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Abstract. Olivine, a ferromagnesian orthosilicate, is the most abundant mineral in Earth’s upper mantle and is
stable down to the olivine–wadsleyite phase transition, which defines the 410 km depth mantle transition zone.
Olivine also occurs in crustal environments in metamorphic and hydrothermal rocks and is expected to be the
major mineral constituent of the Martian and Venusian mantles. The olivine atomic structure is also used in
materials science to manufacture lithium batteries. Like any other crystalline solid, including minerals, olivine
never occurs with a perfect crystalline structure: defects in various dimensions are ubiquitous, from point, line,
and planar defects to three-dimensional (3-D) inclusions. In this contribution, I review the current state of the art
of defects in olivine and several implications for key processes occurring in Earth’s mantle. Intrinsic and extrinsic
point defects are detailed, exemplifying the astonishing diversity of atomic impurities in mantle-derived olivine.
Linear defects, one of the key defect types responsible for ductile deformation in crystalline solids, are examined
in light of recent progress in 3-D transmission electron microscopy, which has revealed an important diversity
of dislocation slip systems. I summarize the principal characteristics of interface defects in olivine: the free
surface, grain and interface boundaries, and internal planar defects. As the least-studied defects to date, interface
defects represent an important challenge for future studies and are the main application of numerical simulation
methods in materials science. I provide an overview of melt, fluid, and mineral inclusions, which are widely
studied in volcanology and igneous petrology. Special attention is given to new crystalline defects that act as
deformation agents: disclinations (rotational defects) and the potential occurrence of disconnections in olivine,
both of which are expected to occur along or near grain boundaries. Finally, I detail outstanding questions and
research directions that will further our understanding of the crystalline specificities and paradoxes of olivine
and olivine-rich rocks and ultimately their implications for the dynamics of Earth’s upper mantle.

1 Introduction

Minerals with perfect crystalline structures do not exist at
temperatures above 0 K. Indeed, all minerals contain various
types and quantities of defects that can be characterized and
studied as a population. These defects can take the forms of
misplaced atomic impurities, shifted atomic planes, or for-
eign minerals or melt pockets captured within the crystalline
lattice (e.g., Crawford and Slifkin, 1975; Hirth and Lothe,
1968; Sutton and Balluffi, 1995; Schock, 1985; Schmalzried,
1981; Philibert, 1991). In some cases, defects can lead to
important non-stoichiometries, even up to the point of com-
plete structural collapse. Defects are a response from na-
ture to minimize energy under external perturbations such as
variations in temperature; pressure; oxidation state; chemical

gradients; stress; and thermal, electrical, or magnetic fields.
Nevertheless, they are almost invisible entities; as presented
by Jean Baptiste Perrin (1926 Nobel laureate in Physics),
we must “explain complex visible things by simple invisi-
ble things” (in French “expliquer du visible compliqué, par
de l’invisible simple”; Perrin, 1913).

This contribution focuses on olivine, which composes
60 %–80 % of Earth’s upper mantle. This relatively simple
solid-solution silicate mineral is rich in paradoxes, and we do
not yet fully understand its complex physical and chemical
properties. Olivine is a key mineral in geodynamics because
it is the only interconnected mineral phase in the upper man-
tle, including the lithosphere–asthenosphere boundary where
a durable rheological contrast horizontally separates tectonic
(lithospheric) plates from the convecting asthenosphere be-
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neath. Olivine is also an important component of Mars’ man-
tle (garnet-bearing wehrlite, 73 % olivine; e.g., McGetchin
and Smyth, 1978; Morgan and Anders, 1979; Zuber, 2001),
Venus’ mantle (Morgan and Anders, 1980), and peculiar me-
teorites (e.g., pallasites, type-I chondrites; e.g., Scott, 1977;
Buseck, 1977; Dodd and Calef, 1971; Jaquet et al., 2021).
Nonetheless, the most important olivine reservoir by far is
the interstellar medium, where olivine occurs as dust parti-
cles. These interstellar olivines originated from the outflows
of evolved stars and lost their crystalline structure due to irra-
diation by solar wind, cosmic rays, and/or supernova shock
waves (e.g., Jones, 2007; Carrez et al., 2002; Messenger et
al., 2005).

The temperature in Earth’s mantle is well above 500 ◦C
and increases with depth. Olivine is stable until the phase
transition to its denser polymorph wadsleyite at mantle
transition zone conditions (∼ 410 km depth, ∼ 1600 K, 13–
14 GPa; Katsura and Ito, 1989; Katsura et al., 2004). The
number and types of defects in olivine, as well as interactions
between them, change to accommodate these drastic pressure
and temperature conditions, in turn modifying the mineral’s
physical and chemical properties. This feedback loop needs
to be qualified and quantified to understand the underlying
physics if we are to predict olivine properties at the atom and
grain scale and up to the scale of tectonic plates.

Defects in crystals and condensed matter are fundamen-
tal subjects in materials science because their manipulation
controls material behaviors and properties (e.g., Hull and Ba-
con, 1989, p. 237; Philibert, 1991). Many texts and reviews
are available in the materials science literature, mostly ad-
dressing a given type of defect, for example, point defects
(e.g., Crawford and Slifkin, 1975; Schock, 1985), disloca-
tions (e.g., Hirth and Lothe, 1968), or grain and interface
boundaries (e.g., Sutton and Balluffi, 1995; Han et al., 2018).
Other studies focus on physical processes and/or properties
involving these defects in Earth minerals, for example ionic
diffusion (e.g., Zhang and Cherniak, 2010), plastic defor-
mation (e.g., Poirier, 1976, 1985; Karato and Wenk, 2002),
electrical conductivity (e.g., Shankland, 1975; Yoshino et al.,
2012), or metasomatic changes in the chemical composition
of olivine (e.g., O’Reilly et al., 1997; Foley et al., 2013;
O’Reilly and Griffin, 2013; Demouchy and Alard, 2021).
These processes and properties notably involve hydrogen, by
far the most popular atomic impurity in olivine (e.g., Beran
and Zemann, 1969; Beran and Putnis, 1983; Kohlstedt et al.,
1996; Mosenfelder et al., 2006; Férot and Bolfan-Casanova,
2012; Demouchy and Bolfan-Casanova, 2016; Blanchard et
al., 2017; Demouchy and Alard, 2021).

This contribution is an up-to-date review of the state of
the art on atomic to nanometric and millimetric defects in
olivine. Their consequences for mantle processes are also
briefly discussed to emphasize their importance and rele-
vance. After describing a perfect and ideal olivine, defects
will be presented as a function of their spatial dimensions
(D). Point (0-D) defects are isolated atoms incorporated into

Figure 1. The habit and main crystallographic directions of olivine:
(a) theoretical model and (b) automorphic hydrothermal olivine
from Sapat, Pakistan.

or missing from the crystallographic structure. Linear (1-D)
defects are mostly represented by dislocations, lines along
which the lattice is sheared. Planar (2-D) defects are sur-
faces, interfaces, and grain boundaries along which neighbor-
ing crystals are joined together. Three-dimensional defects
change the crystal lattice over a finite volume and include de-
fect clusters, voids, and mineral or fluid inclusions. Finally,
recently observed defects and those expected to occur, al-
though not yet observed in olivine, are discussed: disclina-
tions and disconnections, respectively.

2 Perfect olivine and natural olivine

Olivine is a solid solution between four end-members,
first reported between 1823 and 1929 (Breithaupt, 1823;
Lévy, 1824; Gmelin, 1840; Tilley, 1929): forsterite,
Mg2SiO4 (Fo100Fa0, where Fo and Fa indicate the forsterite
and fayalite components, respectively); fayalite, Fe2SiO4
(Fo0Fa100); tephroite, Mn2SiO4; and larnite, Ca2SiO4. The
forsterite end-member is colorless, and the presence of Fe
in the solid solution gives olivine its namesake olive green
color with a slight yellow tint (Fig. 1). This review focuses
on the (Mg,Fe)2SiO4 composition and considers the Mg end-
member as the reference lattice. Due to the immense variety
of compositions, olivine is a vast mineral group (e.g., Deer et
al., 1997).

Olivine crystallizes in the orthorhombic system (space
group, Pbnm). The typical crystal habit is illustrated along-
side an example of a natural hydrothermal specimen in Fig. 1.
The crystallographic parameters of the Mg and Fe end-
members and a typical mantle-derived composition are com-
piled in Table 1. The olivine structure consists of independent
SiO4 tetrahedra linked by two divalent metal (Me) cations
(M1 and M2) in 6-fold coordination (Fig. 2). Oxygen anions
lie in sheets nearly parallel to (100) and are arranged in an
approximately hexagonal close-packing structure (Fig. 2a).
Each oxygen atom is bonded to one silicon and three octa-
hedrally coordinated Me cations (Fig. 2b). However, because
the oxygen atoms are not perfectly close-packed, the coor-
dinated polyhedra around M1 and M2 are not identical, and
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Table 1. Cell parameters of olivine end-members and a mantle
olivine (representative peridotitic composition, from San Carlos,
AZ). Error bars are typically around 0.05 %.

Pbnm space group; α = β = γ = 90◦; Z = 4

Forsterite Mantle olivine Fayalite
(Mg2SiO4) (Mg1.775Fe0.215Ni0.006 (Fe2SiO4)

Ca0.002Mn0.002SiO4)

Fo#∗ Fo100 Fo90 Fo0

a (Å) 4.754 4.7646 4.8211
b (Å) 10.1971 10.2296 10.4779
c (Å) 5.9806 5.9942 6.0889

Reference 1 2 1
∗ Fo#= 100× (Mg/(Fe+Mg)); 1: Schwab and Küstner (1977); 2: Abramson et
al. (1997).

the latter are slightly larger (M2–O= 2.135 Å) than the for-
mer (M1–O= 2.103 Å). The M1–O6 octahedra share edges
to form a chain parallel to the [001] axis. These chains are
connected by the M2–O6 octahedra. Mg and Fe2+ are not
perfectly distributed between the M1 and M2 sites; Fe2+ is
incorporated into the M1 site with only slight preference over
the M2 site.

Olivine is abundant in mafic and ultramafic rocks and
is thus the dominant mineral constituent of Earth’s up-
per mantle. Its abundance in the upper mantle is on
average 67 % but can be as high as 80 % in peri-
dotite and > 90 % in dunite (e.g., Stixrude and Lithgrow-
Bertelloni, 2005). Based on analyses of olivine in man-
tle xenoliths and assuming only iron as atomic impuri-
ties, mantle olivines have an average composition close
to (Mg0.9Fe0.1)2SiO4. Furthermore, incorporating the main
atomic impurities (minor elements) into the structural
formula yields (Mg1.775Fe0.215Ni0.006Mn0.002Ca0.002)SiO4
(e.g., Buening and Buseck, 1973; Frey and Prinz, 1978; Deer
et al., 1997).

Olivine is stable at room pressure and temperature, at
lower crustal conditions (e.g., in gabbros, ultramafic hy-
drothermal placers), and in Earth’s upper mantle. With in-
creasing temperature and pressure, olivine undergoes a first
phase transition into wadsleyite (orthorhombic, Imma at
mantle transition zone conditions (1327 ◦C, 13–14 GPa; Kat-
sura and Ito, 1989; Katsura et al., 2004) and a second tran-
sition into ringwoodite (cubic, Fd3m) at greater depths
(1400 ◦C, 17 GPa; Katsura and Ito, 1989; Katsura et al.,
2004; see also Pearson et al., 2015, for a unique natural spec-
imen). To date, rare olivines from ultra-deep settings have
only been observed in association with retrograde metamor-
phosed majorite relics (Sautter et al., 1991) or as rare min-
eral inclusions in diamonds (Kurosawa et al., 1997; Mat-
syuk et al., 2004; Novella et al., 2015; Taylor et al., 2016;
Jean et al., 2016). At lithospheric conditions, i.e., at temper-
atures below the 1027 ◦C (1300 K) isotherm, olivine is abun-

Figure 2. The crystallographic cell of olivine, in the space group
Pbnm: (a) in the plane (100) and (b) in three dimensions. The
Corey–Pauling–Koltrun color scheme is used for O, Si, and Mg
atoms, but the relative radii of the atoms are not preserved to
maintain clarity. Empirical atomic radii (±0.12 Å) are O= 0.9 Å,
Si= 1.1 Å, and Mg= 1.5 Å (see Slater, 1964).

dant in peridotite xenoliths transported toward the surface
by alkali basalts and kimberlites (e.g., Mercier and Nicolas,
1975; Arai, 1994; Witt-Eickschen and O’Neill, 2005; Bod-
inier and Godard, 2014), tectonically exhumed in orogenic
massifs (e.g., Bodinier and Godard, 2014; Le Roux et al.,
2007), or emplaced at slow-spreading mid-ocean ridges (e.g.,
Godard et al., 2008).

