Bambauer, H. U.: Spurenelementgehalte und
γ-Farbzentren in Quarzen
aus Zerrklüften der Schweizer Alpen, Schweiz. Min. Petr. Mitt., 41,
335–369, 1961.
Baron, M. A., Stalder, R., Konzett, J., and Hauzenberger, C. A.: Formation
conditions of quartz recorded by OH-point defects – experimental and
analytical approach, Phys. Chem. Miner., 42, 53–62, https://doi.org/10.1007/s00269-014-0699-4, 2015.
Biró, T., Kovács, I. J., Király, E., Falus, G., Karátson, D.,
Bendö, Z., Fancsik, T., and Sándorné, J. K.: Concentration of
hydroxyl defects in quartz from various rhyolitic ignimbrite horizons:
results from unpolarized micro-FTIR analyses on unoriented phenocryst
fragments, Eur. J. Mineral., 28, 313–327, https://doi.org/10.1127/ejm/2016/0028-2513, 2016.
Biró, T., Kovács, I. J., Karátson, D., Stalder, R., Király,
E., Falus, G., Fancsik, T., and Sándorné, J. K.: Evidence for
post-depositional diffusional loss of hydrogen in quartz phenocryst
fragments within ignimbrites, Am. Mineral., 102, 1187–1201, https://doi.org/10.2138/am-2017-5861, 2017.
Breiter, K., Müller, A., Leichmann, J., and Gabasová, A.: Textural and
chemical evolution of a fractionated granitic system: the Podlesí
stock, Czech Republic, Lithos, 80, 323–345, https://doi.org/10.1016/j.lithos.2003.11.004, 2005.
Brown, R. N. and Kahan, A.: Optical absorption of irradiated quartz in the
near i.r., J. Phys. Chem. Solids, 36, 467–476, https://doi.org/10.1016/0022-3697(75)90076-1, 1975.
Chakraborty, D. and Lehmann, G.: On the structure and orientations of
hydrogen defects in natural and synthetic quartz crystals, Phys. Stat.
Solidi A, 34, 467–474, https://doi.org/10.1002/pssa.2210340206, 1976b.
Charlier, B. L. A., Morgan, D. J., Wilson, C. J. N., Wooden, J. L., Allan, A. S. R., and
Baker, J. A.: Lithium concentration gradients in feldspar and quartz record
the final minutes of magma ascent in an explosive supereruption, Earth
Planet. Sc. Lett., 319–320, 218–227, https://doi.org/10.1016/j.epsl.2011.12.016, 2012.
Chauviré, B., Rondeau, B., and Mangolg, N.: Near infrared signature of opal
and chalcedony as a proxy for their structure and formation conditions, Eur.
J. Mineral., 29, 409–421, https://doi.org/10.1127/ejm/2017/0029-2614, 2017.
Cohen, A. J.: Substitutional and interstitial aluminium impurity in quartz,
structure and color center interrelationships, J. Phys. Chem. Solids, 13,
321–325, https://doi.org/10.1016/0022-3697(60)90016-0, 1960.
Cordier, P., Weil, J. A., Howarth, D. F., and Doukhan, J. C.: Influence of the
(4H)
Si defect on dislocation motion in crystalline quartz, Eur. J.
Mineral., 6, 17–22, 1994.
Eissmann, L.: Quartärgeologie und Geschiebeforschung im Leipziger Land
mit einigen Schlußfolgerungen zu Stratigraphie und Vereisungsablauf im
Norddeutschen Tiefland, p. 105–133, in: Die Eiszeitgeschiebe in der Umgebung von Leipzig.
Bestand, Herkunft, Nutzung und quartärgeologische Bedeutung, edited by: Richter, E., Baudenbacher, R.,
and Eissmann, L., Altenburger
Naturwissenschaftliche Forschung, 3, 1–136, 1986 (in German).
Frigo, C., Stalder, R., and Hauzenberger, C. A.: OH-defects in quartz in granitic
systems
doped with spodumene, tourmaline and/or apatite: experimental investigations
at 5–20 kbar, Phys. Chem. Miner., 43, 717–729, https://doi.org/10.1007/s00269-016-0828-3, 2016.
Frigo, C., Stalder, R., and Ludwig, T.: OH defects in coesite and stishovite
during ultrahigh-pressure metamorphism of continental crust, Phys. Chem.
Miner., 46, 77–89, https://doi.org/10.1007/s00269-018-0987-5,
2019.
Frondel, C.: Structural hydroxyl in chalcedony (Type B quartz), Am.
