Articles | Volume 33, issue 2
https://doi.org/10.5194/ejm-33-189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crack-enhanced weathering in inscribed marble: a possible application in epigraphy
Stylianos Aspiotis
CORRESPONDING AUTHOR
Fachbereich Erdsystemwissenschaften, Universität Hamburg,
Grindelallee 48, 20146 Hamburg, Germany
Jochen Schlüter
Mineralogisches Museum, CeNak, Universität Hamburg, Grindelallee
48, 20146 Hamburg, Germany
Kaja Harter-Uibopuu
Fachbereich Geschichte, Arbeitsbereich Alte Geschichte,
Universität Hamburg, Überseering 35, 22297 Hamburg, Germany
Boriana Mihailova
Fachbereich Erdsystemwissenschaften, Universität Hamburg,
Grindelallee 48, 20146 Hamburg, Germany
Related authors
Stylianos Aspiotis, Jochen Schlüter, Günther J. Redhammer, and Boriana Mihailova
Eur. J. Mineral., 34, 573–590, https://doi.org/10.5194/ejm-34-573-2022, https://doi.org/10.5194/ejm-34-573-2022, 2022
Short summary
Short summary
Combined Raman-scattering and wavelength-dispersive electron microprobe (WD-EMP) analyses of natural biotites expanding over the whole biotite solid-solution series demonstrate that the chemical composition of the MO6 octahedra, TO4 tetrahedra, and interlayer space can be non-destructively determined by Raman spectroscopy with relative uncertainties below 8 %. The content of critical minor elements such as Ti at the octahedral site can be quantified as well with a relative error of ~ 20 %.
Thomas Malcherek, Boriana Mihailova, Jochen Schlüter, Philippe Roth, and Nicolas Meisser
Eur. J. Mineral., 36, 153–164, https://doi.org/10.5194/ejm-36-153-2024, https://doi.org/10.5194/ejm-36-153-2024, 2024
Short summary
Short summary
The new mineral heimite was originally discovered on the mine dumps of the Grosses Chalttal deposit, Mürtschenalp district, Glarus, Switzerland. Its relatively simple chemistry is formed by water and ions of lead, copper, arsenic, hydrogen and oxygen. The mineral's crystal structure is related to the well-known duftite, which is also observed to grow on crystals of heimite. While heimite has so far only been found in the central Alps, it is expected to occur in other copper deposits worldwide.
Mariko Nagashima and Boriana Mihailova
Eur. J. Mineral., 35, 267–283, https://doi.org/10.5194/ejm-35-267-2023, https://doi.org/10.5194/ejm-35-267-2023, 2023
Short summary
Short summary
We provide a tool for fast preparation-free estimation of the Fe3+ content in Al–Fe3+ series epidotes by Raman spectroscopy. The peaks near 570, 600, and 1090 cm−1, originating from Si2O7 vibrations, strongly correlated with Fe content, and all three signals are well resolved in a random orientation. Among them, the 570 cm−1 peak is the sharpest and easily recognized. Hence, the linear trend, ω570 = 577.1(3) − 12.7(4)x, gives highly reliable Fe content, x, with accuracy ± 0.04 Fe3+ apfu.
Stylianos Aspiotis, Jochen Schlüter, Günther J. Redhammer, and Boriana Mihailova
Eur. J. Mineral., 34, 573–590, https://doi.org/10.5194/ejm-34-573-2022, https://doi.org/10.5194/ejm-34-573-2022, 2022
Short summary
Short summary
Combined Raman-scattering and wavelength-dispersive electron microprobe (WD-EMP) analyses of natural biotites expanding over the whole biotite solid-solution series demonstrate that the chemical composition of the MO6 octahedra, TO4 tetrahedra, and interlayer space can be non-destructively determined by Raman spectroscopy with relative uncertainties below 8 %. The content of critical minor elements such as Ti at the octahedral site can be quantified as well with a relative error of ~ 20 %.