In nature, Fe-bearing magnesian olivine dominates,
although other solid solutions are observed: knebelite
(Fe,Mn)2SiO4 is associated with skarn rocks (Annersten
et al., 1984); monticellite (Ca,Mg)2SiO4 occurs in carbon-
atites; and kirschsteinite (Ca,Fe)2SiO4 occurs in melilitic or
nephelinitic magmas (Deer et al., 1997). Pure Ni2SiO4 has
never been reported in nature, but (Ni,Mg)2SiO4 has been
reported in Ni-rich deposits, often co-existing with quartzite,
or in serpentinized ultramafic rocks.

Olivine-analogous crystals can be synthesized with com-
plete cationic substitution, e.g., Mg2GeO4 (Vaughan and
Coe, 1981; Burnley et al., 1991, 2013; Dupas-Bruzek et
al., 1998; Shi et al., 2015). Some are useful for studying
specific substitutions: e.g., (Mg,Co)2SiO4 (Shi et al., 2009,
2010), Ca2GeO4 (Tang et al., 2019), or LiFePO4, the lat-
ter of which is used as Li-ion battery material (Islam et
al., 2005). To date, the name “olivine” is not approved as
a mineral name by the International Mineralogical Asso-
ciation (IMA; https://www.ima-mineralogy.org/Minlist.htm,
last access: 28 April 2021), since it is a mineral group name;
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Figure 3. Classification of defects in crystals based on dimen-
sionality. From 3-Da to 3-Dd, examples are provided specifically
for olivine: 3-Dc, internal crack and open grain boundaries in
nanoforsterite (from Gasc et al., 2019); 3-Da, Ti-rich precipitates
in Ti-doped forsterite (from Padrón-Navarta et al., 2014); 3-Db, a
pore in He-doped San Carlos olivine (from Burnard et al., 2015);
3-Dc, internal crack in nanoforsterite from Gasc et al. (2019); and
3-Dd, supercritical CO2 inclusions in San Carlos olivine (unpub-
lished image of sample SC32-1 from Demouchy, 2004).

only the names of naturally occurring end-members are rec-
ognized by the IMA, i.e., forsterite, fayalite, tephroite, lar-
nite, etc. (see the IMA list of approved mineral names at
http://cnmnc.main.jp/IMA_Master_List_(2020-11).pdf (last
access: 28 April 2021).

3 Point defects

A point defect disturbs the mineral lattice at an isolated
atomic site and thus is a 0-dimensional defect (0-D). Intrin-
sic defects, which do not significantly impact stoichiometry

or crystallography, are distinguished from extrinsic defects,
which are caused by the incorporation of foreign atoms to
the lattice and can induce major changes in, e.g., volume and
physical and chemical properties as a function of their size
and abundance. Intrinsic and extrinsic defects are illustrated
schematically in Fig. 3, together with higher-dimensional de-
fects. Note that in materials science, foreign atoms purposely
added to the solid are “solutes”, whereas others are “impuri-
ties”. In petro-geochemistry, extrinsic point defects are often
classified as a function of their concentration in a given min-
eral, from minor elements (< 1 wt % and> 100 ppm) to trace
(< 100 ppm) and ultra-trace (parts-per-billion, ppb, level) el-
ements.

3.1 Intrinsic point defects

Since only three ionic species are present in pure forsterite,
the number of intrinsic defects is limited. Using Kröger–
Vink notation (Kröger and Vink, 1956; see Appendix A),
one distinguishes (1) the vacancies V′′Me, V′′′′Si, and V q q

O
from (2) the interstitials O′′i , Mg q q

i , and Si q q q qi . The elec-
troneutral pair {V′′Me+Mg q q

i }
× is a Frenkel defect. Anion

and cation vacancies that compensate for each other, such as
{V q q

O +V′′Me}
×, are a Schottky defect. From the most recent

ab initio calculations (Walker et al., 2003, 2006, 2009), the
most energetically favorable vacancy within an initially per-
fect forsterite lattice is V′′M1 (24.48 eV or 3.84×10−18 J), the
next most favorable defects are two oxygen vacancies (V q q

O3
,

24.54 eV; V q q
O2

, 25.20 eV), followed by V′′M2 (26.40 eV,
4.16× 10−18) and the last oxygen vacancy (V q q

O1
, 27.97 eV).

As expected for silicates, silicon vacancies are highly unfa-
vorable (V′′′′Si, 100.81 eV or 1.6× 10−17 J). Among these
defects, the {V′′M1 +Mg q q

i }
× Frenkel defect is energetically

the most favorable configuration, notably for Mg diffusion
through a forsterite lattice when a split interstitial is involved
(e.g., see Walker et al., 2009, for details). These calculations,
as in earlier studies (e.g., Smyth and Stocker, 1975; Brodholt,
1997; Brodholt and Refson, 2000; Richmond and Brodholt,
2000), are for individual defects and not for an increasing
number of defects or different types of co-existing defect.
These energies are also calculated for atom extraction only,
not for the net energetic budget of atom displacement, i.e.,
extraction, migration, and nearby relocation. This latter cal-
culation is not yet available for complex ionic solids such as
forsterite or Fe-bearing olivine.

If we take forsterite as the reference lattice, iron is an
atomic impurity, even though iron is always present in mantle
minerals (Deer et al., 1997, pp. 20–45). In addition, the two
oxidation states of iron in olivine must be considered, even
if the abundance of ferric iron in olivine is low (< 0.01 wt %;
e.g., Duba et al., 1973; Nakamura and Schmalzried, 1983;
O’Neill et al., 1993). The presence of iron thus yields ad-
ditional point defects: Fe×Me, Fe qMe, Fe′Si, Fe q qi , and Fe q q qi .
Ferrous iron is preferentially incorporated into M1 vacan-
cies and ferric iron into the M2 vacancies (e.g., Walker et
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Figure 4. Atomic impurities in San Carlos olivine (spinel-bearing peridotite) ranked by decreasing concentration (ppm), and in a Pali-Aike
olivine (garnet-bearing peridotite) for comparison. Typical LA-ICP-MS detection limits are indicated by grey triangles, and the typical
unpolarized FTIR detection limit for H by the grey diamond. Analytical details, the original dataset, and further comparison with olivines
from other geological settings are available in Demouchy and Alard (2021).

al., 2009). Furthermore, the presence of ferric iron electri-
cally necessitates formation of vacancies and can produce
non-negligible stoichiometric changes at high iron concen-
trations (i.e., in fayalite; see Nakamura and Schmalzried,
1983). Despite great progress in ab initio calculation capa-
bilities, the incorporation and co-existence of both ferrous
and ferric iron in olivine remains difficult to solve, espe-
cially considering the extremely diverse range of extrinsic
defects (see Sect. 3.2) and variations in temperature, pres-
sure, and oxygen fugacity, among other parameters. One of
the primary limitations is the paucity of accurate empirical
interatomic potentials used in molecular dynamics calcula-
tions and pseudo-potentials and interatomic potentials used
in ab initio calculations for silicates (e.g., Mott and Little-
ton, 1938; Catlow and Mackrodt, 1982; Sanders et al., 1984;
Lewis and Catlow, 1985; Eastwood et al., 1980; Vanderbilt,
1990; Kresse and Hafner, 1994).

3.2 Extrinsic point defects

In addition to iron, natural olivines contain a wide range
of atomic impurities at various concentration levels (down
to ppb). Magmatic and metamorphic olivines contain sig-
nificantly more atomic impurities than lithospheric mantle
olivine (e.g., Bell et al., 2004; De Hoog et al., 2010, 2014;
Satsukawa et al., 2017). Nevertheless, compared to pyrox-
enes, spinel, and garnet, olivine is the most depleted mantle
mineral. As in clinopyroxene, the nature and abundance of
atomic impurities in olivine (e.g., Ni, Cr, Ti) are commonly
used as petrogenetic indicators, specifically targeting deep
crustal and mantle processes such as partial melting or meta-
somatism (e.g., Ringwood, 1955a, b; O’Reilly et al., 1997;
De Hoog et al., 2010; Foley et al., 2013; Sanfilippo et al.,
2017; Neave et al., 2018). Atomic impurities are also used
as proxies for equilibrium temperature (Ca in olivine and
co-existing orthopyroxene) and pressure (Al in olivine; e.g.,
Brey and Kohler, 1990; Witt-Eickschen and O’Neill, 2005;

Coogan et al., 2014; D’Souza et al., 2020; Bussweiler et
al., 2017). Thanks to recent technical advances, we can now
measure a broad array of atomic impurities in olivine, from
heavy (e.g., Th, U, at concentrations > 1 ppb) to light (e.g.,
Li) elements, by laser ablation inductively coupled plasma
mass spectrometry (LA-ICP-MS; e.g., Tollan et al., 2018;
Bussweiler et al., 2019; Batanova et al., 2019; Demouchy
and Alard, 2021). Other analytical methods are used to quan-
tify volatile concentrations: H by Fourier transform infrared
spectroscopy (FTIR; e.g., Beran and Zemann, 1969; Beran
and Putnis, 1983; Rossman, 2006), He and Ar by noble gas
mass spectrometry (e.g., Trull et al., 1991; Parman et al.,
2005; Tolstikhin et al., 2010; Burnard et al., 2015), and C
by secondary ion mass spectrometry (SIMS; e.g., Keppler
et al., 2003). Examples of atomic impurity concentrations
in olivines from a spinel-bearing peridotite from the well-
known San Carlos locality (Arizona) and from a Patagonian
garnet-bearing peridotite are provided in Fig. 4 (analytical
methods and original data reported in Demouchy and Alard,
2021). The elements are ranked in order of decreasing con-
centration as in Bussweiler et al. (2019; see their Fig. 2) to
show the typical ranges of major, minor, trace, and ultra-
trace elements incorporated in mantle olivines. The San Car-
los olivine is used as a reference for ranking the elements,
and the Patagonian olivine is overlain to highlight slight en-
richments or depletions observed in deeper olivines from
garnet-bearing peridotites. Elements at concentrations below
the typical detection limits (grey symbols; see details in De-
mouchy and Alard, 2021) are included at the far right.

The incorporation of these atomic impurities in olivine can
be predicted following Goldschmidt’s rules, which describe
the partitioning between the solid phase and co-existing sil-
icate melt at equilibrium (Goldschmidt, 1926, 1937; Ring-
wood, 1955a, b): (1) if two ions have similar ionic radii and
the same electric charge, the smaller will be preferentially
concentrated in the mineral; and (2) if two ions have sim-
ilar ionic radii but different electric charges, the ion with
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the highest charge will be preferentially concentrated in the
mineral. These rules are based on the simple ionic model of
minimizing lattice energy (Burns, 1993) and involve an ideal
ionic radius in the lattice. However, ions that are theoreti-
cally too large or small for a given lattice site radius can
still be incorporated, although in smaller quantities. These
rules ignore pre-existing intrinsic defects, i.e., defect inter-
actions controlled by electroneutrality, and imply that min-
erals reached equilibrium with their host melt; thus they are
not appropriate for mineral–mineral partitioning in melt-free
systems, in which energy minimization occurs after thermo-
dynamics changes to the system (e.g., temperature, pressure,
oxygen fugacity). However, this set of rules is a powerful first
approximation of mineral–melt trace element partitioning in
geochemistry.

The cation coordination number (CCN) is also used to pre-
dict the incorporation of atomic impurities. There are again
necessary assumptions: (1) cations and anions are treated as
rigid spheres, and (2) ionic radii are constant within the lat-
tice. One then calculates the ratio of cation / oxygen radii for
each potential extrinsic atom. This approach is very useful
for elements similar to Mg in olivine and can be used to pre-
dict mineral–mineral partitioning, but it does not account for
defect interactions or complex electroneutrality. Ionic radii
for silicates are available in Shannon and Prewitt (1969),
Shannon (1976), and Whittaker and Muntus (1970). Unfor-
tunately, these empirical radii do not consider specificities of
the host mineral lattice and assume that the interatomic dis-
tances between oxygens and cations are perfectly constant,
which is not the case for olivine (O1, O2, and O3 have dif-
ferent bond lengths to the M1 and M2 sites; see Birle et al.,
1968). Furthermore, the ratio of radii heavily relies on the
ionic radius of O2−, which was experimentally determined to
be close to 1.40 Å (the value chosen here), although theoret-
ical calculations suggest a lower value of 1.26 Å (Fumi and
Tosi, 1964; Whittaker and Muntus, 1970). This lack of accu-
racy leads to significant discrepancies for the incorporation
of large cations in olivine. Ionic radii from Shannon (1976)
and Zhang and Xu (1995) are displayed as a function of oxi-
dation state in Fig. 5.