Mineral., 67, 1248–1257, 1982.
Führing, P.: Provenienz und Verteilung rezenter Sande der
Nordseeküste (West- bis Ostfriesland) und der Flüsse Elbe, Weser und
Ems, MSc-thesis, University of Göttingen, Göttingen, Germany, 167 pp., 2017 (in
German with English abstract).
Griggs, D. T., Blacic, J. D., Christie, J. M., McLaren, A. C., and Frank, F. C.:
Hydrolytic weakening of quartz crystals, Science, 152, 674, 1966.
Halliburton, L. E., Koumvakalis, N., Markes, M. E., and Martin, J. J.: Radiation
effects in crystalline SiO
2: the role of aluminium, J. Appl. Phys., 52,
3565–3574, https://doi.org/10.1063/1.329138, 1981.
Hardgrove, C. and Rogers, D.: Thermal infrared and Raman microspectroscopy
of moganite-bearing rocks, Am. Mineral., 98, 78–84, https://doi.org/10.2138/am.2013.4152, 2013.
Heaney, P. J. and Post, J. E.: The widespread distribution of a novel silica
polymorph in microcrystalline quartz varieties, Science, 255, 441–443,
https://doi.org/10.1126/science.255.5043.441, 1992.
Jaeger, D., Stalder, R., Masago, H., and Strasser, M.: OH defects in quartz as a
provenance tool: application to fluvial and deep marine sediments from SW
Japan, Sed. Geol., 388, 66–80, https://doi.org/10.1016/j.sedgeo.2019.05.003, 2019.
Jollands, M. C., Blanchard, M., and Balan, E.: Structure and theoretical infrared spectra of OH defects in quartz, Eur. J. Mineral., 32, 311–323, https://doi.org/10.5194/ejm-32-311-2020, 2020a.
Jollands, M. C., Ellis, B., Tollan, P., and Müntener, O.: An eruption
chronometer based on experimentally determined H-Li and H-Na diffusion in
quartz applied to the Bishop Tuff, Earth Planet. Sc. Lett., 551, 116560,
https://doi.org/10.1016/j.epsl.2020.116560, 2020b.
Jung, L.: High purity natural quartz, Part I: High purity natural quartz for
industrial use, Quartz Technology Inc., Liberty Corner, New Jersey, 538 pp.,
1992a.
Jung, L.: High purity natural quartz, Part II: High purity natural quartz
markets for supplier and users, Quartz Technology Inc., Liberty Corner, New
Jersey, 131 pp., 1992b.
Karampelas, S., Fritsch, E., Zorba, T., Paraskevopoulos, K. M., and Sklavounos,
S.: Distinguishing natural from synthetic amethyst: the presence and shape
of the 3595 cm
−1 peak, Mineral. Petrol., 85, 45–52, https://doi.org/10.1007/s00710-005-0101-9, 2005.
Kats, A.: Hydrogen in alpha quartz, Philips Research Reports, 17, 133–279,
1962.
Kronenberg, A. K., Kirby, S. H., Aines, R. D., and Rossman, G. R.: Solubility and
diffusional uptake of hydrogen in quartz at high water pressures:
implications for hydrolytic weakening, J. Geophys. Res., B91, 12723–12744,
1986.
Kronenberg, A. K., Hasnan, H. F. B., Holyoke III, C. W., Law, R. D., Liu, Z., and Thomas, J. B.: Synchrotron FTIR imaging of OH in quartz mylonites, Solid Earth, 8, 1025–1045, https://doi.org/10.5194/se-8-1025-2017, 2017.
Langer, K. and Flörke, O. W.: Near infrared absorption spectra (4000–9000 cm
−1) of opals and the role of “water” in these SiO
2-nH
2O
minerals, Fortschr. Mineral., 52, 17–51, 1974.
London, D.: Experimental phase equilibria in the system LiAlSiO
4–SiO
2–H
2O: a petrogenetic grid for lithium-rich pegmatites, Am.
Mineral., 69, 995–1004, 1984.
Mackwell, S. J. and Paterson, M. S.: Water related diffusion and deformation
effects in quartz at pressures of 1500 and 300 MPa. In: Schock, R.N. (Ed.)
Point defects in minerals, Am. Geophys. Union, Geophys. Monogr., 31,
141–150, 1985.
McConnell, J. D. C., Lin, J. S., and Heine, V.: The solubility of [4H]
Si
defects in a-quartz and their role in the formation of molecular water and
related weakening on heating, Phys. Chem. Miner., 22, 357–366, https://doi.org/10.1007/BF00213332, 1995.
