 and Table 3). This narrow range in the average
structural hydroxyl content could reflect similarities in the P ,
T , and x (mainly H2O) activity conditions in the magma stor-
age system when the quartz phenocrysts equilibrated with the
magma just before the significant degassing and/or eruption
events.

Water contents of other NAMs (clinopyroxene, feldspar,
etc.) can record conditions at different levels of the magmatic
system, because they crystallize at different levels character-
ized by different P , T , and x conditions (e.g., plagioclase;
Hamada et al., 2011). For hydrogen a few minutes to hours
are enough to attain equilibrium between the melt and the
solid phase (crystals) due to its fast diffusion rates (10−10 to
10−14 m2 s−1 at 800 ◦C in case of quartz and 10−12 m2 s−1

in the case of plagioclase; Hamada et al., 2013; Johnson and
Rossman, 2013; Lloyd et al., 2016; Myers et al., 2018; Jol-
lands et al., 2020b). Quartz usually crystallizes in the up-
per(most) part of the magmatic plumbing system over a geo-
logically short period of time (a few hundred to few thousand
years; Gualda et al., 2012; Matthews et al., 2012; Graeter
et al., 2015; Tollan et al., 2019; Jollands et al., 2020b). The
narrow range of the measured structural hydroxyl contents
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Figure 7. Example of structural hydroxyl concentration along a transect (a) and observed in core–rim relation (b, c). Note that no significant
difference in structural hydroxyl content was observed along a transect nor in core vs. rim relation.

suggests a relatively uniform P , T , and x environment and
fast ascension (Myers et al., 2018). The amount of dehydra-
tion during or just before the eruption via Li–H interdiffusion
(e.g., Jollands et al., 2020b) was very minor based on the fact
that (1) there is no strong zonation of OH towards the rims of
the crystals and (2) the intergranular variability of obtained
OH concentrations is rather small. If Li–H interdiffusion was
significant just before and during the eruption, various grain
sizes should give various OH contents according to the grain
size dependence of diffusion. During this latest stage of the
crystallization there was enough time for re-equilibration of
the quartz phenocrysts to eliminate any zoning or difference
of the structural hydroxyl content in the crystal’s structure
(as seen in transect and core–rim measurements, Fig. 7).

Consequently, it can be inferred that the quartz phe-
nocrysts (separated from pyroclastic fallout deposits) have
almost the same structural hydroxyl content throughout the
whole evolution of the felsic explosive volcanism in the
BFVA. The two sampled layers can represent two large erup-
tive complexes (consist of several eruptions) of the BFVA
(Fig. 2), besides several more eruption events (fed by one
magma pocket; took up to several days or weeks) that oc-
curred during the volcanism of the BFVA (Biró et al., 2020;
Hencz et al., 2021a, b). This feature may be universal, since
we measured identical structural hydroxyl contents in an-
other much younger (essentially recent) volcanic field in
New Zealand.

5.4 Implications on the water content of the host melt

Determining the dissolved water content of the silicate melt
is essential to understand the dynamics of the volcanic erup-
tions (besides other magmatic volatiles, like CO2, S, Cl, and
F; Cashman, 2004) and to be able to predict the course of fu-
ture eruptions based on the physical and chemical properties
of the magma including its possible ascent rates (Lloyd et
al., 2014; Myers et al., 2019; Popa et al., 2019; Tollan et al.,

2019; Allabar et al., 2020). Water content of NAMs can be
in equilibrium with the dissolved water content of the melt
in each level of the magma storage system, so their water
content can be a good proxy to estimate the magmatic wa-
ter content (Wallace, 2005; Portnyagin et al., 2008; Lloyd et
al., 2013; Weis et al., 2015; Tollan et al., 2019; Jollands et
al., 2020b). While FTIR is a useful tool to measure the water
content of different NAMs as was demonstrated above, cal-
culating magmatic water contents requires the application of
a partition coefficient (i.e., the quantitative relation between
water content of a given nominally anhydrous phase and the
melt; Qin et al., 1992; Johnson and Rossman, 2003, 2013;
Hauri et al., 2006; O’Leary et al., 2010; Lloyd et al., 2016).