In a first approximation, the population of extrinsic defects
depends directly on the initial concentration of intrinsic de-
fects at a given temperature (e.g., mostly following an Ar-
rhenius law; Schmalzried, 1965) and pressure and then on
the most energetically favorable simple substitution. To date,
these defects are always decrypted as defect pairs (vacancy–
cation) or defect reactions (cation–cation) and largely ignore
other neighboring defects (vacancy–anion) or the meso-scale
electroneutrality of the mineral. In olivine, such defects are of
interest in terms of electrical properties, plasticity, and chem-
ical reservoirs in the upper mantle. Simple substitutions and
complex associated defects are described below in order of
ionic valence.

3.2.1 Monovalent cations

The most abundant monovalent cationic impurities in olivine
are H+, Li+, and Na+ (Kent and Rossman, 2002; Sykes
et al., 1994; Grant and Wood, 2010; Demouchy and Alard,
2021), but Rb+ and Cs+ are also present as ultra-trace ele-
ments (Fig. 4). Whether monovalent cations are incorporated
within vacancies or as interstitials remains disputed, espe-
cially for hydrogen, which is a mere proton (a full H atom
has a radius of only 1.7×10−5 Å according to Bohr’s model).
However, theoretical calculations indicate that monovalent
cations should be preferentially incorporated into the M1 site,
and divalent and some trivalent elements should be incorpo-
rated into the M2 site (Purton et al., 1997).

The incorporation of K+ in olivine is theoretically possi-
ble, but its detection remains an analytical challenge as it is
quite volatile, and its concentration in olivine is too low for
analyses by electron probe microanalysis (EPMA). Further-
more, its mass (39K) is too close to that of argon (40Ar) to
permit its detection by LA-ICP-MS.

Hydrogen incorporation in olivine has been extensively
studied since hydrogen impacts its physical and chemical
properties, for example, by enhancing electrical conductiv-
ity (Karato, 1989; Yoshino et al., 2006; Poe et al., 2010) and
the ionic diffusion of major elements (e.g., Hier-Majumder et
al., 2004; Costa and Chakraborty, 2008) and decreasing the
strength (e.g., Mackwell et al., 1985; Demouchy et al., 2012;
Tielke et al., 2017) and melting temperature (e.g., Kushiro et
al., 1968; Gaetani and Grove, 1998) of olivine. Consequently,
the distribution of hydrogen in mantle olivine is repeatedly
proposed as a key geodynamics parameter (e.g., Regenauer-
Lieb and Kohl, 2003; Regenauer-Lieb et al., 2006; Albarède,
2009; Peslier et al., 2010; Masuti et al., 2016). Experimental
petrology and mineralogy have been crucial to understanding
the primary mechanisms of hydrogen incorporation in mantle
olivine as extrinsic point defects (e.g., Kohlstedt et al., 1996;
Keppler and Bolfan-Casanova, 2006; Bali et al., 2008; Férot
and Bolfan-Casanova, 2012; Gaetani et al., 2014; Padrón-
Navarta and Hermann, 2017; Tollan et al., 2018). However,
the systematic characterization of the speciation and abun-
dance of hydrogen in mantle olivine from a wide range of ge-
ological origins has only begun recently (see reviews by Pes-
lier, 2010, and Demouchy and Bolfan-Casanova, 2016; De-
mouchy and Alard, 2021). Our understanding of H-bearing
point defects has evolved a lot with time from simple equi-
librated defects, e.g., {2OH q

O+V′′Me}
×, {4OH q

O+V′′′′Si}
×,

or as interstitial H q
i , to complex, associated defects involving

both intrinsic and extrinsic defects, e.g., tetravalent {Ti q qMe+

2H′′Si}
× or trivalent {Al′Si+OH q

O}
× (e.g., Berry et al., 2005;

Padrón-Navarta and Hermann, 2017). Complex defects can
be extremely diverse, and currently documented examples
are summarized in Sect. 3.2.7.
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Figure 5. Ionic radii of cations and anions in olivine as a function of oxidation state. Ionic radii are from Shannon (1976), except for noble
gases, which are from Zhang and Xu (1995). Note that the high-spin state is reported for the transition metals (as in De Hoog et al., 2010).
The calculated ionic radius of O2− from Fumi and Tosi (1964) is also shown for comparison. H could not be included because, to date, the
ionic radius of H+ in silicates is not known with satisfying accuracy. To guide the eye, Si, Mg, and O are shown in red; the different positions
for different coordinations of oxygen are also given, and vertical dashed lines delimit the approximate ranges of ion incorporation into Si,
Mg, and O vacancies.

3.2.2 Divalent cations

Ni2+, Mn2+, Ca2+, and Co2+ are easily incorporated in the
metal site because they have similar ionic radii and identi-
cal charges (Fig. 5). Mantle olivines can also contain Zn2+,
Sr2+, Ba2+, and Cu2+ in low concentrations. Ni is the most
abundant atomic impurity in mantle (Fig. 4; e.g., Frey and
Prinz, 1978), as well as in magmatic and metamorphic,
olivines. Divalent cations are expected to occupy both the M1
and M2 sites, with a slight preference for the latter (e.g., Deer
et al., 1997), but systematic studies demonstrating the rela-
tive occupancies of each minor and trace element are lacking.
Doping techniques are commonly used in gemmology to en-
hance visual quality and can yield marvels such as synthetic
cobalt-doped forsterite, which displays a remarkable indigo
color and is sold as an imitation of tanzanite.

3.2.3 Trivalent cations

Trivalent cations such as Fe3+ and Cr3+ (Deer et al., 1997),
Al3+ and B3+ (Sykes et al., 1994), Sc3+, and rare Earth el-
ements (REEs – La, Ce, Pr, Nd, Sm, Eu here assumed to be
mostly 3+, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) are also in-
corporated into olivine, as reported in natural olivines and ex-
perimentally doped forsterite (e.g., Berry et al., 2007; Mall-
mann et al., 2013; Tollan et al., 2018; Demouchy and Alard,
2021). Cr3+ and B3+ should preferentially occupy Me va-
cancies, whereas Al3+ can occupy either Me or Si vacancies

(e.g., Purton et al., 1997; Grant and Wood, 2010; Blanchard
et al., 2017); note that ludwigite (Mg2FeBO5) can also form
(Takeuchi et al., 1950; Irwin and Peterson, 1999). The ox-
idation state can influence the coordination of certain ele-
ments; e.g., V is incorporated in olivine as V3+, not as pen-
tavalent, under normal upper-mantle conditions (e.g., Berry
et al., 2007; Mallmann and O’Neill, 2009). Cr3+ seems to be
the dominant trivalent species in olivine if Fe3+ is ignored.
To date, the exact amount of Fe3+ in olivine remains hard
to quantify as it is below the detection limit of Mössbauer
spectroscopy (< 100 ppm; e.g., Duba et al., 1973), whereas
Cr3+ concentrations are 100–200 ppm in mantle olivine and
can reach almost 1000 ppm in magmatic olivine (e.g., Foley
et al., 2013; Tollan et al., 2018).

3.2.4 Tetravalent cations

Tetravalent impurities such as (1) Ti4+ and Ge4+ and
(2) Zr4+, Mo4+, Hf4+, and Th4+ occur in trace and ultra-
trace amounts, respectively, in natural olivine (Fig. 4). They
can theoretically occupy Si vacancies if a defect reaction
does not occur (Fig. 5), but Zr4+ and Hf4+ can diffuse as
fast as Fe and Mg in olivine at 1200–1500 ◦C (Jollands et al.,
2016). C4+ has been experimentally incorporated into olivine
at very low solubilities (< 1 ppm; Keppler et al., 2003; see
also Tingle and Green, 1987); nevertheless, its detection and
quantification within the lattice of natural specimens remains
very challenging (e.g., Oberheuser et al., 1983). Furthermore,
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carbon incorporation during the weathering of olivine-rich
rocks, such as serpentinization, is a possible mechanism of
carbon sequestration (e.g., Olsson et al., 2012; Peuble et al.,
2015).

3.2.5 Pentavalent cations

The incorporation of pentavalent impurities such as P5+ and
Ta5+ is also possible. Phosphorus is the most abundant pen-
tavalent cation in natural olivines and has been successfully
used to trace crystalline growth in magmatic olivines (e.g.,
Shea et al., 2015; Howarth and Gross, 2019). Phosphorus-
rich olivine (P concentrations at the percentage-by-mass
level) was first noted by Buseck (1977) in pallasites. The in-
corporation of P is favored due to its small ionic radius com-
pared to, e.g., Al (IVP= 0.17 Å; VIP= 0.38 Å; IVAl= 0.38 Å;
VIAl= 0.535 Å; Fig. 5). In terrestrial olivines, P concentra-
tions are highly variable: magmatic olivines can contain up
to 925 ppm P but as little as 80 ppm in potassic lavas or
around 200 ppm in komatiitic olivine (e.g., Milman-Barris
et al., 2008; Shea et al., 2015; Ersoy et al., 2019). These
large variations are attributed not only to rapid growth zon-
ing of olivine in the parent melt (Milman-Barris et al., 2008;
Shea et al., 2015) but also to analytical difficulties because
P easily interferes with Si. Indeed, the first ionization en-
ergy of P (= 10.49 eV) is higher than that of Si (= 8.15 eV).
Phosphorus concentrations are also highly variable in mantle
olivines, ranging from 11 to 20 ppm in San Carlos olivine to
650 ppm in other mantle olivines (e.g., Brunet and Chazot,
2001; Mallmann and O’Neill, 2009; Mallmann et al., 2009;
Baziotis et al., 2017; Demouchy and Alard, 2021). Phospho-
rus also occurs in higher concentrations in olivine than Ta5+,
which occurs only at the ppb level (Fig. 4). Phosphorus in-
corporation can be coupled to other extrinsic defects (Al3+,
Cr3+, Li+, or Na+), though not systematically (e.g., Milman-
Barris et al., 2008; Foley et al., 2010). An experimental study
on the formation of metastable phosphoran olivine (3 wt %–
27 wt % P2O5) showed that P5+ occupies Si vacancies and
that charge balance is maintained by metal vacancies (Boe-
senberg and Hewins, 2010).

3.2.6 Anions and noble gases

Substitutions in olivine are not limited to cationic sites only;
anionic impurities are also possible because oxygen vacan-
cies (O3 or O2) are theoretically almost as favorable as
M1 vacancies (see Sect. 3.1). The lattice of olivine can
incorporate Cl− and F−, although the few studies avail-
able report low concentrations for these halogens in man-
tle olivine: 5–6.3 ppm Cl (Beyer et al., 2012) and 100 ppm F
in olivine megacrysts (Hervig and Bell, 2005) but only
2–10 ppm F in olivine from spinel-bearing peridotites and
30 ppm F in garnet-bearing peridotites (Beyer et al., 2012).
Unusual B-rich olivines also contain high F concentrations
(3300–5500 ppm F; Sykes et al., 1994). Partitioning exper-

iments have produced olivine containing 0.17–1.45 ppm Cl
and 0.002–2.56 ppm F (Joachim et al., 2015) or higher con-
centrations when abundant fluid is present (15–400 ppm Cl,
56–900 ppm F; Fabbrizio et al., 2013). Concentrations up
to 0.51 wt % F were reported for experimentally F-saturated
olivine (Mg2SiO4–MgF2; Grützner et al., 2017), and clino-
humite lamellae can occur at higher F concentrations (e.g.,
Stalder and Ulmer, 2001). Although the incorporation of
bromine in olivine was the focus of a preliminary study
(Joachim et al., 2016), to date, no publication has reported
the successful incorporation of bromine, iodine, or astatine
in natural olivine.

Nobles gases are inert at room conditions, but, at the high
pressures and temperatures of Earth’s interior, distortion of
their electron clouds (polarization) allows them to bond with
ions in silicates (e.g., Hiyagon and Ozima, 1986), and olivine
can incorporate trace amounts of He, Ne, Ar, Kr, and Xe
(e.g., Valbracht et al., 1996; Trull et al., 1991; Brooker et
al., 2003; Parman et al., 2005; Tolstikhin et al., 2010; San-
loup et al., 2011; Moirera and Kurz, 2013; Burnard et al.,
2015; Delon et al., 2018, 2019). Noble gas ionic radii from
Zhang and Xu (1995) are included in Fig. 5. Although inter-
stitial sites are a valid hypothetical mechanism of noble gas
incorporation, recent studies have shown that He and Ar can
also occupy Me vacancies (Delon et al., 2018, 2019) and Xe
is more likely to occupy Si vacancies (e.g., Sanloup et al.,
2011).

