Articles | Volume 32, issue 6
https://doi.org/10.5194/ejm-32-587-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-587-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone)
Marta Antonicelli
Dipartimento di Scienze della Terra e dell'Ambiente, Università
degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy
Riccardo Tribuzio
CORRESPONDING AUTHOR
Dipartimento di Scienze della Terra e dell'Ambiente, Università
degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy
Istituto di Geoscienze e Georisorse, C.N.R., Unità di Pavia, via
Ferrata 1, 27100 Pavia, Italy
Tong Liu
Institute of Geology and Geophysics, Chinese Academy of Sciences,
Beituchengxilu 19, Chaoyang, Beijing, China
Fu-Yuan Wu
Institute of Geology and Geophysics, Chinese Academy of Sciences,
Beituchengxilu 19, Chaoyang, Beijing, China
Related subject area
Igneous petrology
Magmatic to solid-state evolution of a shallow emplaced agpaitic tinguaite (the Suc de Sara dyke, Velay volcanic province, France): implications for peralkaline melt segregation and extraction in ascending magmas
Granite magmatism and mantle filiation
Inclusions in magmatic zircon from Slavonian mountains (eastern Croatia): anatase, kumdykolite and kokchetavite and implications for the magmatic evolution
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Constraining the volatile evolution of mafic melts at Mt. Somma–Vesuvius, Italy, based on the composition of reheated melt inclusions and their olivine hosts
Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources
Reactive interaction between migmatite-related melt and mafic rocks: clues from the Variscan lower crust of Palmi (southwestern Calabria, Italy)
ICDP Oman Drilling Project: varitextured gabbros from the dike–gabbro transition within drill core GT3A
A snapshot of the transition from monogenetic volcanoes to composite volcanoes: case study on the Wulanhada Volcanic Field (northern China)
40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems
Quantification of major and trace elements in fluid inclusions and gas bubbles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with no internal standard: a new method
New evidence for upper Permian crustal growth below Eifel, Germany, from mafic granulite xenoliths
Thomas Pereira, Laurent Arbaret, Juan Andújar, Mickaël Laumonier, Monica Spagnoli, Charles Gumiaux, Gautier Laurent, Aneta Slodczyk, and Ida Di Carlo
Eur. J. Mineral., 36, 491–524, https://doi.org/10.5194/ejm-36-491-2024, https://doi.org/10.5194/ejm-36-491-2024, 2024
Short summary
Short summary
This work presents the results on deformation-enhanced melt segregation and extraction in a phonolitic magma emplaced at shallow depth in the Velay volcanic province (France). We provide evidence of the segregation and subsequent extraction of the residual melt during magma ascent and final emplacement. We highlight that melt segregation started by compaction as a loose packing of microlites emerged and continued with melt filling of a shear band network.
Michel Pichavant, Arnaud Villaros, Julie A.-S. Michaud, and Bruno Scaillet
Eur. J. Mineral., 36, 225–246, https://doi.org/10.5194/ejm-36-225-2024, https://doi.org/10.5194/ejm-36-225-2024, 2024
Short summary
Short summary
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting and basaltic origin. Peraluminous felsic leucogranites are considered as the only granite examples showing no mantle input. This interpretation is re-evaluated, and we show that leucogranites, as most other crustal granite types, can have a mantle filiation. This stresses the critical importance of the mantle for granite generation and opens the way for unification of silicic magma generation models.
