Articles | Volume 33, issue 3
https://doi.org/10.5194/ejm-33-249-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-249-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Defects in olivine
Sylvie Demouchy
CORRESPONDING AUTHOR
Géosciences Montpellier, CNRS & Université de Montpellier,
Montpellier, 34095, France
Related authors
Sylvie Demouchy, Manuel Thieme, Fabrice Barou, Benoit Beausir, Vincent Taupin, and Patrick Cordier
Eur. J. Mineral., 35, 219–242, https://doi.org/10.5194/ejm-35-219-2023, https://doi.org/10.5194/ejm-35-219-2023, 2023
Short summary
Short summary
We report a comprehensive data set characterizing and quantifying two types of mineral defects in the most abundant mineral of Earth's upper mantle: olivine. Namely, we investigate translation defects of dislocation and rotation defects, called disclinations, in polycrystalline olivine deformed in uniaxial compression or torsion, at high temperature and pressure. The defects are identified via mapping of the crystallographic disorientation detected using electron backscatter diffraction.
Billy Clitton Nzogang, Manuel Thieme, Alexandre Mussi, Sylvie Demouchy, and Patrick Cordier
Eur. J. Mineral., 32, 13–26, https://doi.org/10.5194/ejm-32-13-2020, https://doi.org/10.5194/ejm-32-13-2020, 2020
Sylvie Demouchy, Manuel Thieme, Fabrice Barou, Benoit Beausir, Vincent Taupin, and Patrick Cordier
Eur. J. Mineral., 35, 219–242, https://doi.org/10.5194/ejm-35-219-2023, https://doi.org/10.5194/ejm-35-219-2023, 2023
Short summary
Short summary
We report a comprehensive data set characterizing and quantifying two types of mineral defects in the most abundant mineral of Earth's upper mantle: olivine. Namely, we investigate translation defects of dislocation and rotation defects, called disclinations, in polycrystalline olivine deformed in uniaxial compression or torsion, at high temperature and pressure. The defects are identified via mapping of the crystallographic disorientation detected using electron backscatter diffraction.
Billy Clitton Nzogang, Manuel Thieme, Alexandre Mussi, Sylvie Demouchy, and Patrick Cordier
Eur. J. Mineral., 32, 13–26, https://doi.org/10.5194/ejm-32-13-2020, https://doi.org/10.5194/ejm-32-13-2020, 2020
Related subject area
Defects in minerals and phase transitions
Uniform “water” content in quartz phenocrysts from silicic pyroclastic fallout deposits – implications on pre-eruptive conditions
OH point defects in quartz – a review
Partitioning of chromium between garnet and clinopyroxene: first-principle modelling versus metamorphic assemblages
Mátyás Hencz, Tamás Biró, István János Kovács, Roland Stalder, Károly Németh, Alexandru Szakács, Zsófia Pálos, Zoltán Pécskay, and Dávid Karátson
Eur. J. Mineral., 33, 571–589, https://doi.org/10.5194/ejm-33-571-2021, https://doi.org/10.5194/ejm-33-571-2021, 2021
Short summary
Short summary
We sampled pyroclastic fallout deposits from Hungary and from New Zealand in order to get the original
watercontent of the quartz crystals. Our main results imply no significant change in water content of the quartz phenocrysts. All sampled crystal populations contain identical water contents in case of both the Bükk Foreland and the Kaharoa eruption. Thus, there may have been similar physicochemical conditions in the magmatic system just before the eruption.
Roland Stalder
Eur. J. Mineral., 33, 145–163, https://doi.org/10.5194/ejm-33-145-2021, https://doi.org/10.5194/ejm-33-145-2021, 2021
Short summary
Short summary
Hydrous defects in quartz contain important information regarding the origin and history of individual grains. This article summarises the findings from experimental work and analysis of natural material over the past 60 years, and results are interpreted with respect to igneous, metamorphic, and sedimentary processes.
Sarah Figowy, Benoît Dubacq, Yves Noël, and Philippe d'Arco
Eur. J. Mineral., 32, 387–403, https://doi.org/10.5194/ejm-32-387-2020, https://doi.org/10.5194/ejm-32-387-2020, 2020
Short summary
Short summary
Partition coefficients are key to petrological modelling yet hard to estimate independently of measurements. Here we model the partitioning of Cr between garnet and clinopyroxene ab initio. Incorporation of Cr into crystal structures causes strain, and its energetic toll defines whether Cr favours one mineral or another. Comparing to Cr content in metamorphic rocks shows how mineral composition and structure set equilibrium partition coefficients and how kinetics hampers equilibrium.
Cited articles
Abramson, E. H., Brown, J. M., Slutsky, L. J., and Zaug. J.: The elastic
constants of San Carlos olivine to 17 GPa, J. Geophys. Res., 102,
12253–12263, https://doi.org/10.1029/97JB00682, 1997.
Agrell, S. O., Charnley, N. R., and Chinner, G. A.: Phosphoran olivine from
Pine Canyon, Piute Co, Utah, Min. Mag., 62, 265–269,
https://doi.org/10.1180/002646198547620, 1998.
Alard, O., Griffin, W. L., Lorand, J. P., Jackson, S. E., and O'Reilly, S,
Y.: Non-chondritic distribution of the highly siderophile element in mantle
sulphides, Nature, 407, 891–894, https://doi.org/10.1038/35038049, 2000.
Albarède, F.: Volatile accretion history of the terrestrial planets and
dynamic implications. Nature, 461, 1227–1233.
https://doi.org/10.1038/nature08477, 2009.
Annersten, H., Adetunji, J., and Filippidis, A.: Cation ordering in Fe-Mn
silicate olivines, Am. Mineral. 69, 1110–1115, 1984.
Arai, S.: Characterization of spinel peridotites by olivine-spinel
compositional relationships: Review and interpretation, Chem. Geol., 113,
191–204, https://doi.org/10.1016/0009-2541(94)90066-3, 1994.
Azevedo, S. and Nespolo, M.: Twinning in olivine group revisited, Eur. J.
Mineral., 29, 213–226, https://doi.org/10.1127/ejm/2017/0029-2598, 2017.
Awad, A., Koster van Groos, A. F., and Guggenheim, S.: Forsteritic olivine:
Effect of crystallographic direction on dissolution kinetics, Geochim.
Cosmochim. Acta, 64, 1765–1772, https://doi.org/10.1016/S0016-7037(99)00442-1, 2000.
Bachmann, F., Hielscher, R., and Schaeben, H.: Texture analysis with MTEX –
Free and open source software toolbox, Solid State Phenom., 160, 63–68, https://doi.org/10.4028/www.scientific.net/SSP.160.63, 2010.
Bali, E., Bolfan-Casanova, N., and Koga, K. T.: Pressure and temperature
dependence of H solubility in forsterite: An implication to water activity
in the Earth interior, Earth Planet. Sc. Lett., 268, 354–363, https://doi.org/10.1016/j.epsl.2008.01.035, 2008.
Barber, D. J., Wenk, H. R., Hirth, G., and Kohlstedt, D. L.: Dislocations in
minerals, in: Dislocations in Solids, edited by: Hirth, J. P. and Kubin, L., Elsevier, Oxford, UK, 19, 171–232, 2010.
Batanova, V. G., Thompson, J. M., Danyushevsky, L. V., Portnyagin, M. V.,
Garbe Schönberg, D., Hauri, E., Kimura, J. I., Chang, Q., Senda, R.,
Goemann, K., Chauvel, C., Campillo, S., Ionov, D. A., and Sobolev, A. V.: New
olivine reference material for in situ microanalysis, Geostand. Geoanal.
Res., 43, 453–473, https://doi.org/10.1111/ggr.12266, 2019.
Baziotis, I., Asimow, P. D., Ntaflos, T., Boyce, J. W., McCubbin, F. M.,
Koroneos, A., Perugini, D., Flude, S., Storey, M., Liu, Y. S., Klemme, S.,
and Berndt, J.: Phosphorus zoning as a recorder of crystal growth kinetics:
application to second-generation olivine in mantle xenoliths from the Cima
Volcanic Field, Contrib. Mineral. Petrol., 172, 1–32,
https://doi.org/10.1007/s00410-017-1376-7, 2017.
Beausir, B. and Fressengeas, C.: Disclination densities from EBSD
orientation mapping, Int. J. Solids Struct., 50, 137–146, https://doi.org/10.1016/j.ijsolstr.2012.09.016, 2013.
Bell, D. R., Rossman, G. R., and Moore, R. O.: Abundance and partitioning of
OH in a high-pressure magmatic system: Megacrysts from the Monastery
kimberlite, South Africa, J. Petrol., 45, 1539–1564, https://doi.org/10.1093/petrology/egh015, 2004.
Ben Ismail, W. and Mainprice, D.: An olivine fabric database: an overview
of upper mantle fabrics and seismic anisotropy, Tectonophysics, 296,
145–157, https://doi.org/10.1016/S0040-1951(98)00141-3, 1998.
Beran, A. and Putnis, A.: A model of the OH position in olivine, derived
from infrared-spectroscopy investigations, Phys. Chem. Mineral., 9, 57–60,
https://doi.org/10.1007/BF00308148, 1983.
Beran, A. and Zemman, J.: Üder OH-Gruppen in Olivin., Österr. Akad.
Wissen., 3, 73–74, 1969.
Berry, A., Hermann, J., O'Neill, H. S. C., and Foran, G. J.: Fringerprinting
the water site in mantle olivine, Geology, 33, 869–872, https://doi.org/10.1130/G21759.1, 2005.
Berry, A., O'Neill, H. S., Hermann, J., and Scott, D. R.: The infrared
signature of water associated with trivalent cations in olivine, Earth
Planet. Sc. Lett., 1-2, 134–142, 2007a.
Berry, A., Walker, A. M., Hermann, J., O'Neill, H. S., Foran, G. J., and Gale, J.: Titanium substitution mechanisms in forsterite, Chem. Geol., 242,
176–186, 2007b.
Beyer, C., Klemme, S., Wiedenbeck, M., Stracke, A., and Vollmer, C.:
Fluorine in nominally fluorine-free mantle minerals Experimental
partitioning of F between olivine, orthopyroxene and silicate melts with
implications for magmatic processes, Earth Planet. Sc. Lett., 337–338,
1–9, https://doi.org/10.1016/j.epsl.2012.05.003, 2012.
Bickert, M., Cannat, M., Tommasi, A., Jammes, S., and Lavier, L.: Strain
localization in the root of detachment faults at a melt-starved mid-ocean
ridge: a microstructural study of abyssal peridotites from the eastern
southwest Indian ridge, Geophys. Geochem. Geosystem, 22, e2020GC009434, https://doi.org/10.1029/2020GC009434, 2021.
Birle, J. D., Gibbs., G. V., Moore, P. B., and Smith, J. V.: Crystal
structures of natural olivines, Am. Mineral., 53, 807–824, 1968.
Blanchard, M., Ingrin, J., Balan, E., Kovács, I., and Withers, A. C.:
Effect of iron and trivalent cations on OH defects in olivine, Am. Mineral.,
102, 302–311, https://doi.org/10.2138/am-2017-5777, 2017.