3.2.7 Complex point defects

Although the number of intrinsic defects is limited to three
atomic sites and interstitials in the olivine lattice and the con-
centrations of extrinsic atomic impurities are low, the vast
range of atomic impurities leads to innumerable complex de-
fects combining heterovalent ions. Here I summarize only the
most recognized complex defects identified in experimental
or natural olivines.

The formation of complex defects (or stable coupled
substitutions) between monovalent (Mono) and trivalent
(Tri) cations might appear straightforward at first, with
{Mono′Mg+Tri qMg}

×, and are possible for a wide range of
compositions, including REEs, which are mostly trivalent
(REE3+). For example, the association of Li+ with Sc3+

was calculated to be the most favorable complex defect in
olivine (e.g., Purton et al., 1997). Later partitioning exper-
iments at high pressure and temperature (Grant and Wood,
2010) showed that this complex defect is indeed possible
but varies as a function of concentration. At low concentra-
tions, {Li′Mg+Sc qMg}

× occurs, but at > 500 ppm Sc, this de-
fect evolves toward {Li qi +Sc qMg}

q q. If alone, Sc3+ is simply
substituted for Mg and is charge-balanced by the formation
of Me vacancies, {V′′Mg+2Sc qMg}

×. Grant and Wood (2010)
also reported the formation of {Li′Mg+Ga qMg}

×, but the for-
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mation of stable {Li′Mg+Al qMg}
× or coupling between Na+

and Sc3+ or Na+ and Al3+ has not yet been reported.
Hydrogen incorporation has been the focus of specific

studies, first on the mechanism of diffusion via the com-
plex defect {H′Mg+Fe qMg}

× (Mackwell and Kohlstedt, 1990;
Kohlstedt and Mackwell, 1998), and more recently, LA-ICP-
MS measurements have revealed the significant occurrence
of {H′Mg+Cr qMg}

×, {H′Mg+Al qMg}
×, {2H′Mg+V q q

Mg}
×, or

{H′Mg+REE q
Mg}
× in mantle olivine (e.g., Tollan et al., 2017,

2018; Demouchy and Alard, 2021). If hydrogen is alone,
the Si vacancy is absent, and if the system is water under-
saturated, the simple substitution (2H)×Mg is likely to dom-
inate (Kohlstedt et al., 1996). For boron, {OH q

O+B′Si}
×

is more favorable than {H′Mg+B q
Mg}
× (Grew et al., 1991;

Sykes et al., 1994), but {OH q
O+B′Si}

×, {H′Mg+B q
Mg}
×, and

even {Li′Mg+B q
Mg}
× do not seem to be striking features

of mantle-derived olivines (Kent and Rossmann, 2002; De-
mouchy and Alard, 2021). Neutral complex defects involv-
ing only trivalent cations also occur in magmatic olivine,

such as
{

Cr qMgAl′Si

}×
(e.g., Milman-Barris et al., 2008; Shea

et al., 2019). As for trivalent cations, the incorporation of
Ti with hydrogen has been the subject of specific atten-
tion. Alone, Ti cations sit in Si vacancies, but when co-
existing with hydrogen, they can form the complex defect{

Ti q qMg(2H)′′Si

}×
by exchange reaction. This type of extrin-

sic defect, the “titanium-clinohumite-like point defect”, com-
bines the migration of Ti4+ from a Si vacancy toward a Mg
vacancy and two H+ ions occupying a Si vacancy, and its
existence is supported by experimental studies and ab initio
calculations (Berry et al., 2005, 2007a, b; Walker et al., 2007;
Padrón-Navarta et al., 2014; Padrón-Navarta and Hermann,
2017; Tollan et al., 2018). This defect is easily detected by
FTIR since it displays two intense infrared bands at 3575
and 3525 cm−1 in most mantle olivines (e.g., Berry et al.,
2005, 2007; Miller et al., 1987; Demouchy and Alard, 2021;
Schmaedicke et al., 2013). It is important to note that such
information on hydrogen speciation in olivine cannot be in-
ferred by SIMS. The titanium-clinohumite-like point defect

should be noted:
{

Ti q qMg(2H)′′Si

}×
in Kröger–Vink notation

but sometimes abbreviated as simply [Ti-2H].
Numerous mechanisms of P incorporation in olivine have

been proposed, from simple substitutions in Si vacancies
(P q

Si) to complex defects, but all would require significant
Si vacancies to permit the neutral occupancy of two Si sites,
e.g., as

{
Al′SiP

q
Si
}× (Agrell et al., 1998; Milman-Barris et al.,

2008; Boesenberg and Hewins, 2010; Baziotis et al., 2017;
Shea et al., 2015, 2019). Theoretically,

{
H′MgP q

Si
}× should

be a favorable complex defect too, but, to date, this incorpo-
ration mechanism has not been confirmed.

Atomic impurities in natural olivine comprise almost the
entire periodic table; as a result, the list of possible com-
plex associated defects is truly innumerable. Even consid-

ering the sum of monovalent, trivalent, and pentavalent im-
purities, i.e., those introducing the most important electrical
imbalance, their distribution in olivine is particularly mani-
fold. Although experimental studies have identified key in-
corporation mechanisms for simple systems, sometimes by
over-doping compared to natural olivine compositions, fur-
ther progress is still required to fully understand point defects
in natural systems, even for simple silicates like olivine.

4 Linear defects – dislocations

4.1 Nomenclature and mechanisms of motion

Dislocations are the most widespread one-dimensional de-
fects in crystals. These lines can be considered singular-
ities running through the atomic lattice, along which the
crystal order is significantly modified (Fig. 3, 1-Da, and
Fig. 6). Their formation, multiplication, annihilation, and
mobility control mechanical properties in the ductile (plas-
tic) regime. They also enhance atomic diffusion (diffusion
pipe) and can yield the formation of impurity clusters (e.g.,
Cottrell atmosphere – Cottrell and Bilby, 1949; Snoek effect
– Swartz, 1969). Some types of dislocations are primordial
during crystal growth (Frank, 1949; Burton et al., 1951), yet
growth techniques generally aim to minimize their occur-
rence (Hoyosa and Takei, 1982). In ionic solids, dislocations
can be neutral, but most of time they carry charges (e.g., Hirel
et al., 2019), a fundamental property that has received little
attention in mineralogy.

The concept of dislocations in solids was introduced by
Volterra (1907); their importance in the permanent deforma-
tion of metals arose in the 1930s (e.g., Buerger, 1930), and
they were applied to creep in Earth minerals and rocks in
the 1960s (e.g., Griggs et al., 1960; Raleigh, 1968; Poirier,
1985). Whereas static and mobile dislocations in metals have
been observed by transmission electron microscopy (TEM)
since the 1950s (e.g., Wilsdorf, 1958), mobile dislocations in
very refractory materials such as olivine have only recently
been observed (Idrissi et al., 2016).

When stress is applied to a crystal, a dislocation (marked
by the two ⊥ symbols in Fig. 6c) can form and glide along
specific planes, propagating an elementary shear charac-
terized by the Burgers vector b (Fig. 6a–c). The associa-
tion of the shear direction (e.g., [100]) and the glide plane
(e.g., (010)) is called a slip system, usually noted [uvw](hkl)
(in this example, [100](010); this notation is equivalent to
(010)[100], and both can be find in the literature). A dislo-
cation is thus determined by two vectors: the line vector u,
which varies along the dislocation line, and the Burgers vec-
tor b, which is constant. Since a dislocation cannot terminate
in a crystal, they often form loops or end on other defects
(e.g., other dislocations or in grain boundaries). Two differ-
ent situations are distinguished. When u and b are perpendic-
ular, a dislocation is called an edge. As shown in Fig. 6, an
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Figure 6. Dislocations in crystalline solids: (a) deformation by shear stress; (b) translation by edge dislocation, showing the glide plane, the
dislocation direction, and the Burgers vector b; (c) a screw and edge dislocation; (d) the core of an edge dislocation, corresponding to the
orange square in (b); (e) a dislocation loop; (f) dislocation climb by activity on a jog; and (g) dislocation cross slip.

edge dislocation can move in its glide plane (defined by the
line and Burgers vectors) under applied stress and thus can
move out of its glide plane if it absorbs or emits point defects
(e.g., vacancies) along steps on the line called jogs (Poirier,
1985, p. 56; Fig. 6f). This non-conservative motion occurs
only at high temperatures because it requires a meaningful
vacancy density and rapid ionic diffusion. The co-existence
of climb and glide permits drastic decreases in the mechani-
cal strength of metals, ceramics, and minerals (e.g., Hull and
Bacon, 1989; Poirier, 1985; Boioli et al., 2015a, b). When
the line vector u and b are collinear, the dislocation is called
a screw, which is very important in static growth (e.g., Frank,
1949; Nabarro, 1989). In this case, the slip system is not ge-
ometrically constrained, and a screw dislocation can poten-
tially change glide planes as it glides, a process called cross

slip. These theoretical concepts are useful for characterizing
dislocations, but dislocations change their shape during mo-
tion, and the character of a dislocation segment can evolve
through time. Note that a dislocation always moves perpen-
dicularly to its line, whatever its character (edge, screw, or
mixed). Far from its line, a dislocation is characterized by its
long-range elastic field, which is how a dislocation responds
to an external stress. Close to the dislocation line, there is a
particular atomic arrangement in a region called the disloca-
tion core. This arrangement, which can only be described at
the atomic scale, has a strong influence on the mobility of the
dislocation and hence on mechanical properties. In a mineral
like olivine, with complex crystal chemistry and structure,
the core structure is rather complicated, with multiple possi-
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Figure 7. Typical dislocation slip systems in olivine as a func-
tion of temperature (redrawn from Carter and Avé Lallemant,
1970): (a) [001] dislocation, typical of low-temperature creep, TEM
weak-beam dark-field micrograph from Demouchy et al. (2014);
(b) [100] and [001] dislocations co-existing at 1080 ◦C, TEM weak-
beam dark-field micrograph of sample PoEM-8 from Demouchy
et al. (2013); and (c) [100] dislocation, sample PI-0546 from De-
mouchy et al. (2012).

ble configurations (e.g., as a function of pressure) and even
possible transient cores (see Mahendran et al., 2019).

4.2 Dislocations in olivine

The crystallographic lattice of olivine has the peculiarity of
having two short axes (a= 4.76 Å; c= 5.66 Å) and one sig-
nificantly longer axis (b= 10.22 Å). The elastic energy of a
dislocation is proportional to the square of the Burgers vec-
tor, implying that the shortest lattice repeats, [100] in olivine,
usually correspond to the most favorable Burgers vectors.
Indeed, [010] dislocations in olivine are almost never ob-
served (Fujino et al., 1993). In mantle-derived olivine, dislo-
cation slip systems were theoretically established and further
refined by observations (Carter and Avé Lallemand, 1970;
Mussi et al., 2014, 2015). They are illustrated in Fig. 7a–c:
[100](010), [100](001), [100]{0kl}, [001](100), [001](010),
[001]{110}, [001](140), [001](130), and [001](120). The ac-
tivity of dislocation slip systems in olivine is strongly depen-
dent on temperature and stress. Based on slip bands formed at
the surfaces of experimentally deformed iron-bearing olivine
monocrystals, Raleigh (1968) proposed that [001] disloca-
tions glide in the {110} and (100) planes at temperatures
below 1000 ◦C. At 1000 ◦C, [100] dislocations also occur,
and glide in {0kl} planes (Fig. 7d–e). The [001] glide is also
strongly active at the lower temperatures and high differen-

tial stresses typical of the uppermost mantle (e.g., Raleigh,
1968; Barber et al., 2010; Demouchy et al., 2014; Mussi et
al., 2014, 2015). Based on transmission electron microscopy
(TEM), Gaboriaud et al. (1981) identified the gliding of both
[100] and [001] dislocations in the low-temperature regime
(20–900 ◦C), with a net dominance of [001] screw disloca-
tions. Because the determination of glide planes by standard
TEM observations remains very difficult, authors have iden-
tified (100) and {110} planes at temperatures above 600 ◦C
via the decoration technique (Kohlstedt et al., 1976). Recent
developments with electron channeling contrast imaging in
electron microscopy (Miyajima et al., 2018, 2019) and fur-
thermore with TEM electron tomography (Mussi et al., 2014,
2015) have allowed advanced imaging of dislocations, no-
tably the identification of glide planes for the [001] screw
dislocation in deformed olivine aggregates. The TEM elec-
tron tomography technique also permits a statistic approach;
Mussi et al. (2014, 2015) reported the expected (100), (010),
and {110} planes but also (140), (130), and (120) glide planes
for [001] dislocations, with a net dominance of {110} planes,
not (100) or (010). At temperatures typical of the astheno-
spheric mantle and under low differential stresses, the dom-
inant slip systems in olivine involve [100] glide (i.e., above
ca. 1100 ◦C; Raleigh, 1968; Gueguen, 1979; Ben Ismail and
Mainprice, 1999; Couvy et al., 2004; Demouchy et al., 2013).
At very high temperatures (1700 ◦C, too high to be geolog-
ically relevant), slip systems identified from experimentally
deformed iron-bearing olivine monocrystals using the deco-
ration technique (Kohlstedt et al., 1976) showed the activ-
ity of only [100] dislocations in both the (010) and (001)
planes. Subsequent TEM analyses of similar iron-free olivine
experimentally deformed at temperatures between 1400 and
1650 ◦C (Gueguen and Darot, 1982) demonstrated the ad-
ditional activity of [001] dislocations in (100) and (010).
Note that in olivine at high temperature (> 1300 ◦C), the
dislocation climb mechanism unlocks edge [100] disloca-
tions, and recent numerical modeling of dislocation dynam-
ics has shown that only a small amount of climb is necessary
(< 0.1 % of the strain) to maintain an effective dislocation
glide at the macroscale (Boioli et al., 2015a, b). With in-
creasing stress and strain, the accumulation of intragranular
dislocations triggers recovery processes, including the for-
mation of arrays (or walls) called subgrain boundaries (see
Sect. 5.2.1) that often display a polygonal aspect.