Crystal and melt partition coefficients are available for
several NAMs (e.g., clinopyroxene, plagioclase, olivine;
Hauri et al., 2006; Grant et al., 2007; Hamada et al., 2013;
Liu et al., 2015) but are not available for quartz. According to
our best knowledge, only one single calculated partition coef-
ficient is found in the published literature (i.e., Dquartz/melt

=

0.0001; Qin et al., 1992), where the partition coefficient
was tentatively calculated based on applying a mathemati-
cal model which investigates the diffusive re-equilibration of
H in melt inclusions with the host melt (Qin et al., 1992).
In this partition coefficient the molecular water was also in-
cluded (Qin et al., 1992; Myers et al., 2019). Using our new
structural hydroxyl contents of quartz phenocrysts presented
above (∼ 9.6 wt ppm, which is the average of the calcu-
lated structural hydroxyl contents of KH eruption samples),
it is possible to calculate the partition coefficient between
quartz and silicate melts in the case of KH eruptions, be-
cause there are available magmatic water contents presented
recently based on melt inclusion analyses (6.1 wt %–6.5 wt %
H2O; Nairn et al., 2004). Using these data, the crystal–melt
partition coefficient for quartz is 0.000157–0.000148, thus
0.000153 on average. This partition coefficient is on the same
order of magnitude as that of Qin et al. (1992), but accord-
ing to our knowledge this is the first attempt to constrain
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D
quartz/melt
H2O based on coexistent natural mineral – silica glass

pairs. The new calculated water contents (using this new par-
tition coefficient) for the BFVA and KH eruption magmas is
presented in Table 3.

All the measured samples originating from the fallout de-
posits of both BFVA (E–O–S and TD–BG) and KH eruptions
(KH1 and KH2) represent the first fallout event of a large-
scale Plinian eruption. In the BFVA both sampled pyroclas-
tic layers are mantling a paleosol (representing a dormant pe-
riod in volcanism of a maximum of a few tens of kiloyears;
Solleiro-Rebolledo et al., 2003). Similarly, sampling of the
KH eruption fallout deposits was carried out from their basal
part representing the first phase of the eruption (fed by highly
differentiated T1 and T2 rhyolitic magma; Nairn et al., 2004).
As was suggested earlier, the first phase of silicic eruptions
used to be characterized with the highest SiO2 (76 wt %–
77 wt %) content and with the largest magmatic H2O content
(5 wt %–6.5 wt %; e.g., Blake, 1984; Anderson et al., 2000;
Wallace et al., 2003; Nairn et al., 2004; Graeter et al., 2015).
This can be explained by density-driven differentiation in
silicic magma chambers: highly evolved/fractionated melts
accumulate in the upper parts of a magma chamber, hav-
ing the highest volatile content (including, of course, water
contents, about 6 wt %–7 wt %; Blake, 1984; Graeter et al.,
2015). This water-rich melt part of the magma chamber is
tapped first during eruption (Nairn et al., 2004).

5.5 Further implications

A study found that mafic arc magmas contain about 4 wt %
dissolved water, based on investigations of melt inclusions
trapped in volcanic phenocrysts (Plank et al., 2013). The
identical water content of mafic arc magmas was explained
by two things: (1) water contents are limited by the vapor sat-
uration at the last storage level by degassing until ca. 4 wt %
is reached, which seems to be optimal for the P and T con-
ditions in arc settings, at the depth of magma stalling in the
crust (Plank et al., 2013), and (2) mantle-source melting pro-
cesses themselves limit the water content of the host melt,
which maintains constant water content at mantle temper-
atures (Plank et al., 2013). The second scenario assumes a
deeper magma chamber (10–12 km), where the melt stalls
prior to the eruption, and the eruption is fed directly from
that level (Plank et al., 2013). These models were devel-
oped only for mafic magmas based on the measured wa-
ter content of olivine-hosted melt inclusions. In the case of
silicic caldera-forming volcanism, however, the second sce-
nario does not seem to be a realistic option (the uppermost
magma chamber at 10 km depth), because in silicic systems
the shallowest stalling level of magma is usually located at
2–7 km depth (Blundy and Cashman, 2001; Gualda et al.,
2012, 2018; Graeter et al., 2015; Pamukçu et al., 2020). In
the case of KH eruption 6.6 km depth was proposed (Nairn
et al., 2004). As was mentioned before, the main crystal-
lization episode of the quartz also takes place at such shal-