Bodinier, J. L. and Godard, M.: Orogenic, Ophiolitic, and Abyssal
Peridotites, in: Treatise on Geochemistry, Elsevier, 103–167,
https://doi.org/10.1016/B978-0-08-095975-7.00204-7, 2014.
Boesenberg, J. S. and Hewins, R. H.: An experimental investigation into the
metastable formation of phosphoran olivine and pyroxene, Geochim. Cosmochim.
Acta, 74, 1923–1941, https://doi.org/10.1016/j.gca.2009.12.008, 2010.
Boioli, F., Carrez, P., Cordier, P., Devincre, B., and Marquille, M.:
Modeling the creep properties of olivine by 2.5-dimensional dislocation
dynamics simulations, Phys. Rev. B., 92, 014115,
https://doi.org/10.1103/PhysRevB.92.014115, 2015a.
Boioli, F., Tommasi, A., Cordier, P., Demouchy, S., and Mussi, A.: Low
steady-state stresses in the cold lithospheric mantle inferred from
dislocation dynamics models of dislocation creep in olivine, Earth Planet.
Sc. Lett., 432, 232–242, https://doi.org/10.1016/j.epsl.2015.10.012,
2015b.
Bollinger, C., Marquardt, K., and Ferreira, F.: Intragranular plasticity vs.
grain boundary sliding (GBS) in forsterite: Microstructural evidence at high
pressures (3.5–5.0 GPa), Am. Mineral., 104, 220–231,
https://doi.org/10.2138/am-2019-6629, 2019.
Boudier, F., Baronnet, A., and Mainprice, D.: Serpentine mineral replacement
of natural olivine and their seismic implications: Oceanic lizardite versus
subduction-related antigorite, J. Petrol., 51, 495–512,
https://doi.org/10.1093/petrology/egp049, 2010.
Breithaupt, A.: Vollständige Charakteristik des Mineral-Systems,
Arnoldische, Dresden, p. 278, 1823.
Brey, G. P. and Köhler, T.: Geothermobarometry in four-phase lherzolite
II. New thermobarometers, and practical assessment of existing
thermobarometers, J. Petrol., 31, 1353–1378, 1990.
Brodholt, J.: Ab initio calculations on point defects in forsterite
(Mg2O4) and implications for diffusion and creep, Am. Mineral.,
82, 1049–1053, 1997.
Brodholt, J. and Refson, K.: An ab initio study of hydrogen in forsterite
and a possible mechanism for hydrolytic weakening, J. Geophys. Res., 105,
18977–18982, 2000.
Brooker, R. A., Du, Z., Blundy, J. D., Kelley, S. P., Allan, N. L., Wood, B.
J., Chamorro, E. M., Wartho, W.-A., and Purton, J. A.: The “zero charge”
partitioning behaviour of noble gases during mantle melting, Nature, 423,
738–741, 2003.
Brunet F. and Chazot G.: Partitioning of phosphorus between olivine,
clinopyroxene and silicate glass in a spinel lherzolite xenolith from Yemen,
Chem. Geol., 176, 51–72, 2001.
Bruno, M., Massaro, F. R., Prencipe, M., Demichelis, R., De La Pierre, M.,
and Nestola, F.: Ab initio calculations of the main crystal surfaces of
forsterite (Mg2SiO4): A preliminary study to understand the nature
of geochemical processes at the olivine interface, J. Phys. Chem., 118, 2498–2506,
https://doi.org/10.1021/jp409837d, 2014.
Buening, D. K. and Buseck, P. R.: Fe-Mg lattice diffusion in olivine, J.
Geophys. Res., 78, 6852–6862, 1973.
Buerger, M. J.: Translation gliding in crystals of the NaCl structure type,
Am. Mineral., 15, 174, 226–238, 1930.
Bunge, H.-J.: Texture analysis in materials science (p. 593), London:
Butterworths, 1982.
Burnard, P. G., Demouchy, S., Delon, R., Arnaud, N.O., Marrocchi, Y.,
Cordier, P., and Addad, A.: The role of grain boundaries in the storage and
transport of noble gases in the mantle, Earth Planet. Sc. Lett., 430,
260–270, https://doi.org/10.1016/j.epsl.2015.08.024, 2015.
Burnley, P. C., Cline, C. J., and Drue, A.: Kinking in Mg2GeO4
olivine: An EBSD study, Am. Mineral., 98, 927–931,
https://doi.org/10.2138/am.2013.4224, 2013.
Burnley, P. C. and Green, H. W.: Faulting associated with the olivine to
spinel transformation in Mg2GeO4 and its implications for
deep-focus earthquakes, J. Geophys Res., 96, 425–443, 1991.
Bureau, H., Metrich, N., Pineau, F., and Semet, M. P.: Magma-conduit
interaction at Piton de la Fournaise volcano (Reunion Island): a melt and
fluid inclusion study, J. Volc. Geoth. Res., 84, 39–60, 1998.
Burton, W. K., Cabrera, N., and Frank, F. C.: The growth of crystals and the
equilibrium structure of their surfaces, Phil. Trans. R. Soc. Lond. A, 243,
299–358, 1951.
Buseck, P. R.: Pallasite meteorite – mineral, petrology and chemistry,
Geochim. Cosmochim. Acta., 41, 711–740, 1977.
Bussweiler, Y., Brey, G. P., Pearson, D. G., Stachel, T., Stern, R. A.,
Hardman, M. F., Kjarsgaard, B. A., and Jackson, S. E.: The
aluminum-in-olivine thermometer for mantle peridotites - Experimental versus
empirical calibration and potential applications, Lithos, 272–273, 301–314,
https://doi.org/10.1016/j.lithos.2016.12.015, 2017.
Bussweiler, Y., Giuliani, A., Greig, A., Kjarsgaard, B. A., Petts, D.,
Jackson, S. E., Barrett, N., Luo, Y., and Pearson, D. G.: Trace element
analysis of high-Mg olivine by LA-ICP-MS – Characterization of natural
olivine standards for matrix-matched calibration and application to mantle
peridotites, Chem. Geol., 524, 136–157,
https://doi.org/10.1016/j.chemgeo.2019.06.019, 2019.
Carrez, P., Demyk, K., Cordier, P., Gengembre, L., Grimblot, J.,
d'Hendecourt, L., Jones, A. P., and Leroux H.: Low-energy helium ion
irradiation-induced amorphization and chemical changes in olivine: Insights
for silicate dust evolution in the interstellar medium, Met. Planet. Sci.,
37, 1599–1614, 2002.
Carter, N. L. and Ave'Lallemant, H. G.: High Temperature flow of dunite and
peridotite, Geol. Soc. Am. Bull., 81, 2181–2202, 1970.
Catlow, C. R. A. and Mackrodt, W. C. (Eds.): Theory of simulation methods for
lattice and defect energy calculations in crystals, in: Computer
simulations of solids, Springer, Berlin, 166, 3–20, 1982.
Chakraborty, S.: Diffusion in solid silicates: A tool to track timescales of
processes comes of age, Ann. Rev. Earth Planet. Sci., 36, 153–190, 2008.
Champness, P. E.: Nucleation and growth of iron oxides in olivines,
(Mg,Fe)2SiO4, Min. Mag., 37, 790–800, 1970.
Chen, Y., Provost, A., Schiano, P., and Cluzel, N.: Magma ascent rate and
initial water concentration inferred from diffusive water loss from
olivine-hosted melt inclusions, Contrib. Mineral. Petrol., 165, 525–541,
https://doi.org/10.1007/s00410-012-0821-x, 2012.
Chen, Y. and Zhang, Y.: Olivine dissolution in basaltic melt, Geochim.
Cosmochim. Acta, 72, 4756–477, https://doi.org/10.1016/j.gca.2008.07.014,
2008.
Combe, N., Mompiou, F., and Legros, M.: Disconnection kinks and competing
modes in shear-coupled grain boundary migration, Phys. Rev. B, 93,
024109, https://doi.org/10.1103/PhysRevB.93.024109, 2016.
Combe, N., Mompiou, F., and Legros, M.: Heterogeneous disconnection
nucleation mechanisms during grain boundary migration, Phys. Rev. Materials,
3, 060601, https://doi.org/10.1103/PhysRevMaterials.3.060601, 2019.
Coogan, L. A., Saunders, A. D., and Wilson, R. N.: Aluminum-in-olivine
thermometry of primitive basalts: evidence of an anomalously hot mantle
source for large igneous provinces, Chem. Geol., 368, 1–10, https://doi.org/10.1016/j.chemgeo.2014.01.004,2014.
Cordier, P., Demouchy, S., Beausir, B., Taupin, V., Barou, F., and
Fressengeas, C.: Disclinations provide the missing mechanism for deforming
olivine-rich rocks in the mantle, Nature, 507, 51–56,
https://doi.org/10.1038/nature13043, 2014.
Costa, F. and Chakraborty, S.: The effect of water on Si and O diffusion
rates in olivine and implications for the transport properties and processes
in the upper mantle, Phys. Earth Planet. Inter., 166, 11–29, 2008.
Cottrell, A. H. and Bilby, B. A.: Dislocation theory of yielding and strain
ageing of iron, Proc. Phys. Soc., 62, 49–62, 1949.
Couvy, H., Frost, D. J., Heidelbach, F., Nyilas, K., Ungar, T., Mackwell, S.
J., and Cordier, P.: Shear deformation experiments of forsterite at 11 GPa
– 1400 ∘C in the multianvil apparatus, Eur. J. Mineral., 16, 877–889, 2004.
Crawford, J. H. and Slifkin, L. M.: Point defects in solids: General and
ionic crystals, Plenum Pub. Co., New York, 1975.
D'Souza, R. J., Canil, D., and Coogan, L. A.: Geobarometry for spinel
peridotites using Ca and Al in olivine, Contrib. Min. Petrol., 175, 5, https://doi.org/10.1007/s00410-019-1647-6,
2020.
De Hoog, J. C. M., Gall, L., and Cornell, D. H.: Trace-element geochemistry
of mantle olivine and application to mantle petrogenesis and
geothermobarometry, Chem. Geol., 270, 196–215,
https://doi.org/10.1016/j.chemgeo.2009.11.017, 2010.
De Hoog, J. C. M., Hattori, K., and Jung, H.: Titanium- and water-rich
metamorphic olivine in high-pressure serpentinites from the Voltri Massif
(Ligurian Alps, Italy): evidence for deep subduction of high-field strength
and fluid-mobile elements, Contrib. Mineral. Petrol., 167, 990,
https://doi.org/10.1007/s00410-014-0990-x, 2014.
Deer, W. A., Howie, R. A., and Zussman, J.: Rock-forming minerals,
orthosilicates, vol. 1A, 2nd edn., The Geological Society, London, 1997.
de Leeuw, N. H., Parker, S. C., Catlow, C. R. A., and Price, G. D.: Proton
containing defects at forsterite {010} tilt
grain boundaries and stepped surfaces, Am. Mineral., 85, 1143–1154, 2000.
Delon, R., Demouchy, S., Marrocchi, Y., Bouhifd, M. A., Barou, F., Cordier,
P., Addad, A., and Burnard, P. G.: Helium incorporation and diffusion in
polycrystalline olivine, Chem. Geol., 488, 105–124,
https://doi.org/10.1016/j.chemgeo.2018.04.013, 2018.