4.3 Olivine paradox

According to the Von Mises (1928) criterion, at least five
independent slip systems must be active for plastic flow
to occur homogeneously by dislocation glide alone in any
crystalline material. This requirement can be simplified to
only four slip systems if inhomogeneous flow is allowed
(Hutchinson, 1977). Since dislocations in olivine are lim-
ited to the [100] and [001] directions with no possibility of
shear along [010], only four main slip systems are available:
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[100](010), [100](001), [001](010), and [001](100). More-
over, as [100](001) and [001](100) systems are not linearly
independent, we are left with only two sets of three inde-
pendent slip systems: (set 1) [100](010), [100](001), and
[001](010) or (set 2) [100](010), [001](010), and [001](100).
Therefore, polycrystalline olivine does not fulfill the re-
laxed conditions of Hutchinson (1977), and plastic defor-
mation can only be accommodated if additional degrees of
freedom are provided (the “olivine paradox”). Thus, other
mechanisms of deformation have been proposed as addi-
tional degrees of freedom: (1) climb – although the climb
rate in olivine in insufficient to significantly contribute to
strain, climb is able to unlock dislocations to overcome ob-
stacles if the density and mobility of jogs is high enough;
(2) dislocation-assisted grain boundary sliding as proposed
by Hirth and Kohlstedt (1995) (see also Hansen et al., 2011,
2012), which is then grain size dependent; (3) diffusion-
accommodated grain boundary sliding (Miyazaki et al.,
2013), which is limited to nanoscale grains of olivine (± py-
roxenes) and thus is unlikely to be efficient in mantle olivine-
rich rocks with grain sizes of 0.1–10 mm and under high
lithostatic pressure (> 1 GPa); (4) elastically accommodated
grain boundary sliding (Jackson et al., 2013), which also re-
quires very fine grained polycrystalline olivine of constant
grain size, in which the grain boundary network is consid-
ered equivalent to a very low viscosity layer; however, this
contradicts the crystalline sintering observed at high pres-
sure and temperature (Hiraga et al., 2004; Burnard et al.,
2015); (5) ionic diffusion operating only at grain boundaries
as proposed by Detrez et al. (2015), but they also showed
that this mechanism cannot sustain a non-linear rheology in
an anisotropic solid such as olivine; (6) disclination-assisted
dislocation creep proposed by Cordier et al. (2014), which
involves rotational defects located near grain boundaries (see
Sect. 7); or (7) the potential existence of disconnections lo-
cated at grain boundaries such as the one observed in alu-
minum metal (see Sect. 7; Rajabzadeh et al., 2014; Sun et
al., 2016; Combe et al., 2016, 2019).

5 Interfaces

Interfaces are 2-dimensional (planar) defects, and three types
of interfaces are found in polycrystalline materials, including
polycrystalline olivine. First, the free surface is the external
surface of a crystalline solid in contact with a liquid, vapor,
air, or vacuum. Second, the intercrystalline interface delim-
its the atomic contact between two crystalline solids. When
the two solids have the same major element composition and
crystalline structure (homophase) but different orientations,
such an interface is a grain boundary (e.g., Sutton and Bal-
luffi, 1995); when the solids are different in composition
and/or structure (heterophase), it is a two-phase interface.
For example, in olivine-rich rocks, an olivine–olivine joint is
an olivine grain boundary, whereas an olivine–diopside joint

is an olivine–diopside interface. Third, 2-dimensional inter-
nal discontinuities in a solid structure are internal-interface
defects. These are restricted to stacking faults and antiphase
boundaries. All 2-dimensional defects have two character-
istics in common: (1) a particular atomic structure that is
a function of the crystallographic orientation of the crystal
lattices involved and (2) a positive energy, which is usually
equal or very close to the surface tension (Sutton and Balluffi,
1995, pp. 350–353).

5.1 Free surfaces

The interaction of the free surface of a mineral in contact
with a liquid or vapor is of leading importance in geol-
ogy, and olivine is no exception. The intrinsic characteris-
tics and properties of interfaces govern many key geolog-
ical processes, such as grain growth and boundary migra-
tion, dissolution kinetics, and absorption kinetics (ionic dif-
fusion). The shape of a free surface is characterized by its
structure and energy, which are co-dependent; both the struc-
ture and behavior of an interface are determined by the pat-
tern of the atomic plane parallel to the free surface. Note
that the interface is not perfectly identical to the atomic
plane of reference; minor changes in spacing (bond lengths,
free bonds) occur to lower the surface energy. The free sur-
face is then prone to bond interactions and chemical vari-
ations. Free bonds at the free surface are preferential ionic
absorption sites, leading to the incorporation of impurities
(see Sect. 3.2). This may be enhanced by the structure of
the free surface (reconstructed or not) based on the presence
and abundance of ledges, which can be linked to emerging
dislocations. Chemical species that are enriched only at the
free surface are surfactants. Interfacial tension is then directly
linked to the number (concentration) of free bonds at a given
crystalline interface. In metals, which are mostly cubic, in-
terfacial tension is only weakly dependent on the consid-
ered interface, whereas in olivine, which has an important
structural anisotropy (orthorhombic; a ≈ c < b), surface ten-
sion should vary as a function of crystallographic orientation
({010}> {100}> {001}; e.g., Deer et al., 1997; Marquardt et
al., 2015). Nevertheless, to date, surface tension anisotropy
in olivine has not been systematically quantified.

To date, surfactants such as volatile molecules (CO2, H2O,
CH4) are of particular interest for fluid-rich systems on Earth
and carbon-rich systems on Mars (e.g., Escamilla-Roa et
al., 2018). Atomic-scale numerical modeling is the leading
method of investigating these surfactant–mineral reactions
(e.g., Watson et al., 1997; Kerisit et al., 2013; Xie et al.,
2017). In addition, analyses of noble gas incorporation have
important implications for geochronology and Earth’s his-
tory (3He; e.g., Trull et al., 1991). The most notable contri-
butions (Dukes et al., 1999; Deloule and Robert, 1995) have
demonstrated the effective intake of H+ and helium (as He+)
into chondritic olivines via the irradiation of their surfaces
by solar wind. As expected, the addition of surfactants im-
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pacts the electric charge of the free surface, and achieving
electroneutrality minimizes interfacial tension.

The equilibrium shape of a mineral will be the habitus
requiring the minimum total interfacial energy in three di-
mensions. As an anisotropic mineral, the equilibrium shape
of olivine is polygonal, with flat facets parallel to the low-
energy planes (e.g., Deer et al., 1997; Bruno et al., 2014):
{010}, {021}, {110}, {120}, and {101} as illustrated in Fig. 1.

Interfaces in contact with another crystalline solid or
a vapor/vacuum are usually sharp, well-defined, planar or
stepped surfaces. However, at high pressure and temperature,
the atomic density of a near-solidus melt can become high
and significantly ordered, like the lattice of the solid. The
surface tension of the solid–liquid surface is then less depen-
dent on the crystallographic orientation of the surface plane,
yielding a diffuse surface which promotes rapid crystalliza-
tion and thus enhances the possibility of incorporating atomic
impurities (Sutton and Balluffi, 1995; King et al., 2014). This
also leads to the competitive formation of euhedral (tablet
surfaces), skeletal (hopper cavities or concentrated terranes),
and/or dendritic (swallowtail) shapes during dynamic growth
as a function of temperature and pressure (see Faure et al.,
2003; Welsch et al., 2013; Mourey and Shea, 2019).

The dissolution of olivine interfaces is also expected to be
anisotropic (e.g., King et al., 2014), with dissolution rates
parallel to [010] being faster than those along [001], which,
in turn, are faster than those along [100] at low tempera-
tures (23–90 ◦C) and room pressure (Awad et al., 2000; King
et al., 2014). However, in basaltic liquids at high tempera-
tures (1265–1450 ◦C), dissolution anisotropy is not as dis-
tinct (e.g., Thornber and Huebner, 1985; Chen and Zhang,
2008) and appears to be independent of crystallographic ori-
entation. Furthermore, a recent experimental study at high
temperature (1400–1425 ◦C) and high pressure (1 GPa) re-
ported a specific dissolution mechanism featuring fingered
outlines instead of a planar dissolution front (Laumonier et
al., 2019), again seemingly independent of crystallographic
orientation. As in materials science, the effects of several
types of surfactants (HCl, HNO3, NaOH, NaCl, and organic
ligands such as KHP and KOH) in etching olivine surfaces
have been tested (e.g., Wogelius and Walther, 1991, 1992;
Kobayashi et al., 2001; King et al., 2014). Naturally weath-
ered olivine surfaces are characterized by pairs or arrays
of conically etched pits devoid of secondary mineralization.
These pits are frequently linked to emergent dislocations
or possible nearby fractured and exposed outcrop surfaces
(e.g., Velbel, 2009). These features are distinctive of aqueous
weathering processes such as serpentinization or iddingsiti-
zation (e.g., Boudier et al., 2010).

5.2 Grain boundaries and two-phase interfaces

In metals, ceramics, and rocks, the most important defects
are the interfaces between the crystallites–grains. Most of the
natural granular rocks on Earth are polymineralic (peridotite,

granite), and only a few are almost purely monomineralic
(dunite, quartzite, marble). As mentioned above, the inter-
face between the same mineral or crystalline solid is called
the grain boundary (e.g., olivine grain boundary) and the in-
terfaces between two different minerals or crystalline solids
are called two-phase interfaces (e.g., olivine–enstatite inter-
faces). It is also important to recall that a grain boundary is a
mere interface, not a third component sintering two grains.
The percolation of aqueous fluid or silicate melt between
two grains or subsequent melt crystallization implies the ex-
istence of two free surfaces; therefore, these configurations
are not considered grain boundaries or two-solid-phase inter-
faces.