Jochen Schlüter, Stephan Schuth, Raúl O. C. Fonseca, and Daniel Wendt
Eur. J. Mineral., 33, 373–387, https://doi.org/10.5194/ejm-33-373-2021, https://doi.org/10.5194/ejm-33-373-2021, 2021
Short summary
Short summary
On the west coast of the German North Sea island of Sylt, an electrum–quartz pebble weighing 10.4 g was discovered in a cliff of Saalian glaciogenic sediments. This is an unusually large and rare precious metal to find. Within our paper we document and characterize this discovery. An attempt to investigate its provenance points towards a southern Norwegian origin. This leads to the conclusion that ice advance events were involved in transporting this pebble from Norway to Germany.
Related subject area
Archaeometry
A gemmological study of the reliquary crown of Namur, Belgium
Yannick Bruni, Frédéric Hatert, Philippe George, Hélène Cambier, and David Strivay
Eur. J. Mineral., 33, 221–232, https://doi.org/10.5194/ejm-33-221-2021, https://doi.org/10.5194/ejm-33-221-2021, 2021
Short summary
Short summary
The reliquary crown, hosted in the diocesan museum of Namur (Belgium), was produced during the beginning of the 13th century. This beautiful piece of goldsmithery is decorated with approximately 400 pearls and coloured stones which were investigated by Raman and pXRF techniques. Emeralds, pink spinels, sapphires, almandine garnets, turquoises, and pearls were identified. The gemstones, contemporary with the crown, probably arrived in Europe by the silk trade road.
Cited articles
Artioli, G. (Eds.): Scientific methods and cultural heritage, Oxford
University Press Inc., New York, 2010.
Balan, E., Delattre, S., Roche, D., Segalen, L., Morin, G., Guillaumet, M.,
Blanchard, M., Lazzeri, M., Brouder, C., and Salje, E. K. H.: Line-broadening
effects in the powder infrared spectrum of apatite, Phys. Chem. Mineral.,
38, 111–122, 2011.
Barnard, W. and de Waal, D.: Raman investigation of pigmentary molecules in
the molluscan biogenic matrix, J. Raman Spectrosc., 37, 342–352, 2006.
Behrens, G., Kuhn, L. T., Ubic, R., and Heuer, A. H.: Raman spectra of
vateritic calcium carbonate, Spectrosc. Lett., 28, 983–995, 1995.
Bishop, J. L., Lane, M. D., Dyar, M. D., King, S. J., Brown, A. J., and Swayze,
G. A.: Spectral properties of Ca-sulfates: Gypsum, basanite and anhydrite,
Am. Mineral., 99, 2105–2115, 2014.
Brusentsova, T. N., Peale, R. E., Maukonen, D., Harlow, G. E., Boesenberg,
J. S., and Ebel, D.: Far infrared spectroscopy of carbonate minerals, Am.
Mineral., 95, 1515–1522, 2010.
Buzgar, N., Buzatu, A., and Sanislav, I.V.: The Raman study of certain
sulfates, An. Stiint. Univ. Al. I. Cuza Iasi Geol., 55, 5–23, 2009.
Ceballos-Chuc, M. C., Ramos-Castillo, C. M., Alvarado-Gil, J. J., Oskam, G.,
and Rodríguez-Gattorno, G.: Influence of brookite impurities on the
Raman spectrum of TiO2 anatase nanocrystals, J. Phys. Chem. C, 122,
19921–19930, 2018.
Coates, J.: Interpretation of infrared spectra, a practical approach, in:
Encyclopedia of Analytical Chemistry, edited by: Meyers, R. A., John Wiley
& Sons Ltd., Chichester, 10815–10837, 2000.
Colomban, P.: The on-site/remote Raman analysis with mobile instruments: a
review of drawbacks and success in cultural heritage studies and other
associated fields, J. Raman Spectrosc., 43, 1529–1535, 2012.
Conti, C., Aliatis, I., Colombo, C., Greco, M., Possenti, E., Realini, M.,
Castignioli, C., and Zerbi, G.: μ-Raman mapping to study calcium
oxalate historical films, J. Raman Spectrosc., 43, 1604–1611, 2012.
Conti, C., Colombo, C., Realini, M., and Matousek, P.: Subsurface analysis
of painted sculptures and plasters using micrometer-scale spatially offset
Raman spectroscopy (micro-SORS), J. Raman Spectrosc., 46, 476–482, 2015.