Merritt, E.: Ueber den Dichroismus von Kalkspath, Quarz und Turmalin für
ultrarothe Strahlen, Annalen der Physik und Chemie, 55, 49–64, 1895.
Müller, A. and Koch-Müller, M.: Hydrogen speciation and trace
element contents of igneous, hydrothermal and metamorphic quartz from
Norway, Mineral. Mag., 73, 569–583, https://doi.org/10.1180/minmag.2009.073.4.569, 2009.
Müller, A., Wiedenbeck, M., van den Kerkhof, A. M., Kronz, A., and Simon, K.:
Trace elements in quartz – a combined electron microprobe, secondary ion
mass spectrometry, laser ablation ICP-MS, and cathodoluminescence study,
Eur. J. Mineral., 15, 747–763, https://doi.org/10.1127/0935-1221/2003/0015-0747, 2003.
Müller, A., van den Kerkhof, A. M., Behr, H.-J., Kronz, A.,
and Koch-Müller, M.: The evolution of late-Hercynian granites and rhyolites
documented by quartz – a review, Earth Environ. Sci. Trans. Royal Soc.
Edinburgh, 100, 185–204, https://doi.org/10.1017/S1755691009016144, 2009.
Niimi, N., Aikawa, N., and Shinoda, K.: The infrared absorption band at 3596
cm
−1 of the recrystallized quartz from Mt. Takamiyama, southwest Japan,
Mineral. Mag., 63, 693–701, https://doi.org/10.1180/002646199548853, 1999.
Nuttall, R. H. D. and Weil, J. A.: The magnetic properties of the oxygenhole
aluminium centers in crystalline SiO
2. II. [AlO
4/H
+] and
[AlO
4/Li
+], Can. J. Phys., 59, 1709–1718, https://doi.org/10.1139/p81-228, 1981.
Paterson, M. S.: The thermodynamics of water in quartz, Phys. Chem. Miner.,
13, 245–255, 1986.
Potrafke, A., Stalder, R., Schmidt, B. C., and Ludwig, T.: OH defect contents in
quartz in a granitic system at 1–5 kbar, Contrib. Mineral. Petrol., 174, 98,
https://doi.org/10.1007/s00410-019-1632-0, 2019.
Potrafke, A., Breiter, K., Ludwig, T., Neuser, R. D., and Stalder, R.: Variations
of OH defects and chemical impurities in quartz within igneous bodies, Phys.
Chem. Miner., 47, 24, https://doi.org/10.1007/s00269-020-01091-w, 2020.
Purton, J., Jones, R., Heggie, M., Öberg, S., and Catlow, C. R. A.: LDF
pseudopotential calculations of the a-quartz structure and hydrogarnet
defect, Phys. Chem. Miner., 18, 389–392, https://doi.org/10.1007/BF00199421, 1992.
Rhodes, E. J.: Optically stimulated luminescence dating of sediments over the
past 200 000 years, Ann. Rev. Earth Planet. Sc., 39, 461–488,
https://doi.org/10.1146/annurev-earth-040610-133425, 2011.
Ronov, A. B. and Yaroshevski, A. A.: Chemical composition of the Earth's crust,
in: The Earths's crust and upper mantle, edited by: Hart, P. J., Geophysical Monograph Series, Amer. Geophys. Union, 13, 37–57, https://doi.org/10.1029/GM013p0037, 1969.
Rosa, A. L., El-Barbary, A. A., Heggie, M. I., and Briddon, P. R.: Structural and
thermodynamic properties of water related defects in a-quartz, Phys. Chem.
Miner., 32, 323–331, https://doi.org/10.1007/s00269-005-0005-6, 2005.
Rovetta, M. R.: Experimental and spectroscopic constraints on the solubility
of hydroxyl in quartz, Phys. Earth Planet. Int., 55, 326–334, 1989.
Rovetta, M. R., Blacis, J. D., Hervig, R. L., and Holloway, J. R.: An experimental
study of hydroxyl in quartz using infrared spectroscopy and ion microprobe
techniques, J. Geophys. Res., 94B, 5840–5850, 1989.
Shaffer, E. W., Sang, J. S. L., Cooper, A. R., and Heuer, A. H.: Diffusion of
tritiated water in
β-quartz, in: Geochemical Transport and Kintetics, edited by: Hofmann, A. W., Giletti, B. J., Yoder, H. S., and
Yund, R. A., Carnegie institution Washington, Publication 634, 131–138, 1974.