Petra Schneider and Dražen Balen
Eur. J. Mineral., 36, 209–223, https://doi.org/10.5194/ejm-36-209-2024, https://doi.org/10.5194/ejm-36-209-2024, 2024
Short summary
Short summary
The acid igneous rocks of eastern Croatia related to the Late Cretaceous closure of the Neotethys Ocean contain zircon as a main accessory mineral. Among others, zircon has inclusions of anatase, hematite and melt (nanogranitoids) with kokchetavite and kumdykolite. The first finding here of kokchetavite and kumdykolite in a magmatic nanogranitoid proves that these are not exclusively ultra-high pressure phases. The detected inclusions indicate rapid uplift and cooling of the oxidised magma.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Rosario Esposito, Daniele Redi, Leonid V. Danyushevsky, Andrey Gurenko, Benedetto De Vivo, Craig E. Manning, Robert J. Bodnar, Matthew Steele-MacInnis, and Maria-Luce Frezzotti
Eur. J. Mineral., 35, 921–948, https://doi.org/10.5194/ejm-35-921-2023, https://doi.org/10.5194/ejm-35-921-2023, 2023
Short summary
Short summary
Despite many articles published about eruptions at Mt. Somma–Vesuvius (SV), the volatile contents of magmas associated with mafic (quasi-primitive) melts were not directly analyzed for many eruptions based on melt inclusions (MIs). We suggest that several high-Fo olivines formed at depths greater than those of the carbonate platform based on MI chemical composition. We also estimated that 347 to 686 t d-1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries of volcanic activity.
Gumer Galán, Gloria Gallastegui, Andrés Cuesta, Guillermo Corretgé, Ofelia Suárez, and Luis González-Menéndez
Eur. J. Mineral., 35, 845–871, https://doi.org/10.5194/ejm-35-845-2023, https://doi.org/10.5194/ejm-35-845-2023, 2023
Short summary
Short summary
Two examples of granites in the Variscan Iberian Massif were studied because they are associated with mafic rocks (appinites and vaugnerites), which raise the question of the role of mantle magma in the formation of granitic rocks. We conclude that appinites and vaugnerites derived from melting of different mantle sources, both previously modified by interaction with crustal materials. Subsequent differentiation of appinites and vaugnerites was influenced by contamination with coeval granites.
Maria Rosaria Renna
Eur. J. Mineral., 35, 1–24, https://doi.org/10.5194/ejm-35-1-2023, https://doi.org/10.5194/ejm-35-1-2023, 2023
Short summary
Short summary
Distribution of major and trace elements during anatexis at the source area was investigated in a portion of Variscan mid–lower crust exposed at Palmi (Calabria, Italy). Reactive migration of migmatitic melt imparted a mineralogical and chemical signature in mafic rocks associated with migmatites and promoted the crystallization of amphibole by a coupled dissolution–precipitation process. Amphibole and accessory allanite control the distribution of incompatible elements from the anatectic zone.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Gerhard Franz, Masafumi Sudo, and Vladimir Khomenko
Eur. J. Mineral., 34, 7–18, https://doi.org/10.5194/ejm-34-7-2022, https://doi.org/10.5194/ejm-34-7-2022, 2022
Short summary
Short summary
The age of formation of buddingtonite, ammonium-bearing feldspar, can be dated with the Ar–Ar method; however, it may often give only minimum ages due to strong resetting. In the studied example it gives a Precambrian minimum age of fossils, associated with this occurrence, and the age of the accompanying mineral muscovite indicates an age near 1.5 Ga. We encourage more dating attempts of buddingtonite, which will give valuable information of diagenetic or hydrothermal events.
Leonid Shumlyanskyy, Gerhard Franz, Sarah Glynn, Oleksandr Mytrokhyn, Dmytro Voznyak, and Olena Bilan
Eur. J. Mineral., 33, 703–716, https://doi.org/10.5194/ejm-33-703-2021, https://doi.org/10.5194/ejm-33-703-2021, 2021
Short summary
Short summary
In the paper we discuss the origin of large chamber pegmatite bodies which contain giant gem-quality crystals of black quartz (morion), beryl, and topaz. We conclude that these pegmatites develop under the influence of later intrusions of mafic rocks that cause reheating of the partly crystallized granite massifs and that they supply a large amount of fluids that facilitate the
inflationof pegmatite chambers and crystallization of giant crystals of various minerals.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Anastassia Y. Borisova, Stefano Salvi, German Velasquez, Guillaume Estrade, Aurelia Colin, and Sophie Gouy
Eur. J. Mineral., 33, 305–314, https://doi.org/10.5194/ejm-33-305-2021, https://doi.org/10.5194/ejm-33-305-2021, 2021
Short summary
Short summary
We developed a new method for quantifying elemental concentrations in natural and synthetic fluid inclusions and gas bubbles using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method with no internal standard. The method may be applied to estimate trace (metal and metalloid) elemental concentrations in hydrous carbonic (C–O–H) fluid inclusions and bubbles with uncertainty below 25 %.