Cooke, R. U., Inkpen, R. J., and Wiggs, G. F. S.: Using gravestones to assess
changing rates of weathering in the United Kingdom, Earth Surf. Process.
Landf., 20, 531–546, 1995.
Crippa, M., Legnaioli, S., Kimbriel, C., and Ricciardi, P.: New evidence for
the international use of calomel as a white pigment, J. Raman Spectrosc.,
52, 15–22, 2021.
Crisci, G. M., La Russa, M. F., Malagodi, M., Mariani, F., Mazzoleni, P.,
Pezzino, A., and Ruffolo, S. A.: Study of alteration and degradation products
of a Roman marble sarcophagus located in the medieval cloister of the old St
Cosimato's Convent, now the new “Regina Margherita Hospital” (Rome),
Conserv. Sci. Cult. Herit., 9, 143–156, 2009.
De La Pierre, M., Carteret, C., Maschio, L., André E., Orlando, R., and
Dovesi, R.: The Raman spectrum of CaCO3 polymorphs calcite and
aragonite: A combined experimental and computational study, J. Chem. Phys.,
140, 164509, https://doi.org/10.1063/1.4871900, 2014.
De Oliveira, V. E., Castro, H. V., Edwards, H. G. M., and de Oliveira, L. F. C.:
Carotenes and carotenoids in natural biological samples: a Raman
spectroscopic analysis, J. Raman Spectrosc., 41, 642–650, 2010.
Dragovich, D.: Marble weathering in an industrial environment, Eastern
Australia, Environ. Geol. Water Sci., 17, 127–132, 1991.
Edwards, H. G. M. and Farwell, D. W.: The conservational heritage of wall
paintings and buildings: an FT-Raman spectroscopic study of prehistoric,
Roman, medieval and Renaissance lime substrates and mortars, J. Raman
Spectrosc., 39, 985–992, 2008.
Edwards, H. G. M., Farwell, D. W., and Seaward, M. R. D.: Raman spectra of
oxalates in lichen encrustations on Renaissance frescoes, Spectrochim. Acta
A, 47, 1531–1539, 1991.
Edwards, H. G. M., Seaward, M. R. D., Attwood, S. J., Little, S. J., de Oliveira,
L. F. C., and Tretiach, M.: FT-Raman spectroscopy of lichens on dolomitic
rocks: an assessment of metal oxalate formation, Analyst, 128, 1218–1221,
2003.
Edwards, H. G. M., Colomban, P., and Bowden, B.: Raman spectroscopic analysis
of an English soft-paste porcelain plaque-mounted table, J. Raman
Spectrosc., 35, 656–661, 2004.
Edwards, H. G. M., Hassan, N. F. N., and Middleton, P. S.: Anatase – a pigment
in ancient artwork or a modern usurper?, Anal. Bioanal. Chem., 384,
1356–1365, 2006.
Eisa, M. Y., Al Dabbas, M., and Abdulla, F. H.: Quantitative identification of
phosphate using X-ray diffraction and Fourier transform infrared (FTIR)
spectroscopy, Int. J. Curr. Microbiol. App. Sci., 4, 270–283, 2015.
Engelbrecht, J. P. and Derbyshire, E.: Airborne mineral dust, Elements, 6,
241–246, 2010.
Engling, G. and Gelencsér, A.: Atmospheric brown clouds: from local air
pollution to climate change, Elements, 6, 223–228, 2010.
Ferrari, A. C. and Robertson, J.: Raman spectroscopy of amorphous,
nanostructured, diamond-like carbon, and nanodiamond, Phil. Trans. R. Soc.
Lond. A, 362, 2477–2512, 2004.
Frech, R., Wang, E. C., and Bates, J. B.: The i.r. and Raman spectra of
CaCO3 (aragonite), Spectrochim. Acta A, 36, 915–919, 1980.
Frost, R. L.: Raman spectroscopy of natural oxalates, Anal. Chim. Acta, 517,
207–214, 2004.
Frost, R. L. and Weier, M. L.: Raman spectroscopy of natural oxalates at 298
and 77 K, J. Raman Spectrosc., 34, 776–785, 2003.