Sharma, S. K., Chawla, S., Sastry, M. D., Gaonkar, M., Mane, S., Balaram, V.,
and Singhvi, A. K.: Understanding the reasons for variations in luminescence
sensitivity of natural quartz using spectroscopic and chemical studies,
Proc. Ind. Nat. Sci. Acad., 83, 645–653, https://doi.org/10.16943/ptinsa/2017/49024, 2017
Staats, P. A. and Kopp, O. C.: Studies of the origin of the 3400 cm
−1
region infrared bands of synthetic and natural
α-quartz, J. Phys. Chem.
Solids, 35, 1029–1033, https://doi.org/10.1016/S0022-3697(74)80118-6, 1974.
Stalder, R.: OH-defect content in detrital quartz grains as an archive for
crystallization conditions, Sed. Geol., 307, 1–6, https://doi.org/10.1016/j.sedgeo.2014.04.002, 2014.
Stalder, R. and Konzett, J.: OH-defects in quartz in the system quartz –
albite – water and granite – water between 5 and 25 kbar, Phys. Chem.
Miner., 39, 817–827, https://doi.org/10.1007/s00269-012-0537-5, 2012.
Stalder, R. and Neuser, R. D.: OH-defects in detrital quartz grains:
potential for application as tool for provenance analysis and overview over
crustal average, Sed. Geol., 294, 118–126, https://doi.org/10.1016/j.sedgeo.2013.05.013, 2013.
Stalder, R., Potrafke, A., Billström, K., Skogby, H., Meinhold, G.,
Gögele, C., and Berberich, T.:
OH defects in quartz as monitor for igneous, metamorphic, and sedimentary
processes, Am. Mineral., 102, 1832–1842, https://doi.org/10.2138/am-2017-6107, 2017.
Stalder, R., von Eynatten, H., Costamoling, J., Potrafke, A., Dunkl, I., and
Meinhold, G.: OH in detrital quartz grains as tool for provenance analysis:
case studies on various settings from Cambrian to Recent, Sed. Geol., 389,
121–126, https://doi.org/10.1016/j.sedgeo.2019.06.001, 2019.
Suzuki, S. and Nakashima, S.: In-situ IR measurements of OH species in
quartz at high temperatures, Phys. Chem. Miner., 26, 217–225, https://doi.org/10.1007/s002690050180, 1999.
Tailby, N. D., Cherniak, D., and Watson, E. B.: Al diffusion in quartz, Am.
Mineral., 103, 839–847, https://doi.org/10.2138/am-2018-5613,
2018.
Thamóné, B. E., Füri, J., Kovács, I. J., Biró, T.,
Király, E., Nagy, A., Törökné Sinka, M., Kónya, P.,
Mészárosné Turi, J., and Vígh, C.: Characteristics of quartz
separates of different formations in Hungary from the aspect of OSL dating,
Bull. Hung. Geol. Soc., 150, 61–80, https://doi.org/10.23928/foldt.kozl.2020.150.1.61, 2020 (in Hungarian with
English abstract).
Thomas, S. M., Koch-Müller, M., Reichart, P., Rhede, D., Thomas, R., and
Wirth, R.: IR calibrations for water determination in olivine, r-GeO
2
and SiO
2 polymorphs, Phys. Chem. Miner., 36, 489–509, https://doi.org/10.1007/s00269-009-0295-1, 2009.
Tollan, P., Ellis, B., Troch, J., and Neukampf, J.: Assessing magmatic volatile
equilibria through FTIR spectroscopy of unexposed melt inclusions and their
host quartz: a new technique and application to the Mesa Falls Tuff,
Yellowstone, Contrib. Mineral. Petrol., 174, 24, https://doi.org/10.1007/s00410-019-1561-y, 2019.
Wedepohl, K. H.: The composition of the continental crust, Geochim.
Cosmochim. Ac., 59, 1217–1232, https://doi.org/10.1016/0016-7037(95)00038-2, 1995.
Wenk, E.: Plagioklas als Indexmineral in den Zentralalpen. Die Paragenese
Calcit – Plagioklas, Schweiz. Min. Petr. Mitt., 42, 139–152, 1962.
Winkler, H. G. F.: Synthese und Kristallstruktur des Eucryptits, Acta Cryst.,
1, 27–34, 1948.
Ziegler, P. A.: Geological Atlas of Western and Central Europe, Shell
Internationale Petroleum
Maatschappij B.V., The Hague, 239 pp., 1990.