5.2.1 Grain boundaries

The structure of a grain boundary depends on the crystallo-
graphic orientation of the two participant grains. Two types
of boundaries are distinguished as a function of the mag-
nitude of the misorientation (θ) between the two lattices:
low-angle boundaries (< 15◦) and high-angle boundaries
(> 15◦). By convention, an angle of 15◦ is used to separate
low- and high-angle boundaries in polycrystalline olivine
(Poirier, 1985), but in materials science the cutoff values can
range between 5 and 15◦. A low-angle boundary can simply
be described by an array of dislocations, sometimes called
a dislocation wall (Fig. 8a, b). At misorientations exceed-
ing 10–15◦, the dislocation spacing is so small that the dis-
location cores overlap and the individual dislocations form-
ing the walls cannot be distinguished by TEM. High-angle
boundaries have significantly more complex and disordered
structures, including high concentrations of vacancies or un-
bonded atoms, and are thus easier paths for ionic diffusion.
They are also a potential reservoir of atomic impurities, es-
pecially for atoms too large to fit within the lattice or with
too high a charge to fit a regular atomic site. Furthermore,
dislocations are more easily emitted or absorbed at high-
angle boundaries (Han et al., 2018). Note that this terminol-
ogy is equivalent to the distinction between subgrain (low-
angle) and grain (high-angle) boundaries. Grain boundaries
are preferential sites for the segregation of incompatible el-
ements within a ∼ 1 nm thick interface (Hiraga et al., 2004,
and references therein; see also Hayden and Watson, 2008;
Burnard et al., 2015). Coincidence boundaries are a spe-
cific case of a high-angle boundary in which the geome-
try matches well the two contacting lattices. Although rare
in olivine, they are typical of olivine–serpentine interfaces
(e.g., Boudier et al., 2010; Morales et al., 2018). In metals
(e.g., faced-centered cubic, fcc), the grain boundary energy
increases with increasing misorientation until reaching an en-
ergy plateau for high-angle boundaries exceeding 20◦ (e.g.,
Shockley and Read, 1949; Read and Shockley, 1952). How-
ever, a few crystallographic configurations can lead to low-
energy boundary misorientations, called cusps (e.g., Poirier,
1985, p. 67; Tshopp and Mcdowell, 2007). Although such
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Figure 8. TEM images (courtesy of Patrick Cordier) and sketches of grain boundaries: (a) TEM image showing an almost planar subgrain
boundary in nanoforsterite deformed at 0.3 GPa and 1200 ◦C (sample NF1200-1 from Gasc et al., 2019); (b) subgrain boundary crosscut by
the TEM foil plane in a natural San Carlos olivine (He-doped sample PB3 from Burnard et al., 2015); (c) low-angle tilt boundary, with the
rotation axis within the grain boundary and rotation angle θ ; (d) low-angle twist boundary with the rotation axis perpendicular to the grain
boundary and rotation angle θ ; and (e) the five macroscopic degrees of freedom required to define a grain boundary, shown for the example
of a high-angle tilt boundary with [100] as the axis of rotation.

data are not yet available for olivine, it is expected that the
incorporation of impurities would lower the grain boundary
energy (e.g., Hiraga et al., 2004; Papillon et al., 2009; Mar-
quardt et al., 2015; Faul et al., 2016; Marquardt and Faul,
2018).

We can further describe grain boundaries as a function of
the geometry of the misorientation. Tilt, when the lattice is
tilted by an edge dislocation array, defining an axis of rota-
tion within the grain boundary plane (Fig. 8c). Twist, when
the lattice is rotated by two screw dislocation arrays, defin-
ing an axis of rotation perpendicular to the grain boundary
plane (Fig. 8d). A mixed boundary, the most common con-
figuration in olivine-rich rocks, comprises both a tilt and a
twist component and thus a mixture of edge and screw dislo-
cations. Publications on the nanoscale characterization of bi-

crystal olivines with tilt or twist boundaries are markedly rare
(e.g., Ricoult and Kohlstedt, 1983; Heinemann et al., 2005),
in part because of experimental and sample preparation dif-
ficulties. However, as focused ion-beam techniques become
increasingly common, we can expect future studies dedicated
to olivine grain boundaries; to date, we mostly rely on lim-
ited results from atomistic simulations (e.g., de Leeuw et al.,
2000).

To define a grain boundary, five macroscopic parameters
(or degrees of freedom) are needed (Fig. 8e; e.g., Marquardt
et al., 2015): three parameters to specify the orientation of
one grain relative to its neighbor (i.e., two angles or the vec-
tor of rotation and the angle of misorientation) and two pa-
rameters to define the orientation of the boundary plane rela-
tive to the other grain (i.e., the vector normal to the boundary
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Table 2. Summary of the most common types of grain boundaries
in natural and synthetic polycrystalline olivines (compilation based
on Demouchy et al., 2014; Marquardt et al., 2015; Marquardt and
Faul, 2018; Bollinger et al., 2019; Gasc et al., 2019).

High-angle grain boundary
Low angle (low-index planes)

< 15◦ subgrain 60◦/[100] 90◦/[001]
boundaries [001] axis
10◦/[010] of rotation
elongation || to [010]

{100} tilt (0–11) symmetric tilt {010} tilt
(051) asymmetric tilt {100} tilt
(053) asymmetric tilt
(031) asymmetric tilt
(15 15 16) mixed
(212) mixed

plane ngb or two angles α and β as illustrated in Fig. 8e).
As in many ceramics (MgO, Al2O3, or TiO2), low-index
planes are the most frequent for olivine grain boundaries
(e.g., from Marquardt et al., 2015, {100}, {010}, (051), (031),
(053), (15 15 16), (212), or (011)). Based on stereology on
2-D electron backscatter diffraction (EBSD) maps obtained
on undeformed or weakly deformed olivine-rich rocks, grain
boundaries’ character distribution permits the classification
of olivine grain boundaries into three groups (Marquardt et
al., 2015; Marquardt and Faul, 2018):

– disorientation at 90◦ relative to the [001] axis, charac-
teristic of all orthorhombic crystals;

– disorientation at ≤10◦ relative to the [010] axis, typical
of subgrain boundaries formed by dislocation glide; and

– disorientation at 60◦ relative to the [100] axis, the most
abundant type of grain boundary in very fine grained
natural and synthetic polycrystalline olivine.

The most abundant types of grain boundaries found in
olivine are summarized in Table 2. However, this list ap-
plies only to undeformed or very weakly deformed poly-
crystalline olivine. When strong shape-preferred orienta-
tion, crystallographically preferred orientation, and/or foli-
ation are developed in a polycrystal, subgrain boundaries
are commonly elongated parallel to [010] (Green and Rad-
cliff, 1972). Basaltic melt segregation was reported to oc-
cur via heterogeneous percolation through polycrystalline
olivine, with a net avoidance of 60◦/[010] boundaries (Faul
and Fitz Gerald, 1999; Ghanbarzadeh et al., 2015). These re-
sults imply that grain boundary energy impacts wetting prop-
erties and thus percolation, melt–rock reaction, and extrac-
tion. By extrapolation, grain boundary energy should also
impact other transport properties such as grain boundary dif-
fusion and migration or electrical conductivity (see also Mar-
quardt and Faul, 2018). For example, the velocity ν of a grain

boundary is classically defined as

ν =−MF, (1)

with the mobility M defined as

M =Mo exp(−Q/RT ) (2)

and the driving force F , which can be a difference in stored
energy (from defects such as dislocations), the capillary
force, or drag from a solute. In Eq. (2), Q is activation en-
ergy, R is the gas constant, and T is absolute temperature.
When only the capillary force is involved, the grain bound-
ary velocity can be approximated by

ν ∝−Mγκ, (3)

with γ being the grain boundary energy and κ the curvature
(e.g., Taylor, 1992; Taylor et al., 1992; Sutton and Balluffi,
1995, p. 522). The mechanisms of grain growth in both met-
als and silicates remain an ever-growing domain of research,
and recent and current efforts in materials science are revisit-
ing this simple equation to implement new defects (e.g., dis-
connections; Han et al., 2018).

To date, only Duyster and Stöckhert (2001) have quanti-
fied the interfacial energy of natural high-angle olivine grain
boundaries; they reported a value of 1.4±0.4 J m−2. Further-
more, Karato (1989) experimentally determined the follow-
ing mobility parameters for very fine grain natural olivine
under anhydrous conditions, crustal pressures (0.1–1 GPa),
and temperatures of 1200–1400 ◦C:Mo = 1.6×10−8 m2 s−1

and Q= 160 kJ mol−1. Experimental data also exist for syn-
thetic forsterite and olivine (e.g., Ohuchi and Nakamura,
2007; Hiraga et al., 2010; Tasaka et al., 2013). Recently, Spe-
ciale et al. (2020) reported slower mobility parameters for
very fine grained natural olivine:Mo = 1.8×103 m2 s−1 and
Q= 620±145 kJ mol−1. The paucity of such data is a strong
call for new efforts to constrain olivine interfacial energies
under natural conditions.

Once the microstructure of a monophase or polycrystalline
material has reached its equilibrium, it takes on a polyhe-
dral configuration in three dimensions. The equilibrium of
a body-centered cubic (bcc) solid is the close-packed con-
figuration of the tetrakaidecahedra, or the tetrakaidecahe-
dron of Thomson (1894), with flat or lightly curved faces
(Fig. 9). Olivine is not cubic but orthorhombic, and its equi-
librium microstructure can thus be approximated by such
a tetrakaidecahedral close-packed configuration (14 faces)
but also by rhombic dodecahedral (12 faces) or octahedral
(8 faces) configurations (e.g., Takei and Holtzman, 2009). If
not truncated, the equilibrium shape of olivine based on the
grain boundary character distribution is a prism with a 9 : 6 : 5
ratio (i.e., {100} : {010} : {001}; see Marquardt et al., 2015,
for further details). In igneous petrology, particularly focus-
ing on the microstructures and textures of mantle (olivine-
rich) rocks, the equilibrated microstructure is commonly re-
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Figure 9. Grain shapes in polycrystalline materials: (a) the theoretical tetrakaidecahedral close-packed configuration with perfectly planar
faces and (b) a simulated polyhedron grain with realistic curved faces (redrawn from Lazar et al., 2011).

Figure 10. Natural mantle specimens. (a) Polarized and (b) cross-polarized light microphotographs of a coarse-grained microstructure in a
spinel-bearing peridotite from Tariat, central Mongolia (sample Shava SH-11-27 from Demouchy et al., 2019). (c) Natural and (d) cross-
polarized light microphotographs of a rare tabular microstructure in a diopside-poor lherzolite with irregularly shaped enstatite from Tok,
Siberia (sample 10-16 from Tommasi et al., 2008; images courtesy of Andrea Tommasi): olivines show numerous subgrain boundaries
perpendicular to the long axis of the tabular crystals but straight grain boundaries parallel to the rock foliation.

ferred to as mosaic equigranular (e.g., Mercier and Nico-
las, 1975) and is characterized by equant grains, almost per-
fectly planar boundaries, triple junctions at ∼ 120◦, a small
grain size (between 0.5 and 1 mm), very rare porphyroclasts
(> 1 mm), and homogenously distributed secondary phases
(pyroxenes, spinel, and/or garnet). This type of olivine-rich
rock typically has a weak crystal-preferred orientation (J in-
dex ≈ 2–4; see Bunge, 1982) and a shape factor of ∼ 1.7
(e.g., Demouchy et al., 2019; Tommasi et al., 2020). An ex-
ample of the mosaic equigranular microstructure is shown in
Fig. 10a and b. In some rare cases, olivine grains can develop
a strong shape-preferred orientation parallel to the lineation
during static recrystallization (induced by melt percolation),
as illustrated by the very graphic, tabular microstructure in

Fig. 10c and d (Siberian peridotites from Tommasi et al.,
2008).

As previously mentioned, the energy of a grain boundary
is always positive; thus, a fine-grained polycrystalline aggre-
gate will have a total surface tension energy greater than
that of a coarse-grained aggregate. This energy is propor-
tional to the total grain boundary area (if isotropic, it yields
E =

∑
k

σkAk , withE being the total interfacial energy, σk the

surface tension energy for faces k, and Ak the surface area of
face k). If temperature increases, the growth of large grains at
the expense of smaller grains is an efficient process to lower
the total energy of a polycrystalline solid. Consequently, av-
erage grain size provides key information on the microstruc-
ture, although it is an incomplete proxy; grain size distribu-
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tions and shape are as fundamental as average grain size.
Recent analytical data types and tools such as EBSD maps
and data treatment methods (e.g., ESPRIT DynamicS, OIM,
CHANNEL5, ATEX, or MTEX tool box; see Hielscher and
Schaeben, 2008; Bachmann et al., 2010; Beausir and Fres-
sengeas, 2013; Fressengeas and Beausir, 2018; Ernould et
al., 2020) have greatly eased access to the statistical quantifi-
cation of these parameters.

5.2.2 Two-phase interfaces

The structural characteristic which differentiates two-phase
interfaces from grain boundaries is coherency. It repre-
sents the necessity to find the same structural ordering be-
tween the two phases, whatever the position along the in-
terface. Semi-coherent interfaces are also possible, for ex-
ample in the case of organized interfacial dislocation (also
called edge-type misfit dislocation; Sutton and Balluffi,
2005, p. 74). This property is largely employed in materi-
als science and thin-film techniques. In mineralogy, a co-
herent interface commonly involves epitaxial relationships
and, to some extent, includes topotaxy (two minerals shar-
ing atomic rows and symmetry characteristics). Topotaxy
can be observed between olivine and its high-pressure poly-
morph wadsleyite, as well as between olivine and clinopy-
roxenes (e.g., Smyth et al., 2012). Olivine–lizardite relation-
ships are not perfectly coherent and only partially topotac-
tic. In contrast, olivine–antigorite (high-pressure and high-
temperature serpentine) interfaces are commonly topotactic
with [100]atg||[010]ol and 〈100〉atg||〈100〉ol. The planes in
contact are then (001)atg||(100)ol and (001)atg||(010)ol (e.g.,
Boudier et al., 2010).