Cliff S. J. Shaw
Eur. J. Mineral., 33, 233–247, https://doi.org/10.5194/ejm-33-233-2021, https://doi.org/10.5194/ejm-33-233-2021, 2021
Short summary
Short summary
Volcanic activity in the West Eifel region of Germany over the past million years has brought many samples of the Earth's mantle and crust to the surface. The samples from this study are pieces of the deep crust that formed between 264 and 253 million years ago at a depth of ~ 30 km. Samples like these reveal how the Earth's crust has grown and been modified over time.
Cited articles
Baker, A. J.: Stable isotopic evidence for fluid-rock interactions in the
Ivrea Zone, Italy, J. Petrol., 31, 243–260, 1990.
Barnes, S. J., Mole, D. R., Le Vaillant, M., Campbell, M. J., Verrall, M.
R., Roberts, M. P., and Evans, N. J.: Poikilitic textures, heteradcumulates
and zoned orthopyroxenes in the Ntaka Ultramafic Complex, Tanzania:
implications for crystallization mechanisms of oikocrysts, J.
Petrol., 57, 1171–1198, 2016.
Berno, D., Tribuzio, R., Zanetti, A., and Hémond, C.: Evolution of
mantle melts intruding the lowermost continental crust: constraints from the
Monte Capio-Alpe Cevia mafic-ultramafic sequences (Ivrea-Verbano Zone,
northern Italy), Contrib. Mineral. Petr., 175, 2, https://doi.org/10.1007/s00410-019-1637-8, 2020.
Bertolani, M. and Loschi-Ghittoni, A. G.: La zona a ultrabasiti della Rocca
D'Argimonia nelle Prealpi Biellesi. La petrografia, Rend. Soc. Ital.
Mineral. Petr., 35, 791–813, 1979.
Bindeman, I. N., Ponomareva, V. V., Bailey, J. C., and Valley, J. W.:
Volcanic arc of Kamchatka: a province with high-δ18O magma sources
and large-scale 18O/16O depletion of the upper crust, Geochim.
Cosmochim. Act., 68, 841–865, 2004.
Boriani, A. and Giobbi, E.: Does the basement of western southern Alps
display a tilted section through the continental crust? A review and
discussion, Period. Mineral., 73, 5–22, 2004.
Brey, G. P. and Köhler, T.: Geothermobarometry in four-phase
lherzolites II. New thermobarometers, and practical assessment of existing
thermobarometers, J. Petrol., 31, 1353–1378, 1990.
Bucholz, C. E., Jagoutz, O., VanTongeren, J. A., Setera, J., and Wang, Z.:
Oxygen isotope trajectories of crystallizing melts: Insights from modeling
and the plutonic record, Geochim. Cosmochim. Act., 207, 154–184,
2017.
Bussolesi, M., Grieco, G., and Tzamos, E.: Olivine–Spinel Diffusivity
Patterns in Chromitites and Dunites from the Finero Phlogopite-Peridotite
(Ivrea-Verbano Zone, Southern Alps): Implications for the Thermal History of
the Massif, Minerals, 9, 75, https://doi.org/10.3390/min9020075, 2019.
Chiba, H., Chacko, T., Clayton, R. N., and Goldsmith, J. R.: Oxygen isotope
fractionations involving diopside, forsterite, magnetite, and calcite:
Application to geothermometry, Geochim. Cosmochim. Act., 53,
2985–2995, 1989.
Corvò, S., Langone, A., Padrón-Navarta, J. A., Tommasi, A., and
Zanetti, A.: Porphyroclasts: source and sink of major and trace elements
during deformation-induced metasomatism (Finero, Ivrea Verbano Zone, Italy),
Geosciences, 10, 196, https://doi.org/10.3390/geosciences10050196, 2020.