Gadd, G. M.: Fungi, rocks, and minerals, Elements, 13, 171–176, 2017.
Gaffey, S. J.: Spectral reflectance of carbonate minerals in the visible and
near infrared (0.35–2.55 microns): calcite, aragonite, and dolomite, Am.
Mineral., 71, 151–162, 1986.
Gieré, R. and Querol, X.: Solid particulate matter in the Atmosphere,
Elements, 6, 215–222, 2010.
Grobéty, B., Gieré, R., Dietze, V., and Stille, P.: Airborne
particles in the urban environment, Elements, 6, 229–234, 2010.
Gunasekaran, S., Anbalagan, G., and Pandi, S.: Raman and infrared spectra of
carbonates of calcite structure, J. Raman Spectrosc., 37, 892–899, 2006.
Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L.,
Wolf-Gladrow, D. A., Dürr, H. H., and Scheffran, J.: Enhanced chemical
weathering as a geoengineering strategy to reduce atmospheric carbon
dioxide, supply nutrients, and mitigate ocean acidification, Rev. Geophys.,
51, 113–149, 2013.
Holder, J. M., Wynn-Williams, D. D., Rull Perez, F., and Edwards, H. G. M.:
Raman spectroscopy of pigments and oxalates in situ within epilithic
lichens: Acaroscopa from the Antarctic and Mediterranean, New Phytol., 145,
271–280, 2000.
Jegova, G., Titorenkova, R., Rashkova, M., and Mihailova, B.: Raman and IR
reflection micro-spectroscopic study of Er : YAG laser treated permanent and
deciduous human teeth, J. Raman Spectrosc., 44, 1483–1490, 2013.
Litasov, K. D. and Podgornykh N. M.: Raman spectroscopy of various phosphate
minerals and occurrence of tuite in the Elga IIE iron meteorite, J. Raman
Spectrosc., 48, 1518–1527, 2017
Maguregui, M., Knuutinen, U., Martínez-Arkarazo, I., Giakoumaki, A.,
Castro, K., and Madariaga, J. M.: Field Raman analysis to diagnose the
conservation state of excavated walls and wall paintings in the
archaeological site of Pompeii (Italy), J. Raman Spectrosc., 43, 1747–1753,
2012.
Markovic, M., Fowler, B. O., and Tung, M. S.: Preparation and comprehensive
characterization of a calcium hydroxyapatite reference material, J. Res.
Natl. Inst. Stand. Technol., 109, 553–568, 2004.
Martínez-Arkarazo, I., Smith, D. C., Zuloaga, O., Olazabal, M. A., and
Madariaga, J. M.: Evaluation of three different mobile Raman microscopes
employed to study deteriorated civil building stones, J. Raman Spectrosc.,
39, 1018–1029, 2008.
Matousek, P., Conti, C., Realini, M., and Colombo, C.: Micro-scale spatially
offset Raman spectroscopy for non-invasive subsurface analysis of turbid
materials, Analyst, 141, 731–739, 2016.
Moropoulou, A., Bisbikou, K., Torfs, K., Van Grieken, R., Zezza, F., and
Macri, F.: Origin and growth of weathering crusts on ancient marbles in
industrial atmosphere, Atmos. Environ., 32, 967–982, 1998.
Petrov, I. and Šoptrajanov, B.: Infrared spectrum of whewellite,
Spectrochim. Acta A., 31, 309–316, 1975.
Pinna, D., Galeotti, M., and Rizzo, A.: Brownish alterations on the marble
statues in the church of Orsanmichele in Florence; what is their origin?,
Herit. Sci., 3, p. 7, https://doi.org/10.1186/s40494-015-0038-1, 2015.
Powers, J., Clinton, N. D., Huang, R., Smilgies, D. M., Bilderback, D.,
Clinton, K., and Thorne, R. E.: X-ray fluorescence recovers writing from
ancient inscriptions, Z. Papyr. Epigr., 152, 221–227, 2005.
Prasad, P. S. R., Pradhan, A., and Gowd, T. N.: In situ micro-Raman
investigation of dehydration mechanism in natural gypsum, Curr. Sci., 80,
1203–1207, 2001.