Noncoherent interfaces are the norm rather than the excep-
tion in natural and experimentally synthesized olivine-rich
rocks. Furthermore olivine–diopside interfaces were proven
to contain more atomic impurities than olivine grain bound-
aries (Hiraga et al., 2004, and references therein). The par-
titioning behavior of incompatible elements between the
olivine lattice and its boundaries or interfaces was then esti-
mated to be similar to olivine–melt partitioning (e.g., Hiraga
and Kohlstedt, 2007; Hiraga et al., 2007). This observation
is consistent with materials science studies indicating that, at
high temperature, grain boundaries and interfaces behave, in
terms of certain aspects or properties, as a glass-like material
(e.g., Zhang et al., 2009).

5.3 Intragranular interfaces

In theory, two-dimensional defects occurring within a crys-
talline lattice are limited to stacking faults and antiphase
boundaries. In fcc metals, a stacking fault is usually defined
as a defective sequence of atomic planes, which can be ex-
trinsic (the addition of an extra atomic plane) or intrinsic (a
missing plane). Extrinsic stacking faults can be created by
radiation damage, and intrinsic stacking faults can be created

by the condensation of vacancies if located in one specific
atomic plane or by a partial dislocation. In minerals, the def-
inition is more general: across a stacking fault, two parts of
a crystal are translated by a vector that is not a lattice repeat
(2Dc in Fig. 3). Stacking faults in (021) were observed in
olivine experimentally deformed at high pressure and high
temperature (Couvy et al., 2004). From a purely theoretical
point of view, generalized stacking faults (e.g., correspond-
ing to any possible translation vector in a given plane) were
successfully modeled for forsterite using first-principles cal-
culations (Durinck et al., 2005).

A third type of intragranular interface is the twin bound-
ary, which is an interface separating two volumes of the same
crystal by a symmetrical operation, yielding a particular crys-
tallographic relationship (2-Db in Fig. 3). Twin boundaries
can form during mineral growth or plastic deformation (Hull
and Bacon, 1989, pp. 14 and 125). They are very rare in
olivine and are usually restricted to high-Ca compositions
(e.g., Larsen et al., 1942; Azevedo and Nespolo, 2017). The
following twin planes have been reported: {011}, {012}, and
{031}. Twin boundaries in olivine were initially proposed
to explain the curious microstructures of chondritic olivines
(Dodd and Calef, 1971).

In natural crustal minerals, one can also find kinks, which
can be viewed as the succession of two intragranular bound-
aries (forming a band), sometimes compensating for each
other; however, “kinking” also applies to the bending of an
important volume of a mineral lattice (Passchier et al., 2005).
The crystallographic misorientation of a kink band is consid-
ered to be higher than 15◦; thus kinks are not another cat-
egory of sub-grain boundary. As for twin boundaries, kink
bands are very rare in olivine but are observed in large grains
of peridotitic olivines that were deformed at high temperature
(Matysiak and Trepmann, 2012, 2015; Bickert et al., 2021).
Kink bands were also observed in experimentally deformed
Mg2GeO4 olivine (e.g., Burnley et al., 2013), in which they
are linked to the shifting of slip systems from [100] to [001]
dislocations with increasing pressure.

Antiphase boundaries are defects in atomic ordering over
the atomic planes and are usually observed in very ordered
crystalline materials. They can also be considered a specific
type of stacking fault where one plane of the stacking fault
was displaced laterally to produce one antiphase boundary.
To date, antiphase boundaries have never been observed in
olivine, and only a single study has explored their theoreti-
cal existence in olivine-type structures (Tabata et al., 1981).
Their main conclusion was that the formation of a cationic
antiphase boundary would require the formation and subse-
quent growth of a metastable nucleus already containing an
incoherent cation arrangement. Antiphase boundaries have
been reported in ringwoodite, one of the two high-pressure
polymorphs of olivine (e.g., Madon and Poirier, 1983), and
are repeatedly proposed as a mechanism involved during
the olivine–ringwoodite phase transformation (e.g., Green,
1984).
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6 Volume defects

Strictly speaking, volume defects are not defects within the
olivine atomic structure but important 3-D discontinuities at
the nanoscale or larger. Volume defects are very diverse, i.e.,
from nanovoids or intercrystalline pores to 3-D cracks or
mineral, melt, fluid, or mixed inclusions.

6.1 Voids, pores, and cracks

Internal voids (or nanopores) are caused by gases trapped
during olivine growth or by vacancy clustering during con-
densation. Examples of exceptional nanovoids in olivine
can be found in Mosenfelder et al. (2011). These cavities
can eventually promote nanoscale intracrystalline cracks if
a crystal formed under high pressure and was subsequently
decompressed. They can be quasi-negative crystalline in
shape or simply spherical (3-Db in Fig. 3). These voids or
nanopores may represent an additional reservoir for volatile
elements (H2O, H2, CO2, He, Ar). Nevertheless, to date, in
situ TEM chemical analyses have been unable to identify the
gases contained in nanoscale voids or pores within olivine
(e.g., Burnard et al., 2015).

6.2 Mineral inclusions

In magmatic olivines, the main mineral inclusions are Fe–Ti
oxides (e.g., ilmenite, a few micrometers to 30 µm in length;
e.g., Gurenko et al., 1998), followed in abundance by diop-
side (5–20 µm). Spinel-group minerals are also found as in-
clusions, with a notably wide range of compositions; e.g.,
Gurenko et al. (1998) reported 2.48 wt %–18.69 wt % TiO2,
Mgsp#[Mg/(Mg+Fe2+)] = 0.21–0.58, and Crsp#[Cr/(Cr+
Al)] = 0.17–0.74.

In mantle olivines, chromites are the most common in-
clusions, often associated with disk-shaped decompression
cracks commonly called “lily pads” (Fig. 11a, b). As lamel-
lae, the isotropic cubic spinels have an epitaxial relation-
ship with their {111} faces perpendicular to the [100] axis
of olivine (e.g., Roedder, 1965; Leander and Wirth, 2000).
Other oxides such as ilmenite or magnetite are also observed
in olivine (e.g., Mosenfelder et al., 2006). Olivines from
Udachnaya contain a high diversity of mineral inclusions
typical of deep-mantle olivines: chromite, garnet, pyroxenes,
and sulfides (pyrrhotite, pentlandite, and chalcopyrite; e.g.,
Lazko and Afanasev, 1974). The concentrations and isotopic
compositions of highly siderophile elements in such olivine-
hosted sulfides are used as key tracers of the evolution of
Earth’s mantle (e.g., Alard et al., 2000; see the review by Lo-
rand et al., 2013, and references therein).

The weathering of olivine leads to the crystallization of
hydrous minerals such as serpentine, humite minerals, or id-
dingsite (MgO qFe2O3

q3SiO2
q4H2O). These secondary min-

erals first occur as mere lamellae before developing into 3-
D units. FTIR is a powerful tool for the detection of OH−

Figure 11. Inclusions in olivine: (a, b) optical microphotographs of
a spinel inclusion and lily-pad-like cracks in San Carlos olivine;
(c, d) optical microphotographs of melt inclusions in magmatic
olivines from Piton de la Fournaise (from Bureau et al., 1998; im-
ages courtesy of Hélène Bureau); and (e) scanning electron micro-
scope image and (f) TEM image of metal bleb inclusions in dusty
olivines (from Leroux et al., 2003; images courtesy of Guy Libourel
and Hugues Leroux).

groups and the identification of the development of these hy-
drous minerals, even if the olivine remains optically perfectly
transparent (Kitamura et al., 1987). Gem-quality hydrother-
mal olivines from Sapat, Pakistan (Fig. 1b), are embedded
in fine-grained serpentine and talc, which penetrate the auto-
morphic crystals as micrometric lamellae (e.g., Gose et al.,
2010). This feature is typical of hydrothermal olivine (e.g.,
Miller et al., 1987).

Furthermore, annealing iron-bearing olivine at 500–
900 ◦C under oxidizing conditions (in air) leads to the for-
mation of sub-nanometric iron-oxide precipitates organized
in complex arrays perpendicular to dislocations and observ-
able by TEM (Champness, 1970, her Fig. 5a, needles grow-
ing from the dislocation). Similar precipitates are observed in
naturally oxidized olivines from a lherzolitic xenolith from
Nunivak Island, Alaska (Kohlstedt and Vander Sande, 1975).
This peculiar enhancement of dislocation width by inclusions
has been used as a tool to increase the discernibility of dislo-
cations by optical microscopy and to build paleopiezometers
(e.g., Kohlstedt et al., 1976; Gueguen and Darot, 1980; see
Soustelle et al., 2010, for a review and discussion).
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6.3 Melt and fluid inclusions

Following Roedder (1984), melt, fluid, and crystal inclusions
can be subdivided into primary, pseudo-secondary, and sec-
ondary types. Primary inclusions occur either as isolated in-
clusions or as apparently randomly oriented groups of in-
clusions that mark crystal-growth zoning in olivine. Pseudo-
secondary inclusions occur along healed fractures that do
not reach a grain boundary. Finally, secondary inclusions are
usually controlled by completely sealed cracks. These three
types of inclusion commonly occur in magmatic olivine, in-
dicating complex and heterogeneous entrapment dynamics.

Melt inclusions are common in magmatic olivines
(Fig. 11c, d) and range from 5 to 250 µm in size (Gurenko
et al., 1998). In general, olivine-hosted melt inclusions are
trapped during magmatic crystallization and develop an im-
mobile gas bubble during rapid ascent toward the surface
(e.g., Roedder, 1965). These inclusions can evolve until min-
erals precipitate (mostly clinopyroxene, occasionally with
Fe–Ti oxides), leading to the co-existence of multiple phases
(glass/gas bubble/daughter crystal). The study of melt inclu-
sions and their statistical compositions is itself an important
field in petro-geochemistry since melt inclusions are used
as petrogenetic indicators in volcanology, a source of infor-
mation regarding primitive mantle melts (e.g., Gurenko and
Chaussidon, 1995; Gurenko et al., 1998), and as recorders
of the compositional evolution and ascent rates of magmas
(e.g., Chen et al., 2012). The stability of the volatile compo-
sitions of olivine-hosted melt inclusions is repeatedly ques-
tioned because partial volatile loss has been demonstrated
several times (Portnyagin et al., 2008; Chen et al., 2012; Gae-
tani et al., 2012; Le Voyer et al., 2014). This is essentially due
to the rapid diffusion of water and related species (OH−, H+)
in both olivine and the melt and to possible microcracking.
Less drastic cationic losses have also been observed for other
elements such as Lu, Tb, and Eu (e.g., Spandler and O’Neill,
2010; Spandler et al., 2007). Thus, olivine-hosted melt inclu-
sions can hardly be considered vaults for light and volatile
elements trapped at crustal or mantle depths.

Complex (gas+ liquid) fluid inclusions which are almost
pure CO2 are also observed in magmatic (phenocrystic)
olivines (Gurenko et al., 1998). Cryothermometry allows
compositional estimation if one component dominates the
gas+ liquid composition (e.g., the triple points of CO2, CH4,
and N2 are at −56.6, −182.5, and −210 ◦C, respectively;
e.g., Roedder, 1965, 1984; Gurenko et al., 1998).

One typical feature of mantle-derived olivines is trails of
tiny (< 5 µm), liquefied, CO2-rich (almost pure) inclusions,
very often organized in a foil-like distribution and potentially
showing a coalescent network (3-Dd in Fig. 3) (see Roed-
der, 1965). This type of inclusion is not exclusive to olivine;
mantle diopside, orthopyroxenes, and plagioclase frequently
contain such trails resulting from the healing of microcracks
in the presence of an immiscible (dense) supercritical CO2-
rich fluid during their transport by basaltic magmas. These

Figure 12. Volterra’s distortions (Volterra, 1907). Sketches present-
ing the different types of deformation induced by (1) a line defect,
(2–4) translation defects (dislocations) characterized by the Burg-
ers vector b, and (5–7) rotation defects (disclinations) characterized
by the rotation vector f (not shown; only the axis of rotation ω is
shown as a black arrow).

inclusions do not contain much water as mid- or near-infrared
FTIR spectra do not show typical H2O or OH− bands in these
sections of olivine grains.