Demarchi, G., Quick, J. E., Sinigoi, S., and Mayer, A.: Pressure gradient
and original orientation of a lower-crustal intrusion in the Ivrea-Verbano
Zone, Northern Italy, J. Geol., 106, 609–622, 1998.
Denyszyn, S. W., Fiorentini, M. L., Maas, R., and Dering, G.: A bigger tent
for CAMP, Geology, 46, 823–826, 2018.
DePaolo, D. J.: A neodymium and strontium isotopic study of the Mesozoic
calc-alkaline granitic batholiths of the Sierra Nevada and Peninsula Ranges,
California, J. Geophys. Res., 86, 10470–10488, 1981.
Dohmen, R., Chakraborty, S., and Becker, H. W.: Si and O diffusion in
olivine and implications for characterizing plastic flow in the mantle,
Geophys. Res. Lett., 29, 2030, https://doi.org/10.1029/2002GL015480, 2002.
Eiler, J. M.: Oxygen isotope variations of basaltic lavas and upper mantle
rocks, Rev. Mineral. Geochem., 43, 319–364, 2001.
Eiler, J. M., Baumgartner, L. P., and Valley, J. W.: Intercrystalline stable
isotope diffusion: a fast grain boundary model, Contrib. Mineral.
Petr., 112, 543–557, 1992.
Eiler, J. M., Valley, J. W., and Baumgartner, L. P.: A new look at stable
isotope thermometry, Geochim. Cosmochim. Act., 57, 2571–2571, 1993.
Eiler, J. M., Farley, K. A., Valley, J. W., Stolper, E. M., Hauri, E. H.,
and Craig, H.: Oxygen isotope evidence against bulk recycled sediment in the
mantle sources of Pitcairn Island lavas, Nature, 377, 138-141, 1995.
Ewing, T. A., Hermann, J., and Rubatto, D.: The robustness of the
Zr-in-rutile and Ti-in zircon thermometers during high-temperature
metamorphism (Ivrea–Verbano Zone, northern Italy), Contrib. Mineral. Petr., 4, 757–779, 2013.
Ferrario, A., Garuti, G., Rossi, A., and Sighinolfi, G. P. (Eds.):
Petrographic and metallogenic outlines of the “La Balma-M. Capio”
ultramafic-mafic body (Ivrea-Verbano basic complex, NW Italian Alps), in:
Mineral Deposits of the Alps and of the Alpine Epoch in Europe, Springer,
Berlin, Heidelberg, Germany, 28–40, 1983.
Fiorentini, M. L., LaFlamme, C., Denyszyn, S., Mole, D., Maas, R., Locmelis,
M., Caruso, S., and Bui, T. H.: Post-collisional alkaline magmatism as
gateway for metal and sulfur enrichment of the continental lower crust,
Geochim. Cosmochim. Act., 223, 175–197, 2018.
Garuti, G., Bea, F., Zaccarini, F., and Montero, P.: Age, geochemistry and
petrogenesis of the ultramafic pipes in the Ivrea Zone, NW Italy, J.
Petrol., 42, 433–457, 2001.
Giletti, B. J.: Diffusion effects on oxygen isotope temperatures of slowly
cooled igneous and metamorphic rocks, Earth Planet. Sc. Lett.,
77, 218–228, 1986.
Guerguoz, C., Martin, L., Vanderhaeghe, O., Thébaud, N., and Fiorentini,
M.: Zircon and monazite petrochronologic record of prolonged amphibolite to
granulite facies metamorphism in the Ivrea-Verbano and Strona-Ceneri Zones,
NW Italy, Lithos, 308–309, 1–18, 2018.
Günther, T., Haase, K. M., Junge, M., Oberthür, T., Woelki, D., and
Krumm, S.: Oxygen isotope and trace element compositions of platiniferous
dunite pipes of the Bushveld Complex, South Africa–Signals from a recycled
mantle component?, Lithos, 310, 332–341, 2018.