Delon, R., Demouchy, S., Marrocchi, Y., Bouhifd, M. A., Cordier, P., Addad,
A., and Burnard, P. G.: Argon storage and diffusion in Earth's upper
mantle, Geochim. Cosmochim. Acta, 253, 1–18,
https://doi.org/10.1016/j.gca.2019.03.007, 2019.
Deloule, E. and Robert, F.: Interstellar water in meteorites?, Geochim.
Cosmochim. Acta, 59, 4695–4706, 1995.
Demouchy, S.: Thermodynamics and kinetics of hydrogen incorporation in
olivine and wadsleyite, Bayerisches Geoinstitut, Bayreuth Universität,
Bayreuth, PhD thesis, available at: https://epub.uni-bayreuth.de/id/eprint/928 (last accessL 29 April 2021), 2004.
Demouchy, S. and Alard, O.: Hydrogen, minor, trace and ultra-trace elements
distribution in natural olivines, Contrib. Mineral. Petrol.,
176, 26, https://doi.org/10.1007/s00410-021-01778-5, 2021.
Demouchy, S. and Bolfan-Casanova, N.: Distribution and transport of
hydrogen in the lithospheric mantle: A review, Lithos, 240–243, 402–425,
https://doi.org/10.1016/j.lithos.2015.11.012, 2016.
Demouchy, S., Mussi, A., Barou, F., Tommasi, A., and Cordier, P.:
Viscoplasticity of polycrystalline olivine experimentally deformed at high
pressure and 900 ∘C, Tectonophysics, 623, 123–135,
https://doi.org/10.1016/j.tecto.2014.03.022, 2014.
Demouchy, S., Tommasi, A., Ballaran, T. B., and Cordier, P.: Low strength of
Earth's uppermost mantle inferred from tri-axial deformation experiments on
dry olivine crystals, Phys. Earth Planet. Int., 220, 37–49,
https://doi.org/10.1016/j.pepi.2013.04.008, 2013.
Demouchy, S., Tommasi, A., Barou, F., Mainprice, D., and Cordier, P.:
Deformation of olivine in torsion under hydrous conditions, Phys. Earth
Planet. Int., 202–203, 57–70, https://doi.org/10.1029/2008GL036611, 2012.
Demouchy, S., Tommasi, A., Ionov, D., Higgie, K., and Carlson, R. W.:
Microstructures, Water Contents, and Seismic Properties of the Mantle
Lithosphere beneath the Northern limit of the Hangay Dome, Mongolia,
Geochem. Geophys. Geosyst., 20, 183–207, https://doi.org/10.1029/2018GC007931, 2019.
Detrez, F., Castelnau, O., Cordier, P., Merkel, S., and Raterron, P.:
Effective viscoplastic behavior of polycrystalline aggregates lacking four
independent slip systems inferred from homogenization methods; application
to olivine, J. Mecha. Phys. Solids, 8, 199–220,
https://doi.org/10.1016/j.jmps.2015.05.022, 2015.
Dodd, R. T. and Calef, C.: Twinning and intergrowth of olivine crystals in
chondritic meteorites, Min. Mag., 38, 324–327, 1971.
Duba A., Ito, J., and Jamieson, J. C.: The effect of ferric iron on the
electrical conductivity of olivine, Earth. Planet. Sc. Lett., 18, 279–284,
1973.
Dukes, C. A., Baragiola, R. A., and McFadden, L. A.: Surface modification of
olivine by H+ and He+ bombardment, J. Geophys. Res., 104,
1865–1872, 1999.
Dupas-Bruzek, C., Sharp, T. G., Rubie, D. C., and Durham, W. B.: Mechanisms
of transformation and deformation in Mg1.8Fe0.2SiO4, Phys.
Earth Planet. Int., 108, 33–48, 1998.
Durinck, J., Legris, A., and Cordier, P.: Influence of crystal chemistry on
ideal plastic shear anisotropy in forsterite: First principle calculations,
Am. Mineral., 90, 1072–1077, https://doi.org/10.2138/am.2005.1738, 2005.
Duyster, J. and Stöckhert, B.: Grain boundary energies in olivine
derived from natural microstructures, Contrib. Mineral. Petrol., 140,
567–576, https://doi.org/10.1007/s004100000200, 2001.
Eastwood, J. W., Hockney, R. W., and Lawrence, D. N.: P3M3DP – The
three-dimensional periodic particle-particle/particle-mesh program, Computer
Phys. Comm., 19, 215–261, 1980.
Einsle, J. F., Harrison, R. J., Kasama, T., Conbhuí, P. Ó., Fabian,
K., Williams, W., Woodland, L., Fu, R. R., Weiss, B. P., and Midgley, P. A.:
Multi-scale three-dimensional characterization of iron particles in dusty
olivine: Implications for paleomagnetism of chondritic meteorites, Am.
Mineral., 101, 2070–2084, https://doi.org/10.2138/am-2016-5738CCBY, 2016.
Ernould, C. X. M., Beausir, B., Fundenberger, J.-J., Taupin, V., and Bouzy,
E.: Characterization at high spatial and angular resolutions of deformed
nanostructures by on-axis HR-TKD, J. Scripta Mat., 1–6,
https://doi.org/10.1016/j.scriptamat.2020.04.005, 2020.
Ersoy, Ã. Z., Nikogosian, I. K., van Bergen, M. J., and Mason, P. R. D.:
Phosphorous incorporation in olivine crystallized from potassium-rich
magmas, Geochim. Cosmochim. Acta, 253, 63–83,
https://doi.org/10.1016/j.gca.2019.03.012, 2019.
Escamilla-Roa, E., Martin-Torres, J., and Sainz-Díaz, C. I.: Adsorption
of methane and CO2 onto olivine surfaces in Martian dust conditions,
Planet. Space Sci., 153, 163–171,
https://doi.org/10.1016/j.pss.2018.02.008, 2018.
Fabbrizio, A., Stalder, R., Hametner, K., Günther, D., and Marquardt,
K.: Experimental partitioning of halogens and other trace elements between
olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and
900–1300 ∘ C, Contrib. Mineral. Petrol., 166, 639–653,
https://doi.org/10.1007/s00410-013-0902-5, 2013.
Faul U. H. and Fitz Gerald, J. D.: Grain misorientations in partially
molten olivine aggregates: An electron backscatter diffraction study, Phys.
Chem. Minerals, 26, 187–197, 1999.
Faul, U. H., Cline II, C. J., David, E. C., Berry, A., and Jackson, I.:
Titanium-hydroxyl defect-controlled rheology of the Earth's upper mantle,
Earth Planet. Sc. Lett., 452, 227–237,
https://doi.org/10.1016/j.epsl.2016.07.016, 2016.
Faure, F., Trolliard, G., Nicollet, C., and Montel, J.-M.: A developmental
model of olivine morphology as a function of the cooling rate and the degree
of undercooling, Cont. Mineral. Petrol., 145, 251–263,
https://doi.org/10.1007/s00410-003-0449-y, 2003.
Frank, F. C.: The influence of dislocations on crystal growth,
Discuss. Faraday Soc., 5, 48–54, 1949.
Férot, A. and Bolfan-Casanova, N.: Water storage capacity in olivine
and pyroxene to 14 GPa: Implications for the water content of the Earth's
upper mantle and nature of seismic discontinuities, Earth Planet. Sc.
Lett., 349–350, 218–230, 2012.
Foley, S. F., Jacob, D. E., and O'Neill, H. S. C.: Trace element variations
in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical
characteristics of parental magmas, Contrib. Mineral. Petrol., 162, 1–20,
https://doi.org/10.1007/s00410-010-0579-y, 2010.
Foley, S. F., Prelevic, D., Rehfeldt, T., and Jacob, D. E.: Minor and trace
elements in olivines as probes into early igneous and mantle melting
processes, Earth Planet. Sc. Lett., 363, 181–191,
https://doi.org/:10.1016/j.epsl.2012.11.025, 2013.
Frank, F. C.: I. Liquid crystals: On the theory of liquid crystals, Discuss.
Faraday Soc., 25, 19–28, 1958.
Fressengeas, C., Taupin, V., and Capalungo, L.: An elasto-plastic theory of
dislocation and disclination fields, Int. J. Solids Struct., 48, 3499–3509,
2011.
Fressengeas, C. and Beausir, B.: Tangential continuity of the curvature
tensor at grain boundaries underpins disclination density determination from
spatially mapped orientation data, Int. J. Solid. Struct., 156–157, 210–215,
https://doi.org/10.1016/j.ijsolstr.2018.08.015, 2018.
Frey, F. A., and Prinz, M.: Ultramafic inclusions from San Carlos, Arizona:
Petrologic and geochemical data bearing on their petrogenesis, Earth Planet. Sc. Lett., 38, 129–176, 1978.
Friedel, J.: Dislocations, Ed. Pergamon, 1967.
Fujino, K., Nakazaki, H., Momoi, H., Karato, S., and Kohlstedt, D. L.: TEM
observation of dissociated dislocation with b:010 in naturally deformed
olivine, Phys. Earth Planet. Int., 78, 131–137, 1993.
Fumi F. G. and Tosi, M. P.: Ionic sizes and born repulsive parameters in
NaCl-type alkali halides – I: Huggins-Mayer and Pauling forms, J. Phys.
Chem. Solids., 25, 31–43, 1964.
Gaboriaud, R. J., Darot, M., Gueguen, Y., and Woirgard, J.: Dislocations in
olivine indented at low temperatures, Phys. Chem. Miner., 7, 100–104, 1981.
Gaetani, G. A. and Grove, T. L.: The influence of water on melting of
mantle peridotite, Contrib. Mineral. Petrol., 131, 323–346, 1998.
Gaetani, G. A., O'Leary, J. A., Koga, K. T., Hauri, E. H., Rose-Koga, E. F.,
and Monteleone, B. D.: Hydration of mantle olivine under variable water and
oxygen fugacity conditions, Contrib. Mineral. Petrol., 167, 965,
https://doi.org/10.1007/s00410-014-0965-y, 2014.
Gaetani, G. A., O'Leary, J. A., Shimizu, N., Bucholz, C. E., and Newville,
M.: Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted
melt inclusions, Geology, 40, 915–918, 2012.
Gasc, J., Demouchy, S., Barou, F., Koizumi, S., and Cordier, P.: Creep
mechanisms in the lithospheric mantle inferred from deformation of iron-free
forsterite aggregates at 900–1200 ∘ C, Tectonophysics 761,
16–30, https://doi.org/10.1016/j.tecto.2019.04.009, 2019.
Ghanbarzadeh, S., Hesse, M. A., Prodanovic, M., and Gardner, J. E.: Deformation-assisted fluid percolation in rock salt, Science, 350,
1069–1072, 2015.
Gmelin, C. G.: X. Chemische Untersuchung des Fayalits, Annal. Phys. Chem.,
51, 160–164, 1840.
Godard, M., Lagabrielle, Y., Alard, O., and Harvey, J.: Geochemistry of the
highly depleted peridotites drilled at ODP Sites 1272 and 1274
(Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle
dynamics beneath a slow spreading ridge, Earth Planet. Sc. Lett., 267,
410–425, https://doi.org/10.1016/j.epsl.2007.11.058, 2008.