low levels of the magmatic plumbing system (Graeter et al.,
2015; Tollan et al., 2019; Jollands et al., 2020b; Pamukçu
et al., 2020); thus we suggest a potential crustal water con-
tent “regulator” in the case of the BFVA (i.e., scenario 1 of
Plank et al., 2013), limiting the water content of the melt to
∼ 5 wt %–7 wt %. The melt was in equilibrium with the struc-
tural hydroxyl content of the crystallized quartz phenocrysts
(to the measured ∼ 10 wt ppm). This means that the physico-
chemical conditions (P –T , oxygen fugacity, stress, etc.) may
have been fairly uniform at the shallowest level of the magma
plumbing system just before the eruption at several silicic
magmatic provinces developed in an extension-dominated
regime. A possible explanation may be the rheological fea-
tures of the crust, which can be functioned as precursors for
the depth and pressure conditions where magma will accu-
mulate (Huber et al., 2019). As was suggested in recent stud-
ies (e.g., Huber et al., 2019), the optimal pressure conditions
for the formation of a subvolcanic silicic magma chamber
are in between 1.5 and 2.5 kbar, representing a ∼ 4 to 7 km
depth interval. This is in good agreement with the suggested
depth for the KH eruption magma chamber (6.6 km) and may
also suggest a similar depth for the BFVA eruptions. Inter-
estingly, these depths are consistent with the depth where the
water saturation occurs based on experimental calculations
of Zhang et al. (2007). Thus, in this depth range large-scale
bubble formation can start due to water saturation and ex-
solution, which can contribute significantly to triggering an
eruption (Zhang et al., 2007). Consequently, the pressure-
and-depth range can be estimated for the equilibrium be-
tween quartz and melt based on our fairly uniform structural
hydroxyl (and thus magmatic water) contents. Possibly, this
crustal region was the last stall of the magma prior to the
eruption.

Here we suggest that the “crustal regulator” of magma wa-
ter content may be a general phenomenon in the Earth’s up-
per crust in case of silicic magma plumbing systems (espe-
cially in an extensional back-arc setting such as the BFVA
and TVZ), able to limit the explosive potential of the silicic
magmas (as assumed by Plank et al., 2013). As Blake (1984)
and Zhang et al. (2007) suggested, the oversaturation of wa-
ter in the abovementioned pressure conditions can be a gen-
eral worldwide phenomenon, which eliminates the possibil-
ity of further volatile enrichment of the magma, thus limiting
the explosivity of the eruption (excluding other internal (e.g.,
CO2 content) or external (e.g., the presence of surface wa-
ter driving phreatomagmatic eruptions) factors). To substan-
tiate this hypothesis, more investigation is necessary in sili-
cic volcanic fields, focused on the water content of the melt,
whereas structural hydroxyl content of quartz phenocrysts
could be a good proxy for that.
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6 Conclusions

The structural hydroxyl content of volcanic quartz phe-
nocrysts was measured with unpolarized FTIR methodology.
The quartz phenocrysts were separated from five pyroclas-
tic fallout horizons from the Bükk Foreland Volcanic Area
(northern Hungary) and from the first phase of the AD 1314
Kaharoa eruption (TVZ, New Zealand). The results of the
study can be summarized as follows.