Handy, M. R., Franz, L., Heller, F., Janott, B., and Zurbriggen, R.:
Multistage accretion and exhumation of the continental crust (Ivrea crustal
section, Italy and Switzerland), Tectonics, 18, 1154–1177, 1999.
Hartmann, G. and Wedepohl, K. H.: The composition of peridotite tectonites
from the Ivrea Complex, northern Italy: residues from melt extraction,
Geochim. Cosmochim. Act., 57, 1761–1782, 1993.
Holland, T. and Blundy, J.: Non-ideal interactions in calcic amphiboles and
their bearing on amphibole-plagioclase thermometry, Contrib. Mineral. Petr., 116, 433–447, 1994.
Jackson, M. D., Blundy, J., and Sparks, R. S. J.: Chemical differentiation,
cold storage and remobilization of magma in the Earth's crust, Nature,
564, 405–409, 2018.
Karakas, O., Wotzlaw, J.-F., Guillong, M., Ulmer, P., Brack, P, Economos,
R., Bergantz, G. W., Sinigoi, S., and Bachmann, O.: The pace of
crustal-scale magma accretion and differentiation beneath silicic caldera
volcanoes, Geology, 47, 719–723, 2019.
Kaufmann, F. E., Vukmanovic, Z., Holness, M. B., and Hecht, L.:
Orthopyroxene oikocrysts in the MG1 chromitite layer of the Bushveld
Complex: implications for cumulate formation and recrystallisation,
Contrib. Mineral. Petr., 173, 17, https://doi.org/10.1007/s00410-018-1441-x, 2018.
Kempton, P. D. and Harmon, R. S.: Oxygen isotope evidence for large-scale
hybridization of the lower crust during magmatic underplating, Geochim. Cosmochim. Act., 56, 971–986, 1992.
Klötzli, U. S., Sinigoi, S., Quick, J. E., Demarchi, G., Tassinari, C.
C., Sato, K., and Günes, Z.: Duration of igneous activity in the Sesia
Magmatic System and implications for high-temperature metamorphism in the
Ivrea-Verbano deep crust, Lithos, 206, 19–33, 2014.
Korenaga, J. and Kelemen, P. B.: Major element heterogeneity in the mantle
source of the North Atlantic igneous province, Earth Planet. Sc.
Lett., 184, 251–268, 2000.
Kruger, W. and Latypov, R.: Fossilized solidifications fronts in the
Bushveld Complex argues for liquid-dominated magmatic systems, Nat.
Commun., 11, 1–11, 2020.
Kunz, B. E. and White, R. W.: Phase equilibrium modelling of the
amphibolite to granulite facies transition in metabasic rocks (Ivrea Zone,
NW Italy), J. Metamorph. Geol., 37, 935–950, 2019.
Langone, A., Padrón-Navarta, J. A., Ji, W.-Q., Zanetti, A.,
Mazzucchelli, M., Tiepolo, M., Giovanardi, T., and Bonazzi, M.:
Ductile-brittle deformation effects on crystal-chemistry and U-Pb ages of
magmatic and metasomatic zircons from a dyke of the Finero Mafic Complex
(Ivrea-Verbano Zone, Italian Alps), Lithos, 284–285, 493–511, 2017.
Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C.,
Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G.,
Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Tock,
N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti,
L., Whittaker, E. J. W., and Youzhi, G.: Nomenclature of amphiboles; report
of the Subcommittee on Amphiboles of the International Mineralogical
Association Commission on new minerals and mineral names, Mineral.
Mag., 61, 295–310, 1997.
Lensch, G.: Die Ultramafitite der Zone von Ivrea und ihre geologische
Interpretation, Schweiz. Mineral. Petrogr. Mitt., 48, 91–102,
1968.
Lissenberg, C. J. and MacLeod, C. J.: A reactive porous flow control on the
Mid-ocean ridge magmatic evolution, J. Petrol., 57, 2195–2220,
2016.
Locmelis, M., Fiorentini, M. L., Rushmer, T., Arevalo Jr, R., Adam, J., and
Denyszyn, S. W.: Sulfur and metal fertilization of the lower continental
crust, Lithos, 244, 74–93, 2016.