Goldschmidt, V. M.: The laws of crystal chemistry, Naturwissenschaften, 14,
477–485, 1926.
Goldschmidt, V. M.: The principles of distribution of chemical elements in
minerals and rocks, The seventh Hugo Müller Lecture, delivered before
the Chemical Society on March 17th, J. Chem. Soc., 655–673,
https://doi.org/10.1039/JR9370000655, 1937.
Gose, J., Schmädicke, E., Markowitz, M., and Beran, A.: OH point defects
in olivine from Pakistan, Miner. Petrol., 99, 105–111,
https://doi.org/10.1007/s00710-009-0095-9, 2010.
Gouriet, K., Cordier, P., Garel, F., Thoraval, C., Demouchy, S., Tommasi,
A., and Carrez, P.: Dislocation dynamics modelling of the power-law
breakdown in olivine single crystals: Toward a unified creep law for the
upper mantle, Earth Planet. Sc. Lett., 506, 282–291,
https://doi.org/10.1016/j.epsl.2018.10.049, 2019.
Grant, K. J. and Wood, B. J.: Experimental study of the incorporation of
Li, Sc, Al and other trace elements into olivine, Geochim. Cosmochim. Acta,
74, 2412–2428, https://doi.org/10.1016/j.gca.2010.01.015, 2010.
Green, H. W.: How and why does olivine transforms to spinel?, Geophys. Res.
Lett., 11, 817–820, 1984.
Green, H. W. and Radcliff, S. V.: Dislocation mechanisms in olivine and
flow in the upper mantle, Earth Planet. Sc. Lett., 15, 239–247, 1972.
Grew, E. S., Pertsev, N. N., Boronikhin, V. A., Borisovskiy, S. Y., Yates,
M. G., and Marquez, N.: Serendibite in the Tayozhnoye deposit of the Aldan
Shield, eastern Siberia, U.S.S.R., Am. Mineral., 76, l06l–1080, 1991.
Griggs, D. T., Turner, F. J., and Heard, H. C.: Deformation of rocks at 500
to 800 ∘C. In Rock Deformation – A Symposium, Geol. Soc. Am.
Mem., 79, 39–104, 1960.
Grützner, T., Kohn, S. C., Bromiley, D. W., Rohrbach, A., Berndt, J.,
and Klemme, S.: The storage capacity of fluorine in olivine and pyroxene
under upper mantle conditions, Geochim. Cosmochim. Acta, 208, 160–170,
https://doi.org/10.1016/j.gca.2017.03.043, 2017.
Gueguen, Y.: Dislocation in naturally deformed terrestrial olivine:
classification, interpretation, application, Bull. Minéral., 102,
178–183, 1979.
Gueguen, Y. and Darot, M.: Microstructure and stresses in naturally
deformed peridotites, Rock Mecha. Suppl., 9, 159–172, 1980.
Gueguen, Y. and Darot, M.: Dislocation in forsterite deformed at high
temperature, Phil. Mag., 4553, 419–442, 1982.
Gurenko, A. A. Hansteen, T. H., and Schmincke, H. U.: 22. Melt, crystal, and
fluid inclusions in olivine and clinopyroxene phenocrysts from the submarine
shield stage hyaloclastities of Gran Canaria, Site 953 and 956, Proc. ODP
Sci. Res., 157, 375–401, 1998.
Gurenko, A. A. and Chaussidon, M.: Enriched and depleted primitive melts
included in olivine from Icelandic tholeiites: origin by continuous melting
of a single mantle column, Geochim. Cosmochim. Acta, 59, 2905–2917,
https://doi.org/10.1016/0016-7037(95)00184-0, 1995.
Han, J., Thomas, S. L., and Srolovitz, D. J.: Grain-boundary kinetics: A
unified approach, Prog. Mat. Sci., 98, 386–476,
https://doi.org/10.1016/j.pmatsci.2018.05.004, 2018.
Hansen, L. N., Zimmerman, M. E., and Kohlstedt, D. L.: Grain boundary sliding
in San Carlos olivine: Flow law parameters and crystallographic-preferred
orientation, J. Geophys. Res., 116, B08201, https://doi.org/10.1029/2011JB008220,
2011.
Hansen, L. N., Zimmerman, M. E., and Kohlstedt, D. L.: The influence of
microstructure on deformation of olivine in the grain boundary sliding
regime, J. Geophys. Res., 117, B09201, https://doi.org/10.1029/2012JB009305, 2012.
Hayden, L. A. and Watson, E. B.: Grain boundary mobility of carbon in Earth's
mantle: A possible carbon flux from the core, P. Nat. Acad. Sci. USA, 105,
8537–8541, 2008.
Heinemann, S., Wirth, R., Gottschalk, M., and Dresen, G.: Synthetic [100]
tilt grain boundaries in forsterite: 9.9 to 21.5∘, Phys. Chem.
Mineral., 32, 229–240, https://doi.org/10.1007/s00269-005-0448-9, 2005.
Hervig, R. L. and Bell, D. R.: Fluorine and hydrogen in mantle megacrysts,
AGU Fall Meeting, San Francisco, USA, 5–9 December 2005, V41A-1426, 2005.
Hielscher, R. and Schaeben, H.: A novel pole figure inversion method:
specification of the MTEX algorithm, J. Appl. Crystallogr. 41, 1024–1037,
https://doi.org/10.1107/S0021889808030112, 2008.
Hier-Majumder, S., Anderson, I. M., and Kohlstedt, D. L.: Influence of
Protons on Fe-Mg interdiffusion in olivine, J. Geophys. Res., 110,
B02202, https://doi.org/10.1029/2004JB003292, 2004.
Hiraga, T., Anderson, I. M., and Kohlstedt, D. L.: Grain boundaries as
reservoirs of incompatible elements in the Earth's mantle, Nature, 427,
699–703, 2004.
Hiraga, T. and Kohlstedt, D. L.: Equilibrium interface segregation in the
diopside-forsterite system I: Analytical techniques, thermodynamics, and
segregation characteristics, Geochim. Cosmochim. Acta, 71, 1266–1280, 2007.
Hiraga, T., Hirschmann, M. M., and Kohlstedt, D. L.: Equilibrium interface
segregation in the diopside-forsterite system 2: Applications of interface
enrichment to mantle geochemistry, Geochim. Cosmochim. Acta, 71, 1281–1289,
2007.
Hiraga, T., Tachibana, C., Ohashi, N., and Sano, S.: Grain growth
systematics for forsterite ± enstatite aggregates: Effect of lithology
on grain size in the upper mantle, Earth Planet. Sc. Lett., 291, 10–20,
https://doi.org/10.1016/j.epsl.2009.12.026, 2010.
Hirel, P., Bouobda Moladje, G. F., Carrez, P., and Cordier, P.: Systematic
theoretical study of [001] symmetric tilt grain boundaries in MgO from 0 to
120 GPa, Phys. Chem. Mineral., 46, 37–49,
https://doi.org/10.1007/s00269-018-0985-7, 2019.
Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M.
J.: Electron microscopy of thin crystals, Butterworths, London, 549 pp.,
1965.
Hirth, G. and Kohlstedt, D. L.: Experimental constraints on the dynamics of
the partially molten upper-mantle. 2. Deformation in the dislocation creep
regime, J. Geophys. Res., 100, 15441–15449, 1995.
Hirth, G. and Kohlstedt, D. L.: Rheology of the upper mantle and the mantle
wedge: a view from the experimentalists, in: Inside The
Subduction Factory, edited by: Eiler, J., American Geophysical Union, Washington DC, 83–105, 2003.
Hirth, J. P. and Lothe J.: Theory of dislocations, Int. J. Earth Sci.,
McGraw-Hill, New York, 1968.
Hirth, J. P., Wang, J., and Hirth, G.: A topological model for defects and
interfaces in complex crystal structures, Am. Mineral., 104, 966–972,
https://doi.org/10.2138/am-2019-6892, 2019.
Hirth, J. P., Hirth, G., and Wang, J.: Disclinations and disconnections in
minerals and metals, P. Nat. Acad. Sci. USA, 117, 196–204,
https://doi.org/10.1073/pnas.1915140117, 2020.
Hiyagon, H. and Ozima, M.: Partition of noble gases between olivine and
basalt melts, Geochim. Cosmochim. Acta, 50, 2045–2057, 1986.
Hosoya, S. and Takei, H.: Floating-zone growth of single-crystal olivine
(Mg1−x,Fex)SiO4, J. Crystal Growth, 57, 343–348, 1982.
Howarth, G. H. and Gross, J.: Diffusion-controlled and concentric growth
zoning revealed by phosphorous in olivine from rapidly ascending kimberlite
magma, Benfontein, South Africa, Geochim. Cosmochim. Acta, 266, 292–306,
https://doi.org/10.1016/j.gca.2019.08.006, 2019.
Hull, D. and Bacon, D. J.: Introduction to dislocation, International
Series on Materials Science and Technology, Pergamon press, New York, 1989.
Hutchinson, J. W.: Creep and plasticity of hexagonal polycrystals as related
to single crystal slip, Metall. Trans. A., 8, 1465–1469, 1977.
Idrissi, H., Bollinger, C., Boioli, F., Schryvers, D., and Cordier, P.:
Low-temperature plasticity of olivine revisited with in situ TEM
nanomechanical testing, Sci. Adv., 2, e1501671,
https://doi.org/10.1126/sciadv.1501671, 2016.
Irwin, M. B. and Peterson, R. C.: The crystal structure of ludwigite, Can.
Min., 37, 939–943, 1999.
Islam, M. S., Driscoll, D. J., Fisher, C. A. J., and Slater, P. R.:
Atomic-scale investigation of defects, dopants, and lithium transport in the
LiFePO4 Olivine-type battery material, Chem. Mater., 17, 5085–5092,
https://doi.org/10.1021/cm050999v, 2005.
Jackson, I., Faul, U. H., and Skelton, R.: Elastically accommodated
grain-boundary sliding: New insights from experiment and modeling, Phys.
Earth Planet. Int., 228, 203–210,
https://doi.org/10.1016/j.pepi.2013.11.014, 2013.
Jaquet, E., Piralla, M., Kersaho, P., and Marrocchi, Y.: Origin of isolated
olivine grains in carbonaceous chondrites, Meteor. Planet. Sci., 56, 13–33,
https://doi.org/10.1111/maps.13583, 2021.
Jean, M. M., Taylor, L. A., Howarth, G. H., Peslier, A. H., Fedele, L.,
Bodnar, R. J., Guan, Y., Doucet, L. S., Ionov, D. A., Logvinova, A. M.,
Golovin, A. V., and Sobolev, N. V.: Olivine inclusions in Siberian diamonds
and mantle xenoliths: Contrasting water and trace-element contents, Lithos,
265, 31–41, https://doi.org/10.1016/j.lithos.2016.07.023, 2016.
Joachim, B., Pawley, A., Lyon, I. C., Hartmann, K. M., Henkel, T., Clay, P.
L., Ruzié, L., Burgess, R., and Ballentine, C. J.: Experimental
partitioning of F and Cl between olivine, orthopyroxene and silicate melt at
Earth's mantle conditions, Chem. Geol., 416, 65–78,
https://doi.org/10.1016/j.chemgeo.2015.08.012, 2015.