Finally, in primitive meteorites, the olivines compos-
ing type-I chondrules frequently contain micrometric metal
blebs (Fe98Ni1Co1), which are often surrounded by a glass
rim. These metal blebs are formed by sub-solidus reduction
of iron-rich olivine (Fig. 11e, f). The host olivines are con-
sidered to be relic grains that formed after chondrule for-
mation and may provide information on reprocessing events
in the protoplanetary disk; they are generally called “dusty
olivines” (e.g., Leroux et al., 2003; Einsle et al., 2016).

7 New defects – disclinations and disconnections

Whereas point defects, dislocations, and intergranular de-
fects have been studied for several decades in materials sci-
ence and mineralogy, two new crystalline defects are attract-
ing new attention in the field of materials science, olivine,
and other minerals: disclinations and disconnections. Both
are specific types of line defects (1-Db and 1-Dc in Fig. 3).

7.1 Disclinations

Disclinations were theoretically defined by Volterra (1907) at
the same time as dislocations as illustrated in Fig. 12. They
are pure rotational defects, and, as with dislocations, one
can define different types such as wedge and twist disclina-
tions. The angle and direction of rotation (ω) define the Frank
vector f (Frank, 1958). The relative rotational displacement
also yields a small, space-dependent Burgers vector associ-
ated with the wedge disclination (e.g., Pond et al., 2007).
Disclinations have long been considered in liquid crystals
and are observed in polymers; biomineralized materials such
as seashells; and superconductive materials, metals, and ionic
components (e.g., Frank, 1958; Kleman and Friedel, 2008;
Hirth et al., 2020; Träuble and Essman, 1968). As with dis-
locations, disclinations are set into motion by stress, and this
motion results in disclination-mediated plasticity (Fressen-
geas et al., 2011; Beausir and Fressengeas, 2013; Cordier et
al., 2014; Sun et al., 2016) which is not accounted for by
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Figure 13. Disclination dipoles along a high-angle (60.8◦), sym-
metric, tilt grain boundary in forsterite, obtained by molecular dy-
namics simulation (reproduced from Sun et al., 2016). (a) The ro-
tation field for ω1, shown for the three atoms of reference in the
forsterite lattice: O (grey), Mg (dark grey), and Si (white). The ro-
tation field can be extracted from high-spatial-resolution and high-
angular-resolution EBSD maps, even if the scale of observation is
not the same. Smaller EBSD steps provide a higher resolution of
the disclinations and their dipoles but greater disclination density;
thus special care must be taken when comparing EBSD maps. See
Cordier et al. (2014) and Thieme et al. (2018) for in-depth discus-
sion of geometrically necessary dislocation and disclination densi-
ties. (b) The disclination density for disclination θ11. The square
with a dashed blue outline indicates a disclination dipole. For refer-
ence, x1, x2, and x3 are reference axes (see Sun et al., 2016).

the well-established dislocation theory (e.g., Hirth and Loth,
1968, p. 4).

Recent advances in EBSD have allowed a high-spatial
and/or high-angular resolution of crystallographic misorien-
tation in polycrystalline materials such as metals (e.g., cop-

per; Beausir and Fressegneas, 2013) and rocks (Cordier et
al., 2014; Wallis et al., 2016; Thieme et al., 2018). These
new data, alongside processing methods identifying vari-
ations in misorientation gradients, have revealed disclina-
tions distributed as dipoles along grain boundaries in met-
als such a copper (Beausir and Fressengeas, 2013; Fressen-
geas and Beausir, 2018; Ernould et al., 2020) and, more im-
portantly, in experimentally deformed olivine, natural ophi-
olitic olivine-rich mylonites (Cordier et al., 2014), and nu-
merically modeled forsterite boundaries (Sun et al., 2016,
2018). Examples of a rotation field and disclination den-
sity are shown in Fig. 13. Disclination dipoles are ubiquitous
along grain boundaries and at triple junctions in fine-grained
polycrystalline olivine and are estimated to move together
during shear (e.g., Cordier et al., 2014; Sun et al., 2016,
2018). Whereas boundary shear is obvious at the nanoscale,
a boundary might appear as the mere translational sliding
of one grain relative to another at the macroscale, thus re-
sembling pure grain boundary sliding, which theoretically
requires one accommodation mechanism (e.g., cavitation,
cracks; see Langdon, 2006, for a review). The lengthy neglect
of disclinations as a strain-producing mechanism may be ex-
plained by the very high elastic energy they require as indi-
vidual defects (Friedel, 1967). However, if present as dipoles,
the required energy is similar to that of an edge dislocation
(a few electronvolts; Romanov and Vladimirov, 1992; Ro-
manov and Kolesnikova, 2009; Sun et al., 2016).

Unlike for dislocation (Hirsch et al., 1965), there is no es-
tablished theory of contrast for disclination in transmission
electronic microscopy. To date, disclinations are not seen as
a discrete and leading new mechanism of plastic deformation
but as a companion to dislocations and point defects dur-
ing deformation, which can help solve the olivine paradox
(see Sect. 4.3). It is worth mentioning that, in equilibrated
microstructures, all grain boundaries can be described to a
first approximation using disclination dipoles. Furthermore,
a 3-dimensional close-packed configuration of tetrakaideca-
hedra (Sect. 5.2.1) is never perfectly space-filling, and thus
boundary-plane curvature is expected to occur at triple junc-
tions in mantle rocks.

7.2 Disconnections

A disconnection is a structural step along a planar grain
boundary, which exhibits a dislocation character (1-Dc in
Fig. 3, Fig. 14). A disconnection forms when a coherent
boundary/interface between two crystal lattices terminates. It
can be seen as a defect inside a defect, or as a terrace-defect
interface (e.g., Han et al., 2018). In this case, the defect is
named a coherency disclination or a generalized disclination
(Sun et al., 2018; Hirth et al., 2019, 2020). Although the ter-
minology is still debated, a disconnection involves a step of
height h and an associated dislocation with Burgers vector b,
which belongs to the “displacement shift complete lattice”,
or a disclination with Frank vector f (Fig. 14). A topologi-
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Figure 14. Disconnection along a grain boundary: “a defect inside a defect”. (a) A disconnection is characterized by a dislocation (with
Burgers vector b) and a step (height h), or by the Frank vector f (e.g., generalized disclination; see Sun et al., 2018; Hirth et al., 2020).
(b) An example of a disconnection along a Cu bi-crystal (grain boundary 617(410), redrawn from Combe et al., 2016). Dark and light green
and red atoms do not have the same z coordinate.

cal model is only available for disconnections in albite twins
(Hirth et al., 2019), though this research direction is still in
its infancy. Disconnections along a labradorite/pericline twin
were very recently observed by TEM (Xie et al., 2019); but
none have yet been observed in olivine, and the hunt has
started. Furthermore, Hirth et al. (2020) proposed that dis-
connections are key components of twining, during ductile
deformation, and recovery mechanisms in minerals such as
grain growth (Han et al., 2018).

7.3 Impact on creep of olivine

Creep laws used to predict the high-temperature ductile de-
formation of olivine are proportional to stress as ∝ σ n, al-
though they remain entirely empirical (e.g., Hirth and Kohlst-
edt, 2003; for low-temperature creep, see also Demouchy et
al., 2013; Gouriet et al., 2019). The role of grain boundaries,
particularly disclinations and/or disconnections, remains hid-
den within the numerous parameters used to fit experimental
data and their accuracy. One can envision that at the low tem-
peratures where transport mechanisms are enhanced by grain
boundaries (e.g., Chakraborty, 2008), grain boundaries and
their associated defects would have a more important role in
ductile deformation than at the high temperatures where dis-
location motions in millimetric grains effectively dominate
strain accommodation in olivine-rich rocks.

8 Conclusions

Olivine, like any other crystalline solid, contains a range of
defects. (1) Point defects are the incorporation sites of mi-
nor, trace, and ultra-trace elements, including small volatile
elements (H, He) and very large cations (Th), in natural spec-
imens. The mechanisms of elemental incorporation and dif-
fusion are very important to understanding the stability and
longevity of chemical reservoirs in the deep Earth, includ-
ing the water and carbon cycles. Whereas individual incor-
poration mechanisms and partitioning are fairly well under-
stood, significant advances are needed to understand the in-

teractions among the high diversity of extrinsic point defects.
(2) Although the different slip systems in olivine have now
been well identified, the role of motion of linear defects, par-
ticularly dislocations, at lithospheric temperatures and Earth-
like slow strain rates remains a challenge for the understand-
ing and prediction of the partial mechanical coupling at the
lithosphere–asthenosphere transition or tectonic boundaries.
Future efforts should focus on the localization of ductile de-
formation, solving the olivine paradox, and implementing the
impacts of new defects such as disclinations. (3) Planar de-
fects in olivine are finally receiving the attention they de-
serve as they could represent a major reservoir for chemical
elements and may play a major role in strain accommoda-
tion. Statistical quantification of grain boundary planes in
synthetic, deformed, and natural olivine-rich rocks remains
lacking. (4) Volume defects in olivine are primary tools used
to understand the geological evolution of Earth’s interior and
as a key witness of volcanic activity, and thus they remain an
important and extremely active research domain. Moreover,
the boundaries between melt/fluid or mineral inclusions and
their host olivines remain poorly studied.

Electroneutrality implies that all these defects influence
each other, but to date we barely understand their complex
interactions. Furthermore, in metals or some simple ionic
solids, the addition of atomic impurities commonly yields an
increase in mechanical strength at room pressure due to lat-
tice distortion, which then impedes dislocation motions (e.g.,
Poirier, 1976, pp. 218–221). However, in olivine, the addition
of H, Fe, and Ti yields a decrease in strength at high pressure,
high temperature, and rapid strain rates typical of laboratory
experiments (e.g., Mackwell et al., 1985; Zhao et al., 2009,
2018; Demouchy et al., 2012; Faul et al., 2016; Tielke et al.,
2017). The incorporation of charged atomic impurities en-
hances vacancy concentrations (Nakamura and Schmalzried,
1983; Hier-Majunder et al., 2004), which should enhance
jog concentrations and thus dislocation climb and recovery
mechanisms (e.g., Poirier, 1985, p. 56; Boioli et al., 2015a, b;
Gouriet et al., 2019). Experimentally determined flow laws
have reported an almost proportional relationship between
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strain rate and the concentrations of H, Ti, and Fe (Hirth
and Kohlstedt, 2003; Faul et al., 2016; Zhao et al., 2009).
Nonetheless, the main challenge remains the extrapolation
to geodynamically relevant chemical concentrations and me-
chanical conditions, which requires the proper understanding
of defect interactions from the atomic to the rock (metric)
and plate-tectonic scale. Such an understanding is only pos-
sible by bridging the different scales and domains of research
(mineralogy, sampling natural rocks, physics of condensed
matter, materials science, rheological modeling), which re-
mains a genuine challenge for modern geologists.

Eur. J. Mineral., 33, 249–282, 2021 https://doi.org/10.5194/ejm-33-249-2021



S. Demouchy: Defects in olivine 271

Appendix A: Kröger–Vink notation

This review uses Kröger–Vink notation to describe point de-
fects (Kröger and Vink, 1956). This notation is used to track
atomic species, the site of occupancy, and the electrical bal-
ance as Atomcharge

site .

– The symbol is the name of the atomic species; a silicon
atom is thus written as Si, and a missing atom (equiva-
lent to a vacant site) is written V for vacancy.

– The occupied site is written as the subscript; i.e., SiSi
indicates a silicon atom in a silicon site, FeSi is then an
iron atom in a silicon site, and VSi is a vacant silicon
site; a silicon atom in an interstitial site is written Sii.

– The charge for a given site is written as the superscript,
and charge equilibrium on a site is indicated as ×. An
excess of one charge on a site is indicated by a single
dot as q and a deficit of one charge on a site as ′, and the
symbols are repeated to indicate the net charge relative
to the theoretical charge for this site, for example, a 2+
charge as q q. An interstitial always has the same charge
as the atom occupying it. As examples, Si q q q qi is an in-
terstitial silicon atom, Al′Si is an aluminum atom in a
silicon site, V q q

O is a vacant oxygen site, Fe qMg is a ferric
iron (Fe3+) in a magnesium site, and Fe×Mg is a ferrous
iron (Fe2+) in a magnesium site.

– Point defect equations must be equilibrated to (1) con-
servation of atomic site –, i.e., sites are neither created
nor destroyed; (2) conservation of atomic species – i.e.,
there must be the same number of each atomic species
before and after the reaction; and (3) maintain elec-
troneutrality.
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