Mao, Y. J., Barnes, S. J., Qin, K. Z., Tang, D., Martin, L., Su, B., and
Evans, N. J.: Rapid orthopyroxene growth induced by silica assimilation:
constraints from sector-zoned orthopyroxene, olivine oxygen isotopes and
trace element variations in the Huangshanxi Ni–Cu deposit, Northwest China,
Contrib. Mineral. Petr., 174, 33, https://doi.org/10.1007/s00410-019-1574-6, 2019.
Mattey, D., Lowry, D., and Macpherson, C.: Oxygen isotope composition of
mantle peridotite, Earth Planet. Sc. Lett., 128, 231–241,
1994.
Mazzucchelli, M., Rivalenti, G., Brunelli, D., Zanetti, A., and Boari, E.:
Formation of highly refractory dunite by focused percolation of
pyroxenite-derived melt in the Balmuccia peridotite massif (Italy), J. Petrol., 50, 1205–1233, 2009.
Mukasa, S. B. and Shervais, J. W.: Growth of subcontinental lithosphere:
evidence from repeated dike injections in the Balmuccia lherzolite massif,
Italian Alps, Lithos, 48, 287–316, 1999.
Nandedkar, R. H., Ulmer, P., and Müntener, O.: Fractional
crystallization of primitive, hydrous arc magmas: an experimental study at
0.7 GPa, Contrib. Mineral. Petr., 167, 1015, https://doi.org/10.1007/s00410-014-1015-5, 2014.
Nandedkar, R. H., Hürlimann, N., Ulmer, P., and Müntener, O.:
Amphibole–melt trace element partitioning of fractionating calc-alkaline
magmas in the lower crust: an experimental study, Contrib. Mineral. Petr., 171, 71, https://doi.org/10.1007/s00410-016-1278-0, 2016.
Nekvasil, H., Dondolini, A., Horn, J., Filiberto, J., Long, H., and
Lindsley, D. H.: The origin and evolution of silica-saturated alkalic
suites: an experimental study, J. Petrol., 45, 693–721, 2004.
Pistone, M., Müntener, O., Ziberna, L., Hetényi, G., and Zanetti, A.: Report on the ICDP workshop DIVE (Drilling the Ivrea–Verbano zonE), Sci. Dril., 23, 47–56, https://doi.org/10.5194/sd-23-47-2017, 2017.
Putirka, K.: Amphibole thermometers and barometers for igneous systems and
some implications for eruption mechanisms of felsic magmas at arc volcanoes,
Am. Mineral., 101, 841–858, 2016.
Quick, J. E., Sinigoi, S., Negrini, L., Demarchi, G., and Mayer, A.:
Synmagmatic deformation in the underplated igneous complex of the
Ivrea-Verbano zone, Geology, 20, 613–616, 1992.
Quick, J. E., Sinigoi, S., and Mayer, A.: Emplacement of mantle peridotite
in the lower continental crust, Ivrea-Verbano zone, northwest Italy,
Geology, 23, 739–742, 1995.
Quick, J. E., Sinigoi, S., Snoke, A. W., Kalakay, T. J., Mayer, A., and
Peressini, G.: Geologic map of the southern Ivrea-Verbano Zone northwestern
Italy, U.S. Geological Survey, Geologic Investigations Series Map I-2776,
scale 1 : 25 000, 2003.
Redler, C., White, R. W., and Johnson, T. E.: Migmatites in the Ivrea Zone
(NW Italy): constraints on partial melting and melt loss in metasedimentary
rocks from Val Strona di Omegna, Lithos, 175, 40–53, 2013.
Rivalenti, G., Garuti, G., and Rossi, A.: The origin of the Ivrea-Verbano
Basic Formation (Western Italian Alps) – whole rock geochemistry, Bol. Soc.
Geol. It. 94, 1149–1186, 1975.
Rivalenti, G., Mazzucchelli, M., Vannucci, R., Hofmann, A. W., Ottolini, L.,
and Obermiller, W.: The relationship between websterite and peridotite in
the Balmuccia peridotite massif (NW Italy) as revealed by trace element
variations in clinopyroxene, Contrib. Mineral. Petr., 121,
275–288, 1995.