Joachim, B., Ruzié, L., Burgess, R., Pawley, A., Clay, P. L., and
Ballentine, C. J.: Bromine partitioning between olivine and melt at OIB
source conditions: Indication for volatile recycling, Geophys. Res. Abs.,
Vol. 18, EGU2016-6913, 2016.
Jollands, M. C., Hermann, J., O'Neill, H. S. C., Spandler, C., and
Padron-Navarta, J. A.: Diffusion of Ti and some divalent cations in olivine
as a function of temperature, oxygen fugacity, chemical potentials and
crystal orientation, J. Petrol., 57, 1983–2010,
https://doi.org/10.1093/petrology/egw067, 2016.
Jones, A. P.: Depletion patterns and dust evolution in the interstellar
medium, J. Geophys. Res., 105, 10257–10268, 2007.
Karato, S. I.: Grain growth kinetics in olivine aggregates, Tectonophysics,
168, 255–273, 1989.
Karato S. I. and Wenk, R.: Plastic deformation of minerals and rocks,
Review in Mineralogy and Geochemistry, vol. 51, The Mineralogical Society of
America, P. H. Ribbe, Blacksburg, Virginia, 2002.
Katsura, T. and Ito, E.: The system Mg2SiO4-Fe2SiO4 at
high pressures and temperatures: Precise determination of stabilities of
olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15663–15670,
https://doi.org/10.1029/JB094iB11p15663, 1989.
Katsura, T., Yamada H, Nishikawa, O., Song, M., Kubo, A., Shinmei, T.,
Yokoshi, S., Aizawa, Y., Yoshino, T., Walter, M., and Ito, E.:
Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4, J.
Geophys. Res., 109, B02209, https://doi.org/10.1029/2003JB002438, 2004.
Kent, A. J. R. and Rossman, G. R.: Hydrogen, lithium, and boron in
mantle-derived olivine: the role of coupled substitutions, Am. Mineral., 87,
1432–1436, 2002.
Keppler, H. and Bolfan-Casanova, N.: Thermodynamics of Water Solubility and
Partitioning, in: Water in
Nominally Anhydrous Minerals, edited by: Keppler, H., Smyth, J. R., Rosso, J. J., American Mineralogical Society, Geochemical
Society, Chantilly (Vir.), 193–230, 2006.
Keppler, H., Wiedenbeck, M., and Shcheka, S. S.: Carbon solubility in
olivine and the mode of carbon storage in the Earth's mantle, Nature, 424,
414–416, 2003.
Kerisit, S., Bylaska, E. J., and Felmy, A. R.: Water and carbon dioxide
adsorption at olivine surfaces, Chem. Geol., 359, 81–89,
https://doi.org/10.1016/j.chemgeo.2013.10.004, 2013.
King, H. E., Satoh, H., Tsukamoto, K., and Putnis, A.: Surface-specific
measurements of olivine dissolution by phase-shift interferometry, Am.
Mineral., 99, 377–386, https://doi.org/10.2138/am.2014.4606, 2014.
Kitamura, M., Kondoh, S., Morimoto, N., Miller, G. H., Rossman, G. R., and
Putnis, A.: Planar OH-bearing defects in mantle olivine, Nature, 328,
143–145, 1987.
Kleman M. and Friedel, J.: Disclinations, dislocations and continuous
defects: a reappraisal, Rev. Mod. Phys., 80, 61–115, https://doi.org/10.1103/RevModPhys.80.61, 2008.
Kobayashi, M., Sawada, A., Tani, Y., Soma, M., Tanaka, A., Honma, T., Seyama
H., and Theng, B. K. G.: Acid dissolution of olivines, feldspars and dunite,
Water Air Soil. Poll., 130, 757–762, 2001.
Kohlstedt, D. L., Goetze, C., Durham, W. B., and Vander Sande, J.: New
technique for decorating dislocations in olivine, Science, 191, 1045–1046,
1976.
Kohlstedt, D. L., Keppler, H., and Rubie, D. C.: Solubility of water in the
α, β and γ phases of (Mg,Fe)2SiO4, Contrib.
Mineral. Petrol., 123, 345–357, 1996.
Kohlstedt, D. L. and Mackwell, S. J.: Diffusion of hydrogen and intrinsic
point defects in olivine, Z. Phys. Chem., 207, 147–162, 1998.
Kohlstedt, D. L. and Vander Sande, J.: An electron microscopy study of
naturally occurring oxidation produced precipitates in iron-bearing
olivines, Contrib. Mineral. Petrol., 53, 13–24, 1975.
Kresse G. and Hafner, J.: Norm-conserving and ultrasoft pseudopotentials
for first-row and transition elements, J. Phys. Cond. Mat., 6, 8245–8257,
1994,
Kröger, F. A. and Vink, H. J.: Relation between the concentrations of
imperfections in crystalline solids, Solid State Phys., 3, 307–435, https://doi.org/10.1016/S0081-1947(08)60135-6, 1956.
Kurosawa, M., Yurimoto, and H., Sueno, S.: Patterns in the hydrogen and
trace element compositions of mantle olivines, Phys. Chem. Minerals, 24,
385–395, 1997.
Kushiro, I., Syono, Y., and Akimoto, S.-I.: Melting of a peridotite nodule
at high pressures and high water pressures, J. Geophys. Res., 73,
6023–6029, 1968.
Langdon, T. G.: Grain boundary sliding revisited: Developments in sliding
over four decades, J. Mater. Sci., 41, 597–609, 2006.
Larsen, E. S., Hurlbut, C. S., Buie, B. F., and Burgess, C. H.: Igneous
rocks of the Highwood Mountains, Montana, Bull. Geol. Soc. Am., 52,
1841–1855, 1942.
Laumonier, M., Laporte, D., Faure, F., Provost, A., Schiano, P., and Ito,
K.: An experimental study of dissolution and precipitation of forsterite in
a thermal gradient: implications for cellular growth of olivine phenocrysts
in basalt and melt inclusion formation, Contrib. Mineral. Petrol., 174, 94,
https://doi.org/10.1007/s00410-019-1627-x, 2019.
Lazar, E. A., Mason, J. K., MacPherson, R. D., and Srolovitz, D. J.: A more
accurate three-dimensional grain growth algorithm, Acta Mat., 59,
6837–6847, https://doi.org/10.1016/j.actamat.2011.07.052, 2011.
Lazko, E. E. and Afanasev, V. P.: Mineral inclusions in olivines from
Udachnaya kimberlite pipe, Zap. Vses Mineral Oval, 103, 77–84,
1974 (in Russian).
Leander, F. and Wirth, R.: Spinel inclusions in olivine of peridotite
xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea):
Evidence for the thermal and tectonic evolution of the oceanic lithosphere,
Contrib. Mineral. Petrol., 140, 283–295, 2000.
Le Roux, V, Bodinier, J. L., Tommasi, A., Alard, O., Dautria, J. M.,
Vauchez, A., and Riches, A. J. V.: The Lherz spinel lherzolite: Refertilized
rather than pristine mantle, Earth Planet. Sc. Lett., 259, 599–612,
https://doi.org/10.1016/j.epsl.2007.05.026, 2007.
Leroux, H., Libourel, G., Lemelle, L., and Guyot, F.: Experimental study and TEM
characterization of dusty olivines in chondrites: Evidence for formation by
in situ reduction, Met. Planet. Sci., 38, 81–94, 2003.
Le Voyer, M., Asimow, P. D., Mosenfelder, J. L., Guan, Y., Wallace, P. J.,
Schiano, P., Stolper, E. M., and Eiler, J. M.: Zonation of H2O and F
Concentrations around Melt Inclusions in Olivines, J. Petrol., 55, 685–707,
https://doi.org/10.1093/petrology/egu003, 2014.
Lévy, M.: Observations on the preceding paper, with an account of a new
mineral, Ann. Phil., 7, 59–62, 1824.
Lewis, G. V. and Catlow, C. R. A.: Potential models for ionic oxides, J.
Phys. C, 18, 1149–1161, 1985.
Lorand, J.-P., Luget, A., and Alard, O.: Platinium-group element systematics
and petrogenetic processing of the continental upper mantle: A review,
Lithos, 164, 2–21, 2013.
Mackwell, S. J. and Kohlstedt, D. L.: Diffusion of hydrogen in olivine:
Implications for water in the mantle, J. Geophys. Res., 95, 5079–5088,
1990.
Mackwell, S. J., Kohlstedt, D. L., and Paterson, M. S.: The role of water in
the deformation of olivine single crystals, J. Geophys. Res., 90,
11319–11333, 1985.
Madon, M. and Poirier, J. P.: Transmission electron microscope observation of
α, β and γ (Mg,Fe)2SiO4 in shocked
meteorites: Planar defects and polymorphic transitions, Phys. Earth Planet.
Int., 33, 31–44, 1983.
Mahendran, S., Carrez, P., and Cordier, P.: On the glide of [100]
dislocations and the origin of “pencil glide” in
Mg2SiO4 olivine, Phil. Mag., 99, 2751–2769, https://doi.org/10.1080/14786435.2019.1638530, 2019.
Mallmann, G. and O'Neill, H. S. C.: The crystal/melt partitioning of V
during mantle melting as a function of oxygen fugacity compared with some
other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb), J. Petrol.,
50, 1765–1794, https://doi.org/10.1093/petrology/egp053, 2009.
Mallmann, G. and O'Neill, H. S. C.: Calibration of an empirical thermometer
and oxybarometer based on the partitioning of Sc, Y and V between olivine
and silicate melt, J. Petrol. 54, 933–949,
https://doi.org/10.1093/petrology/egt001, 2013.
Mallmann, G., O'Neill, H. S. C., and Klemme, S.: Heterogeneous distribution
of phosphorus in olivine from otherwise well-equilibrated spinel peridotite
xenoliths and its implications for the mantle geochemistry of lithium,
Contrib. Mineral. Petrol., 158, 485–504, 2009.
Marquardt, K. and Faul, U. H.: The structure and composition of olivine
grain boundaries: 40 years of studies, status and current developments,
Phys. Chem. Mineral., 45, 139–172,
https://doi.org/10.1007/s00269-017-0935-9, 2018.
Marquardt, K., Rohrer, G. S., Morales, L., Rybacki, E., Marquardt, H., and
Lin, B.: The most frequent interfaces in olivine aggregates: the GBCD and
its importance for grain boundary related processes, Contrib. Mineral.
Petrol., 170, 40, https://doi.org/10.1007/s00410-015-1193-9, 2015.
Masuti, S., Karato, S.-I., Feng, L., Banerjee, P., and Barbot, S. D.:
Upper-mantle water stratification inferred from observations of the 2012
Indian Ocean earthquake, Nature, 538, 373–377,
https://doi.org/10.1038/nature19783, 2016.
Matsyuk, S. S. and Langer, K.: Hydroxyl in olivines from mantle xenoliths
in kimberlites of the Siberian platform, Contrib. Mineral. Petrol., 147,
413–437, 2004.
Matysiak, A. K. and Trepmann, C. A.: Crystal–plastic deformation and
recrystallization of peridotite controlled by the seismic cycle,
Tectonophysics, 530–531, 111–127,
https://doi.org/10.1016/j.tecto.2011.11.029, 2012.