Prencipe, M., Pascale, F., Zicovich-Wilson, C.M., Saunders, V.R., Orlando,
R., and Dovesi, R.: The vibrational spectrum of calcite (CaCO3): an ab
initio quantum-mechanical calculation, Phys. Chem. Mineral., 31, 559–564,
2004.
Rampazzi, L., Andreotti, A., Bonaduce, I., Colombini, M. P., Colombo, C., and
Toniolo, L.: Analytical investigation of calcium oxalate films on marble
monuments, Talanta, 63, 967–977, 2004.
Realini, M., Botteon, A., Conti, C., Colombo, C., and Matousek, P.: Development
of portable defocusing micro-scale spatially offset Raman spectroscopy,
Analyst, 141, 3012–3019, 2016.
Realini, M., Conti, C., Botteon, A., Colombo, C., and Matousek, P.: Development
of a full micro-scale spatially offset Raman spectroscopy prototype as a
portable analytical tool, Analyst, 142, 351–355, 2017.
Sahoo, S., Arora, A. K., and Sridharan V.: Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals, J. Phys. Chem. C, 113, 16927–16933, 2009.
Saikia, B. J., Parthasarathy, G., and Sarmah, N. C.: Fourier transform
infrared spectroscopic estimation of crystallinity in SiO2 based rocks,
Bull. Mater. Sci., 31, 775–779, 2008.
Schauble, E. A., Ghosh, P., and Eiler, J. M.: Preferential formation of
13C-18O bonds in carbonate minerals, estimated using
first-principles lattice dynamics, Geochim. Cosmochim. Ac., 70, 2510–2529,
2006.
Singha, M. and Singh, L.: Vibrational spectroscopic study of muscovite and
biotite layered phyllosilicates, Indian J. Pure Appl. Phys., 54, 116–122,
2016.
Smith, D. C.: In situ mobile subaquatic archaeometry evaluated by
non-destructive Raman microscopy of gemstones lying under impure waters,
Spectrochim. Acta A, 59, 2353–2369, 2003.
Sodo, A., Tortora, L., Biocca, P., Municchia, A. C., Fiorin, E., and Ricci,
M. A.: Raman and time of flight secondary ion mass spectrometry investigation
answers specific conservation questions on Bosch painting Saint Wilgefortis
Triptych, J. Raman Spectrosc., 50, 150–160, 2019.
Stammeier, J. A., Purgstaller, B., Hippler, D., Mavromatis V., and Dietzel,
M.: In-situ Raman spectroscopy of amorphous calcium phosphate to crystalline
hydroxyapatite transformation, Methods X, 5, 1241–1250, 2018.
Takahashi, H., Maehara, I., and Kaneko, N.: Infrared reflection spectra of
gypsum, Spectrochim. Acta A, 39, 449–455, 1983.
Tomasini, E. P., Halac, E. B., Reinoso, M., Di Liscia, E. J., and Maier, M. S.:
Micro-Raman spectroscopy of carbon-based black pigments, J. Raman
Spectrosc., 43, 1671–1675, 2012.
Twilley, J.: Raman spectroscopy investigations of the weathering alteration
of a predazzite marble mouflon of the Indus Valley Culture, J. Raman
Spectrosc., 37, 1201–1210, 2006.
Wentzel, M., Gorzawski, H., Naumann, K.-H., Saathoff, H., and Weinbruch, S.:
Transmission electron microscopical and aerosol dynamical characterization
of soot aerosols, J. Aerosol Sci., 34, 1347–1370, 2003.
Zhang, W. F., He, Y. L., Zhang, M. S., Yin, Z., and Chen, Q.: Raman scattering
study on anatase TiO2 nanocrystals, J. Phys. D, 33,
912–916, 2000.
Short summary
A Raman scattering study of authentic inscribed marble demonstrates that cracks formed during the engraving enhance the development of weathering-related products whose signals could be potentially used to improve the readability of an inscribed text affected by rock weathering. Comprehensive analyses of different marble inscriptions reveal the effect of the environmental conditions, inscription age, grain size, and letter colouring on the abundance and penetration depth of alteration products.
A Raman scattering study of authentic inscribed marble demonstrates that cracks formed during...