Rosenbaum, J. M., Kyser, T. K., and Walker, D.: High temperature oxygen
isotope fractionation in the enstatite-olivine-BaCO3 system. Geochim. Cosmochim. Act., 58, 2653–2660, 1994.
Schmid, S. M., Kissling, E., Diehl, T., van Hinsbergen, D. J., and Molli,
G.: Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of
the Alps–Apennines orogenic system, Swiss J. Geosci., 110,
581–612, 2017.
Schnetger, B.: Partial melting during the evolution of the amphibolite-to
granulite-facies gneisses of the Ivrea Zone, northern Italy, Chem.
Geol., 113, 71–101, 1994.
Shervais, J. W. and Mukasa, S. B.: The Balmuccia orogenic lherzolite
massif, Italy, J. Petrol., Special Lherzolite Issue, 155–174,
1991.
Selverstone, J. and Sharp, Z. D.: Chlorine isotope evidence for
multicomponent mantle metasomatism in the Ivrea Zone, Earth Planet.
Sc. Lett., 310, 429–440, 2011.
Sinigoi, S., Antonini, P., Demarchi, G., Longinelli, A., Mazzucchelli, M.,
Negrini, L., and Rivalenti, G.: Intractions of mantle and crustal magmas in
the southern part of the Ivrea Zone (Italy), Contrib. Mineral. Petr., 108, 385–395, 1991.
Sinigoi, S., Quick, J. E., Clemens-Knott, D., Mayer, A., Demarchi, G.,
Mazzucchelli, M., Negrini, L., and Rivalenti, G.: Chemical evolution of a
large mafic intrusion in the lower crust, Ivrea-Verbano Zone, northern
Italy, J. Geophys. Res.-Sol. Ea., 99, 21575–21590,
1994.
Sinigoi, S., Quick, J. E., Mayer, A., and Demarchi, G.: Density-controlled
assimilation of underplated crust, Ivrea-Verbano Zone, Italy, Earth
Planet. Sc. Lett., 129, 183–191, 1995.
Sinigoi, S., Quick, J. E., Mayer, A., and Budahn, J. R.: Influence of
stretching and density contrasts on the chemical evolution of continental
magmas: an example from the Ivrea-Verbano Zone, Contrib. Mineral. Petr., 123, 238–250, 1996.
Sinigoi, S., Quick, J. E., Demarchi, G., and Klötzli, U. S: The role of
crustal fertility in the generation of large silicic magmatic systems
triggered by intrusion of mantle magma in the deep crust, Contrib. Mineral. Petr., 162, 691–707, 2011.
Sinigoi, S., Quick, J. E., Demarchi, G., and Klötzli, U. S.: Production
of hybrid granitic magma at the advancing front of basaltic underplating:
Inferences from the Sesia Magmatic System (south-western Alps, Italy),
Lithos, 252, 109–122, 2016.
Solano, J. M. S., Jackson, M. D., Sparks, R. S. J., Blundy, J. D., and
Annen, C.: Melt segregation in deep crustal hot zones: a mechanism for
chemical differentiation, crustal assimilation and the formation of evolved
magmas, J. Petrol., 53, 1999–2026, 2012.
Solano, J. M. S., Jackson, M. D., Sparks, R. S. J., and Blundy, J.:
Evolution of major and trace element composition during melt migration
through crystalline mush: implications for chemical differentiation in the
crust, Am. J. Sci., 314, 895–939, 2014.
Su, B., Chen, Y., Guo, S., and Liu, J.: Origins of orogenic dunites:
petrology, geochemistry, and implications, Gondwana Res., 29, 41–59,
2016.
Tilhac, R., Ceuleneer, G., Griffin, W. L., O'Reilly, S. Y., Pearson, N. J.,
Benoit, M., Henry, H., Girardeau, J., and Grégoire, M.: Primitive arc magmatism and
delamination: petrology and geochemistry of Pyroxenites from the Cabo
Ortegal Complex, Spain, J. Petrol., 57, 1921–1954, 2016.