Matysiak, A. K. and Trepmann, C. A.: The deformation record of olivine in
mylonitic peridotites from the Finero Complex, Ivrea Zone: Separate
deformation cycles during exhumation, Tectonics, 34, 2514–2533, https://doi.org/10.1002/2015TC003904, 2015.
McGetchin, T. R. and Smyth, J. R.: The mantle of Mars: Some possible
geological implications of its high density, Icarus, 34, 512–536, 1978.
Mercier, J. C. C. and Nicolas, A.: Textures and fabrics of the upper mantle
peridotites as illustrated by xenoliths from basalts, J. Petrol., 16,
454–487, 1975.
Messenger, S., Keller, L. P., and Lauretta, D. S.: Supernova olivine from
cometary dust, Science, 309, 737–740, 2005.
Miller, G. H., Rossman, G. R., and Harlow, G. E.: The natural occurrence of
hydroxide in olivine, Phys. Chem. Minerals, 14, 461–472, 1987.
Milman-Barris, M. S., Beckett, J. R., Baker, M. B., Hofmann, A. E., Morgan,
Z., Crowley, M. R., Vielzeuf, D., and Stolper, E.: Zoning of phosphorus in
igneous olivine, Contrib. Mineral. Petrol., 155, 739–765,
https://doi.org/10.1007/s00410-007-0268-7, 2008.
Miyajima, N., Li, Y., abeykoon, S., and Heidelbach, F.: Electron channelling
contrast imaging of individual dislocations in geological materials using a
field-emission scanning electron microscope equipped with an EBSD system,
Eur. J. Mineral., 30, 5–15, https://doi.org/10.1127/ejm/2017/0029-2683, 2018.
Miyajima, N., Mandolini, T., Heidelbach, F., and Bollinger, C.: Combining
ECCI and FIB milling techniques to prepare site-specific TEM samples for
crystal defect analysis of deformed minerals at high pressure, C. R.
Geosci., 351, 295–301, https://doi.org/10.1016/j.crte.2018.09.011, 2019.
Miyazaki, T. Sueyoshi, K., and Hiraga, T.: Olivine crystals align during
diffusion creep of Earth's upper mantle, Nature, 502, 321–326, 2013.
Morales, L. F. G., Mainprice, D., and Kern, H.: Olivine-antigorite
orientation relationships – Microstructures, phase boundary misorientations
and the effect of cracks in the seismic properties of serpentinites,
Tectonophysics, 724–725, 93–115,
https://doi.org/10.1016/j.tecto.2017.12.009, 2018.
Moreira, M. A. and Kurz, M. D.: Noble gases as tracers of mantle processes
and magmatic degassing, in: The noble gases as geochemical
tracers, edited by: Burnard, P., Advances in isotope geochemistry, Springer, Berlin, Heidelberg,
2013.
Morgan, J. W. and Anders, E.: Chemical composition of Mars, Geochim.
Cosmochim. Acta, 43, 1601–1610, 1979.
Morgan, J. W. and Anders, E.: Chemical composition of Earth, Venus, and
Mercury, P. Natl. Acad. Sci. USA, 77, 6973–6977, 1980.
Mosenfelder, J. L., LeVoyer, M., Rossman, G. R., Guan, Y., Bell, D. R.,
Asimow, P. D., and Eiler, J. M.: Analysis of hydrogen in olivine by SIMS:
Evaluation of standards and protocol, Am. Mineral., 96, 1725–1741, 2011.
Mosenfelder, J. L., Sharp, T. G., Asimow, P. D., and Rossman, G. R.:
Hydrogen incorporation in natural olivine, in: Earth's Deep Water Cycle, edited by: Jacobsen, S. D. and Van der
Lee, S., AGU, Washington DC, 45–56,
2006.
Mott, N. F. and Littleton, M. J.: Conduction in polar crystals. 1.
Electrolytic conduction in solid salts, Trans. Faraday Soc., 34, 485–499, 1938.
Mourey, A. J. and Shea, T.: Forming olivine phenocrysts in basalt: A 3D
characterization of growth rates in laboratory experiments, Frontiers Sci., 7, 300,
https://doi.org/10.3389/feart.2019.00300, 2019.
Mussi, A., Cordier, P., Demouchy, S., and Vanmansart, C.: Characterization
of the glide planes of the [001] screw dislocations in olivine using
electron tomography, Phys. Chem. Minerals, 41, 537–545,
https://doi.org/10.1007/s00269-014-0665-1, 2014.
Mussi, A., Nafi, M., Demouchy, S., and Cordier, P.: On the deformation
mechanism of olivine single crystals at lithospheric temperatures: an
electron tomography study, Eur. J. Mineral., 27, 707–715,
https://doi.org/10.1127/ejm/2015/0027-2481, 2015.
Nabarro, F. R. N.: Theory of crystal dislocations, Oxford University Press,
ISBN 0-486-65488-5, 1989.
Nakamura, A. and Schmalzried, H.: On the nonstoichiometry and point defects
of olivine, Phys. Chem. Minerals, 10, 27–37, 1983.
Neave, D. A., Shorttle, O., Oeser, M., Weyer, S., and Kobayashi, K.:
Mantle-derived trace element variability in olivines and their melt
inclusions, Earth Planet. Sc. Lett., 483, 90–104,
https://doi.org/10.1016/j.epsl.2017.12.014, 2018.
Novella, D., Bolfan-Casanova, N., Nestola, F., and Harris, J. W.: H2O
in olivine and garnet inclusions still trapped in diamonds from the Siberian
craton: Implications for the water content of cratonic lithosphere
peridotites, Lithos, 230, 180–183, 2015.
O'Neill, H. S. C., Rubie, D. C., Canil, D., Geiger, C.A., Ross II, C. R.,
Seifert, F., and Woodland, A. B.: Ferric iron in the upper mantle and in
transition zone assemblage: Implications for relative oxygen and fugacities
in the mantle, in: Evolution of
the Earth and Planet, edited by: Takahashi, E., Jeanloz, R., and Rubie, D. C., Geophysical Monograph Series, 1993.
O'Reilly, S. Y. and Griffin, W. L.: Mantle Metasomatism, chap. 12, in:
Metasomatism and the Chemical Transformation of Rock, edited by: Harlov, D. E. and Austrheim, H., Heidelberg, London, 471–533, 2013.
O'Reilly, S. Y., Chen, D., Griffin, W. L., and Ryan C. G.: Minor elements in
olivine from spinel lherzolite xenoliths: implications for thermobarometry,
Min. Mag., 61, 257–269, 1997.
Oberheuser G., Kathrein, H., Demortier, G., Gonska, H., and Freund, F.:
Carbon in olivine single crystals analyzed by the 12C(d,p)13C
method and by photoelectron spectroscopy, Geochim. Cosmochim. Acta., 47,
1117–1129, 1983.
Olsson, J., Bovet, N., Makovicky, E., Bechgaard, K., Balogh, Z., and Stipp,
S. L. S.: Olivine reactivity with CO2 and H2O on a microscale:
Implications for carbon sequestration, Geochim. Cosmochim. Acta., 77,
86–97, https://doi.org/10.1016/j.gca.2011.11.001, 2012.
Padrón-Navarta, J. A. and Hermann, J.: A subsolidus olivine water
solubility equation for the Earth's upper mantle, J. Geophys. Res.-Sol.
Ea., 122, 9862–9880, https://doi.org/10.1002/2017JB014510, 2017.
Papillon, F., Rohrer, G. S., and Wynblatt, P.: Effect of segregating
Impurities on the grain-boundary character distribution of magnesium oxide,
J. Am. Ceramic Soc. 92, 3044–3051,
https://doi.org/10.1111/j.1551-2916.2009.03327.x, 2009.
Parman, S. W., Kurz, M. D., Hart, S. R., and Grove, T. L.: Helium solubility
in olivine and implications of high 3He/4He in ocean island
basalts, Nature, 437, 1140–1143, 2005.
Passchier, C., Cees, W., Trouw, R., and Rudolph, A.: Microtectonics:
Deformation Mechanisms, Berlin, Springer, 2005.
Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L.,
Hutchison, M. T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S.,
Vekemans, B., and Vincze, L.: Hydrous mantle transition zone indicated by
ringwoodite included within diamond, Nature, 507, 221–224,
https://doi.org/10.1038/nature13080, 2015.
Perrin, J.: Les atomes, Collec. Felix Alcan, Press Universitaire de France,
300 pp., 1913.
Peslier, A. H.: A review of water contents of nominally anhydrous minerals
in the mantles of Earth, Mars and the Moon, J. Volc. Geoth. Res., 197,
239–258, 2010.
Peslier, A. H., Woodland, A. B., Bell, D. R., and Lazarov, M.: Olivine water
contents in the continental lithosphere and the longevity of craton, Nature,
467, 78–83, 2010.
Peuble, S., Godard, M., Luquot, L., Andreani, M., Martinez, I., and Gouze,
P.: CO2 geological storage in olivine rich basaltic aquifers: New
insights from reactive-percolation experiments, Appl. Geochem., 52,
174–190, https://doi.org/10.1016/j.apgeochem.2014.11.024, 2015.
Philibert, J.: Atom movements, diffusion and mass transport in solids, Les
éditions de physiques, les Ullis, France, 1991.
Poe, B. T., Romano, C., Nestola, F., and Smyth, J. R.: Electrical
conductivity anisotropy of dry and hydrous olivine at 8 GPa, Phys. Earth
Planet. Int., 181, 103–111, https://doi.org/10.1016/j.pepi.2010.05.003,
2010.
Poirier, J. P.: Plasticité à haute températures des solides
cristallins, Eyrolles Editeur Paris, 320 pp., 1976.
Poirier, J. P.: Creep of crystals, High temperature deformation processes in
metals, ceramics and minerals, Cambridge Earth Science Series, Cambridge
University Press, Cambridge, 260 pp., 1985.
Pond, R. C., Ma, X., Hirth, J. P., and Mitchell, T. E.: Disconnections in
simple and complex structures, Phil. Mag., 87, 5289–5307,
https://doi.org/10.1080/14786430701651721, 2007.
Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F.: Experimental
evidence for rapid water exchange between melt inclusions in olivine and
host magma, Earth Planet. Sc. Lett., 272, 541–552,
https://doi.org/10.1016/j.epsl.2008.05.020, 2008.
Purton, J. A., Allan, N. L., and Blundy, J. D.: Calculated solution energies
of heterovalent cations in forsterite and diopside: Implication for trace
element partitioning, Geochim. Cosmochim. Acta., 61, 3927–3936, 1997.
Rajabzadeh, A., Mompiou, F., Lartigue-Korinek, S., Combe, N., Legros, M.,
and Molodov, D. A.: The role of disconnections in deformation-coupled grain
boundary migration, Acta Mat., 77, 223–235
https://doi.org/10.1016/j.actamat.2014.05.062, 2014.
Raleigh, C. B.: Mechanism of plastic deformation of olivine, J. Geophys.
Res., 73, 5391–5406, 1968.
Read, W. T. and Shockley, W.: Dislocation models of crystal grain
boundaries, Phys. Rev. B., 78, 275–289, 1952.