1. The measured volcanic quartz phenocrysts contain 9.3
(±1.7) wt ppm structural hydroxyl content on average.

2. Structural hydroxyl content of quartz does not depend
on either the geographic or stratigraphic position of the
hosting pyroclastic fallout horizon. Quartz phenocrysts
from previously correlated pyroclastic fallout deposits
show nearly the same structural hydroxyl content re-
gardless of the thermal and/or pressure impact of the
covering deposit.

3. The calculated structural hydroxyl contents fit well in
the range of earlier published values from quartz phe-
nocrysts derived from different geological environments
(granitic bodies, metamorphic rocks, detrital grains), in-
cluding volcanic quartz phenocrysts.

4. The calculated magmatic water contents (around 6 wt %
H2O) also fit well with earlier published water contents,
especially in the case of the early explosive phase of
Plinian eruptions of highly evolved felsic magma (e.g.,
the KH eruption).

5. The structural hydroxyl contents are nearly the same
in quartz phenocrysts of pyroclastic fallout deposits in
the BFVA. Hence, it can be assumed that P , T , and x
(mainly H2O) activity could be similar in the uppermost
(i.e., shallowest) storage level of the magmatic plumb-
ing system, where quartz phenocrysts crystallized and
chemically equilibrated with the melt. This geodynamic
and petrologic environment thus constrained the struc-
tural hydroxyl content of the quartz phenocrysts, i.e.,
the water content of the host magma, which could have
acted as an upper crustal-level regulator from a volcanic
explosivity point of view.

6. The similarity of the average magmatic water content in
the studied pyroclastic deposits is pointed out through-
out the large-scale silicic caldera volcanism of both
BFVA and TVZ (KH eruption), which could be a com-
mon feature in volcanic areas located in similar geody-
namic environments. More occurrence areas of large-
scale silicic explosive volcanism worldwide need to be
involved in future studies to prove this hypothesis. This
could probably be the pressure–depth level at which the
water saturation is achieved and water exsolution begins
and triggers large-volume Plinian-type explosive erup-
tions.

The preliminary results underline the importance of mea-
suring water contents of NAMs in fallout pyroclastic layers
originating from extension-related silicic explosive eruptions
in various volcanic fields.

Appendix A: Single-crystal preparations

To more accurately analyze the average unpolarized ab-
sorbance of our phenocrystal population, we crushed some
quartz phenocrysts (from Eger site) manually in a mortar to
be able to reproduce the methodology of Biró et al. (2017),
who made the measurements on crushed (or fragmented)
grains instead of separated euhedral or subhedral grains (Ta-
ble 1; E-1 in Biró et al., 2017). The sample preparation
methodology was almost the same as described above; how-
ever, at the end of the preparation the glue slab was dissolved
with acetone, and the single phenocryst wafers were individ-
ually picked up and stored. The prepared phenocrysts were
measured with the same unpolarized micro-FTIR methodol-
ogy, but the single crystals were emplaced on a CaF support-
ing slide during the measurements.

The measurements resulted in higher structural hydroxyl
content: 11.5 (±2.4) wt ppm (Supplement File S3). The
measured maximal indicative structural hydroxyl content is
15.5 wt ppm. This could be the theoretical maximal indica-
tive structural hydroxyl content of the quartz phenocrysts of
the BFVA if the incident light travels parallel to the c axis.
In this case, it follows from the absorbance indicatrix theory
of quartz (Sambridge et al., 2008; Kovács et al., 2008; Biró
et al., 2017) that the average unpolarized absorbance should
be 66 % of this value, which is 10.3 wt ppm. This agrees
well with the empirically determined 11.5 wt ppm. Hence,
the reason for the difference between the results of this in-
vestigation and the measurements of Biró et al. (2017) is due
to the different sample preparation methodology including
the shape of the separated phenocrysts (fragmented vs. euhe-
dral/subhedral crystals; see Sect. 3.2)
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