Valley, J. W.: Stable isotope thermometry at high temperatures, Rev.
Mineral. Geochem., 43, 365–413, 2001.
Vavra, G., Schmid, R., and Gebauer, D.: Internal morphology, habit and
U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:
geochronology of the Ivrea Zone (Southern Alps), Contrib. Mineral. Petr., 134, 380–404, 1999.
Villiger, S., Ulmer, P., Müntener, O., and Thompson, A. B.: The liquid
line of descent of anhydrous, mantle-derived, tholeiitic liquids by
fractional and equilibrium crystallization – an experimental study at 1.0 GPa, J. Petrol., 45, 2369–2388, 2004.
Villiger, S., Müntener, O., and Ulmer, P.: Crystallization pressures of
mid-ocean ridge basalts derived from major element variations of glasses
from equilibrium and fractional crystallization experiments, J.
Geophys. Res.-Sol. Ea., 112, B01202, https://doi.org/10.1029/2006JB004342, 2007.
Voshage, H., Sinigoi, S., Mazzucchelli, M., Demarchi, G., Rivalenti, G., and
Hofmann, A. W.: Isotopic constraints on the origin of ultramafic and mafic
dikes in the Balmuccia peridotite (Ivrea Zone), Contrib. Mineral. Petr., 100, 261–267, 1988.
Voshage, H., Hofmann, A. W., Mazzucchelli, M., Rivalenti, G., Sinigoi, S.,
Raczek, I., and Demarchi, G.: Isotopic evidence from the Ivrea Zone for a
hybrid lower crust formed by magmatic underplating, Nature, 347,
731–736, 1990.
Wells, P. R.: Pyroxene thermometry in simple and complex systems,
Contrib. Mineral. Petr., 62, 129–139, 1977.
Whitney, D. L. and Evans, B. W.: Abbreviations for names of rock-forming
minerals, Am. Mineral., 95, 185–187, 2010.
Wilson, M., Neumann, E. R., Davies, G. R., Timmerman, M. J., Heeremans, M.,
and Larsen, B. T.: Permo-Carboniferous magmatism and rifting in Europe:
introduction, Geol. Soc. Sp, 223,
1–10, 2004.
Yang, A. Y., Wang, C., Liang, Y., and Lissenberg, C. J.: Reaction between
mid-ocean ridge basalt and lower oceanic crust: An experimental study,
Geochem. Geophy. Geosy., 20, 4390–4407, 2019.
Yao, J. H., Zhu, W. G., Li, C., Zhong, H., Yu, S., Ripley, E. M., and Bai,
Z. J.: Olivine O isotope and trace element constraints on source variation
of picrites in the Emeishan flood basalt province, SW China, Lithos, 338,
87–98, 2019.
Zaccarini, F., Garuti, G., Fiorentini, M. L., Locmelis, M., Kollegger, P.,
and Thalhammer, O. A.: Mineralogical hosts of platinum group elements (PGE)
and rhenium in the magmatic Ni-Fe-Cu sulfide deposits of the Ivrea Verbano
Zone (Italy): an electron microprobe study, J. Mineral. Geochem., 191,
169–187, 2014.
Zanetti, A., Giovanardi, T., Langone, A., Tiepolo, M., Wu, F. Y., Dallai,
L., and Mazzucchelli, M.: Origin and age of zircon-bearing chromitite layers
from the Finero phlogopite peridotite (Ivrea-Verbano Zone, Western Alps) and
geodynamic consequences, Lithos, 262, 58–74, 2016.
Short summary
We present a petrological–geochemical investigation of peridotites of magmatic origin from the Ivrea–Verbano Zone (Italian Alps), a large-scale section of lower continental crust. The main purpose is to provide new insights into the processes governing the evolution of primitive mantle magmas. We propose that studied peridotites were formed by reaction of a melt-poor olivine-rich crystal mush, or a pre-existing peridotite, with upward-migrating melts possessing a substantial crustal component.
We present a petrological–geochemical investigation of peridotites of magmatic origin from...