Regenauer-Lieb, K. and Kohl, T.: Water solubility and diffusivity in
olivine: its role in planetary tectonics, Min. Mag., 67, 697–715, 2003.
Regenauer-Lieb, K., Weinberg, R. F., and Rosenbaum, G.: The effect of energy
feedbacks on continental strength, Nature, 442, 67–70, 2006.
Richmond N. C. and Brodholt, J. P.: Incorporation of Fe3+ into
forsterite and wadsleyite, Am. Mineral., 85, 1155–1158, 2000.
Ricoult, D. L. and Kohlstedt, D. L.: Structural width of low-angle grain
boundaries in olivine, Phys. Chem. Minerals, 9, 133–138, 1983.
Ringwood, A. E.: The principles governing trace element distribution during
magmatic crystallization Part I. The influence of electroneutrality,
Geochim. Cosmochim. Acta, 7, 189–202, 1955a.
Ringwood, A. E.: The principles governing trace element distribution during
magmatic crystallization Part II. The role of complex formation, Geochim.
Cosmochim. Acta, 7, 242–254, 1955b.
Roedder, E.: Liquid CO2 inclusions in olivine-bearing nodules and
phenocrysts from basalts, Am. Mineral., 50, 1746–1782, 1965
Roedder, E.: Fluid inclusions, Reviews in Mineralogy, Mineral. Soc. Am.,
12, 646 pp., 1984.
Romanov, A. E. and Kolesnikova, A. L.: Application of disclination concept
to solid structures, Prog. Mater. Sci., 54, 740–769, 2009.
Romanov, A. E., and Vladimirov, V. I.: Dislocations in Solids, edited by: Nabarro, F. R. N. and Duesbery, M. S., North-Holland, 9, 191–402, 1992.
Rossman, G. R.: Analytical methods for measuring water in nominally
anhydrous minerals, Rev. Mineral. Geochem., 62, 1–28,
https://doi.org/10.2138/rmg.2006.62.1, 2006.
Sanders, M. J., Leslie, M., and Catlow, C. R. A.: Interatomic potentials for
SiO2, J. Chem. Soc., Chem. Comm., 19, 1271–1273, 1984.
Sanfilippo, A., Tribuzio, R., Ottolini, L., and Hamada, M.: Water, lithium
and trace element compositions of olivine from Lanzo South replacive mantle
dunites (Western Alps): New constraints into melt migration processes at
cold thermal regimes, Geochim. Cosmochim. Acta, 214, 51–72,
https://doi.org/10.1016/j.gca.2017.07.034, 2017.
Sanloup, C., Schmidt, B. C., Gudfinnsson, G., Dewaele, A., and Mezouar, M.:
Xenon and Argon: A contrasting behavior in olivine at depth, Geochim.
Cosmochim. Acta, 75, 6271–6284, https://doi.org/10.1016/j.gca.2011.08.023,
2011.
Satsukawa, T., Godard, M., Demouchy, S., Michibayashi, K., and Ildefonse,
B.: Chemical interactions in the subduction factory: New insights from an
in situ trace element and hydrogen study of the Ichinomegata and Oki-Dogo mantle
xenoliths (Japan), Geochim. Cosmochim. Acta, 208, 234–267,
https://doi.org/10.1016/j.gca.2017.03.042, 2017.
Sautter, V., Haggerty, S. E., and Field, S.: Ultradeep (> 300 kilometers) ultramafic xenoliths: Petrological evidence from the transition
zone, Science, 252, 827–830, https://doi.org/10.1126/science.252.5007.827,
1991.
Schmalzried, H.: Point defects in ternary ionic crystals, Prog.
Solid State Ch., 8, 265–308, 1965,
Schmalzried, H.: Solid State Reactions, 2nd edn., Verlag Chemie, Weinheim,
1981.
Schmädicke, E., Gose, J., Witt-Eickschen, G., and Brätz, H.: Olivine
from spinel peridotite xenoliths: Hydroxyl incorporation and mineral
composition, Am. Mineral., 98, 1870–1880, 2013.
Schock, R. N. (Ed.): Point Defects in Minerals, Geophysical Monograph Series,
American Geophysical Union, vol. 31, https://doi.org/10.1029/GM031, 1985.
Schwab, R. G. and Küstner, D.: Prazisionsgitter konstantenbestimmung
zur Festlegung röntgenographischer Bestimmungskurven für
synthetische Olivine der Mischkristallreiche Forsterit-Fayalit, Neues
Jahrb. Min. Mh., 205–215, 1977.
Scott, E. R. D.: Formation of olivine-metal textures in pallasite
meteorites, Geochim. Cosmochim. Acta., 41, 693–710, 1977.
Shankland T. J.: Electrical-conduction in rocks and minerals: Parameters for
interpretations, Phys. Earth Planet. Int., 10, 209–219, 1975.
Shannon, R. D.: Revised effective ionic radii and systematic studies of
interatomic distances in halides and chalcogenides, Acta. Cryst., 32,
751–767, 1976.
Shannon, R. D. and Prewitt, C. T.: Effective ionic radii in oxides and
fluorides, Acta. Cryst., 25, 925–946, 1969.
Shea, T., Costa, F., Krimer, D., and Hammer, J. E.: Accuracy of timescales
retrieved from diffusion modeling in olivine: A 3D perspective, Am.
Mineral., 100, 2026–2042, https://doi.org/10.2138/am-2015-5163, 2015.
Shea, T., Hammer, J. E., Hellebrand, E., Mourey, A. J., Costa, F., First, E.
C., Lynn, K. J., and Melnik, O.: Phosphorus and aluminum zoning in olivine:
contrasting behavior of two nominally incompatible trace elements, Contrib.
Mineral. Petrol., 74, 85, https://doi.org/10.1007/s00410-019-1618-y, 2019.
Shi F., Zhang, J., Xia, G., Jin, Z., and Green, H. W.: Rheology of
Mg2GeO4 olivine and spinel harzburgite: Implications for Earth's
mantle transition zone, Geophys. Res. Lett., 42, 2212–2218, 2015.
Shi, J., Ganschow, S., Klimm, D., Simon, K., Bertram, R., and Becker K.-D.:
Octahedral Cation Exchange in (Co0.21Mg0.79)2SiO4
olivine at high temperatures: Kinetics, point defect chemistry, and cation
diffusion, J. Phys. Chem., 113, 6267–6274,
https://doi.org/10.1021/jp810968q, 2009.
Shi, J. M. and Becker, K. D.: Kinetics of defect-induced cation
redistribution in (CoxMg1−x)2SiO4 olivines, Mat Sci.
Forum, 636–637, 119–123,
https://doi.org/10.4028/www.scientific.net/MSF.636-637.119, 2010.
Shockley, W. and Read, W. T.: Quantitative prediction from dislocation
models of crystal grain boundaries, Phys. Rev. B., 75, 692, https://doi.org/10.1103/PhysRev.75.692, 1949.
Slater. J. C.: Atomic radii in crystals, J. Chem. Phys., 41, 3199,
https://doi.org/10.1063/1.1725697, 1964.
Smyth, J. R., Miyajima, N., Huss, G. R., Hellebrand, E., Rubie, D. C., and
Frost, D. J.: Olivine-wadsleyite-pyroxene topotaxy: Evidence for coherent
nucleation and diffusion-controlled growth at the 410-km discontinuity,
Phys. Earth Planet. Int., 200-201, 85–91,
https://doi.org/10.1016/j.pepi.2012.04.003, 2012.
Smyth, D. M. and Stocker, R. L.: Point defects and non-stoichiometry in
forsterite, Phys. Earth Planet. Inter., 10, 183–192, 1975.
Soustelle, V, Tommasi, A., Demouchy, S., and Ionov, D.: Deformation and
fluid-rock interactions in supra-subduction mantle: Microstructures and
water contents in peridotite xenoliths from the Avacha volcano, Kamchatka,
J. Petrol., 51, 363–394, 2010.
Spandler, C. and O'Neill, H. S. C.: Diffusion and partition coefficients of
minor and traces elements in San Carlos olivine at 1,300 ∘C with
some geochemical implications, Contrib. Mineral. Petrol., 159, 781–818,
https://doi.org/10.1007/s00410-009-0456-8, 2010.
Spandler, C., O'Neill, H. S. C., and Kamenetsky, V. S.: Survival times of
anomalous melt inclusions from element diffusion in olivine and chromite,
Nature, 447, 303–306, 2007.
Speciale, P. A., Behr, W. M., Hirth, G., and Tokle, L.: Rates of olivine
grain growth during dynamic recrystallization and post-deformation
annealing, J. Geophys. Res.-Sol. Ea., 125, 420–434,
https://doi.org/10.1029/2020JB020415, 2020.
Stalder, R. and Ulmer, P.: Phase relations of serpentine composition
between 5 and 14 GPa: significance of clinohumite and phase E as water
carriers into the transition zone, Contrib. Mineral. Petrol., 140, 670–679,
2001.
Stixrude, L. and Lithgow-Bertelloni, C.: Mineralogy and elasticity of the
oceanic upper mantle: Origin of the low-velocity zone, J. Geophys. Res.,
110, B03204, https://doi.org/10.1029/2004JB002965, 2005.
Sun, X.-Y., Cordier, P., Taupin, V., Fressengeas, C., and Jahn, S.:
Continuous description of a grain boundary in forsterite from atomic scale
simulations: the role of disclinations, Phil. Mag., 96, 1757–17721,
https://doi.org/10.1080/14786435.2016.1177232, 2016.
Sun, X.-Y., Fressengeas, C., Taupin, V., Cordier, P., and Combe, N.:
Disconnections, dislocations and generalized disclinations in grain boundary
ledges, Int. J. Plasticity, 104, 134–146,
https://doi.org/10.1016/j.ijplas.2018.02.003, 2018.
Sutton, A. P. and Balluffi, R. W.: Interfaces in crystalline materials,
monographs in the physics and chemistry of materials, Oxford Science
Publications, Oxford, 1995.
Swartz, J. C.: Snoek effect in iron specimens with high dislocation
densities, Mat. Sci. Eng., 5, 30–34, 1969.
Sykes, D., Rossman, G. R., Veblen, D. R., and Grew, E. S.: Enhanced H and F
incorporation in borian olivine, Am. Mineral., 79, 904–908, 1994.
Tabata, H., Ishii, E., and Okuda, H.: Cation antiphase boundaries in ionic
crystals based on anion close packing, J. Cryst. Growth, 52, 956–962, 1981.
Takei, Y. and Holtzman, B. K.: Viscous constitutive relations of
solid-liquid composites in terms of grain boundary contiguity: 1. Grain
boundary diffusion control model, J. Geophys. Res., 114, B06205,
https://doi.org/10.1029/2008JB005850, 2009.
Takeuchi, Y., Watanabe, T., and Ito, T.: The crystal structure of
warwickite, ludwigite and pinakiolite, Acta Cryst., 3, 98–107, 1950.
Tang, Y., Xu, M., Duan, L., Chen, J., Li, C., Xiang, H., and Fang, L.:
Structure, microwave dielectric properties, and infrared reflectivity
spectrum of olivine type Ca2GeO4 ceramic, J. Eur. Ceram. Soc., 39,
2354–2359, https://doi.org/10.1016/j.jeurceramsoc.2019.02.039, 2019.
Tasaka, M. and Hiraga, T.: Influence of mineral fraction on the rheological
properties of forsterite + enstatite during grain-size-sensitive creep: 1.
Grain size and grain growth laws, J. Geophys. Res.-Sol. Ea., 118,
3970–3990, https://doi.org/10.1002/jgrb.50285, 2013.
Taylor, J. E.: II – Mean curvature and weighted mean curvature, Acta. Metall.
Mater., 40, 1475–1485, 1992.
Taylor, J. E., Cahn, J. W., and Handwerker, C. A.: I – Geometric models of
crystal growth, Acta. Metall. Mater., 40, 1443–1474, 1992.
Taylor, L. A., Logvinova, A. M., Howarth, G. H., Liu, Y., Peslier, A. H.,
Rossman, G. R., Guan, Y., Chen, Y., and Sobolev, N. V.: Low water contents in
diamond mineral inclusions: Proto-genetic origin in a dry cratonic
lithosphere, Earth Planet. Sc. Lett., 433, 125–132,
https://doi.org/10.1016/j.epsl.2015.10.042, 2016.
Thieme, M., Demouchy, S., Mainprice, D., Barou, F., and Cordier, P.: Stress
evolution and associated microstructure during transient creep of olivine at
1000–1200 ∘C, Phys. Earth Planet. Int., 278, 34–46,
https://doi.org/10.1016/j.pepi.2018.03.002, 2018.
Thomson, W.: On the homogeneous division of space, Proc. R. Soc. Lond., 55, 1–16, https://doi.org/10.1098/rspl.1894.0002, 1894.
Thornber, C. R. and Huebner, J. S.: Dissolution of olivine in basaltic
liquids: experimental observation and applications, Am. Mineral., 70, 934–945, 1985.
Tielke, J. A., Zimmerman, M. E., and Kohlstedt, D. L.: Hydrolytic weakening
in olivine single crystals, J. Geophys. Res., 122, 3465–3479,
https://doi.org/10.1002/(ISSN)2169-9356, 2017.
Tilley, C. E.: On larnite (calcium orthosilicate, a new mineral) and its
associated minerals from the limestone contact-zone of Scawt Hill, Co,
Antrim, Mineral. Mag. J. M. Soc., 22, 77–86, 1929.
Tingle, T. N. and Green II, H. W.: Carbon solubility in olivine:
Implications for upper mantle evolution, Geology, 15, 234–326, 1987.
Tollan, P. M. E., O'Neill, H. S. C., and Hermann, J.: The role of trace
elements in controlling H incorporation in San Carlos olivine, Contrib.
Mineral. Petrol., 173, 89, https://doi.org/10.1007/s00410-018-1517-7, 2018.
Tollan, P. M. E., Smith, R., O'Neill, H. S. C., and Hermann, J.: The responses
of the four main substitution mechanisms of H in olivine to H2O
activity at 1050 ∘C and 3 GPa, Prog. Earth Planet. Sci., 4, 14,
https://doi.org/10.1186/s40645-017-0128-7, 2017.
Tolstikhin, I., Kamensky, I., Tarakanov, S., Kramers, J., Pekala, M., Skiba,
V., Gannibal, M., and Novikov, D.: Noble gas isotope sites and mobility in
mafic rocks and olivine, Geochim. Cosmochim. Acta, 74, 1436–1447,
https://doi.org/10.1016/j.gca.2009.11.001, 2010.
Tommasi, A., Mameri, L., and Godard, M.: Textural and compositional changes
in the lithospheric mantle atop the Hawaiian plume: Consequences for seismic
properties, Geochem. Geophys. Geosyst., 21, 19–29,
https://doi.org/10.1029/2020GC009138, 2020.
Tommasi, A., Vauchez, A., and Ionov, D. I.: Deformation, static
recrystallization, and reactive melt transport in shallow subcontinental
mantle xenoliths (Tok cenozoic volcanic Fiel, SE Siberia), Earth Planet. Sc. Lett., 272, 65–77, 2008.
Träuble, H. and Essmann, U.: Flux line arrangement in superconductors as
revealed by direct observation, J. Appl. Phys., 39, 4052–4059, 1968.
Trull, T. W., Kurz, M. D., and Jenkins, W. J.: Diffusion of cosmogenic
3He in olivine and quartz: implications for the surface exposure
dating, Earth Planet. Sc. Lett., 103, 241–256, 1991.
Tshopp, M. A. and Mcdowell, D. L.: Asymmetric tilt grain boundary structure
and energy in copper and aluminium, Phil. Mag., 87, 3871–3892, https://doi.org/10.1080/14786430701455321, 2007.
Valbracht, P. J., Honda, M., Matsumoto, T., Mattielli, N., McDougall, I.,
Ragettli, R., and Weis, D.: Helium, neon and argon isotope systematics in
Kerguelen ultramafic xenoliths: implications for mantle source signatures,
Earth Planet. Sc. Lett., 138, 29–38, 1996.
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized
eigenvalue formalism, Phys. Rev. B, 41, 7892–7895, 1990.
Vaughan P. J. and Coe, R. S.: Creep mechanism in Mg2GeO4 –
Effect of phase-transition, J. Geophys. Res., 86, 389–404, 1981.
Velbel, M. A.: Dissolution of olivine during natural weathering, Geochim.
Cosmochim. Acta, 73, 6098–6113, https://doi.org/10.1016/j.gca.2009.07.024,
2009.
Volterra, V.: Sur l'équilibre des corps élastiques multiplement
connexes, Ann. Sci. Ecole Norm. Sup., 24, 401–517, 1907.
Von Mises, R.: Mechanik der plastischen Formänderung von Kristallen, Z.
Angew. Math. Mech., 8, 161–185, https://doi.org/10.1002/zamm.19280080302, 1928.
Walker, A. M., Demouchy, S., and Wright, K.: Computer modelling of the
energies and vibrational properties of hydroxyl groups in α- and
β-Mg2SiO4, Eur. J. Mineral., 18, 529–543, 2006.
Walker, A. M., Hermann, J., Berry, A., and O'Neill, H. S.: Three water sites
in upper mantle olivine and the role of titanium in the water weakening
mechanism, J. Geophys. Res., 112, B05211, https://doi.org/10.1029/2006JB004620,
2007.
Walker, A. M., Woodley, S. M., Slater, B., and Wright, K.: A computational
study of magnesium point defects and diffusion in forsterite, Phys. Earth
Planet. Int., 172, 20–27, https://doi.org/10.1016/j.pepi.2008.04.001, 2009.
Walker, A. M., Wright, K., and Slater, B.: A computational study of oxygen
diffusion in olivine, Phys. Chem. Minerals, 30, 356–545, 2003.
Wallis, D., Hansen, L. N., Ben Britton, T., and Wilkinson, A. J.:
Geometrically necessary dislocation densities in olivine obtained using
high-angular resolution electron backscatter diffraction, Ultramicrotomy,
168, 34–35, https://doi.org/10.1016/j.ultramic.2016.06.002, 2016.
Watson, G. W., Oliver, P. M., and Parker, S. C.: Computer simulation of the
structure and stability of forsterite surfaces, Phys. Chem. Minerals, 25,
70–78, 1997.
Welsch, B., Faure, F., Famin, V., Baronnet, A., and Bachèlery, P.:
Dendritic crystallization: A single process for all the textures of olivine
in basalts?, J. Petrol., 54, 539–574,
https://doi.org/10.1093/petrology/egs077, 2013.
Whittaker E. J. W. and Muntus, R.: Ionic radii use in geochemistry,
Geochim. Cosmochim. Acta, 34, 945–956, 1970,
Wilsdorf, H. G. F.: ASTM Spec. Tech. Publ. ASTM International, West Conshohocken, PA, 245, 43 pp. 1958.
Witt-Eickschen, G. and O'Neill, H. S. C.: The effect of temperature on the
equilibrium distribution of trace elements between clinopyroxene,
orthopyroxene, olivine and spinel in upper mantle peridotite, Chem. Geol.,
221, 65–101, https://doi.org/10.1016/j.chemgeo.2005.04.005, 2005.
Wogelius R. A. and Walther J. V.: Olivine dissolution at 25 ∘C:
Effect of pH, CO2, and organic acids, Geochim. Cosmochim. Acta, 55,
943–954, 1991.
Wogelius R. A. and Walther, J. V.: Olivine dissolution kinetics at
near-surface conditions, Chem. Geol., 97, 101–112, 1992.
Xie, D., Hirth, G., Hirth, J. P., and Wang, J.: Defects in deformation twins
in plagioclase, Phys. Chem. Minerals, 46, 959–975,
https://doi.org/10.1007/s00269-019-01055-9, 2019.
Xie, H., Jiang, W., Hou, Z., Xue, Y., Wang, Y., Liu, T., Tang, L., and Wu,
D.: DFT study of the carbonation on mineral aerosol surface models of
olivine: effect of water, Environ. Earth Sci., 76, 732,
https://doi.org/10.1007/s12665-017-6988-8, 2017.
Yoshino, T., Matsuzaki, T., Yamashita, S., and Katsura, T.: Hydrous olivine
unable to account for conductivity anomaly at the top of the asthenosphere,
Nature, 973–976, 2006.
Yoshino, T., Shimojuku, A., Shan, S., Guo, X., Yamazaki, D., Ito, E., Higo,
Y., and Funokoshi, K.-I.: Effect of temperature, pressure and iron content
on the electrical conductivity of olivine and its high-pressure polymorphs,
J. Geophys. Res., 117, B08205, https://doi.org/10.1029/2011JB008774, 2012.
Zhang, Y. X. and Cherniak, D. J.: Diffusion in minerals and melts, chap. 1, in:
Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 72, 1–4, 2010.
Zhang, H., Srolovitz, D. J., Douglas, J. F., and Warren, J. A.: Grain
boundaries exhibit the dynamics of glass-forming liquids, P. Natl. Acad.
Sci. USA, 106, 7736–7740, 2009.
Zhang Y. and Xu, Z.: Atomic radii of noble gas elements in condensed
phases, Am. Mineral., 80, 670–675, 1995.
Zhao, Y.-H., Zimmerman, M. E., and Kohlstedt, D. L.: Effect of iron content
on the creep behaviour of olivine: 1. Anhydrous conditions, Earth Planet. Sc. Lett., 287, 229–240, 2009.
Zhao, Y.-H., Zimmerman, M. E., and Kohlstedt, D. L.: Effect of iron content
on the creep behaviour of olivine: 2. Hydrous conditions, Phys. Earth
Planet. Int., 278, 26–33, https://doi.org/10.1016/j.pepi.2017.12.002, 2018.
Zuber, M., T.: The crust and mantle of Mars, Nature, 412, 220–227, 2001.
Short summary
Olivine, a ferromagnesian orthosilicate, is the most abundant mineral in Earth’s upper mantle but also in Mars' and Venus'. The olivine atomic structure is also used to manufacture lithium batteries. Like any other crystalline solid, olivine never occurs with a perfect crystalline structure: defects in various dimensions are ubiquitous. In this contribution, I review the current state of the art of defects in olivine and several implications for key processes in geodynamics.
Olivine, a ferromagnesian orthosilicate, is the most abundant mineral in Earth’s upper mantle...