Articles | Volume 37, issue 6
https://doi.org/10.5194/ejm-37-889-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-889-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Empirical electronic polarizabilities of iodine (I−) and bromine (Br−, Br7+) for the prediction of refractive indices
Shaghayegh Nezamabadi
CORRESPONDING AUTHOR
Fachbereich Geowissenschaften, Universität Bremen, Klagenfurter Straße 2, 28359 Bremen, Germany
Patrick A. Fuzon
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
Florian Kraus
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
Reinhard X. Fischer
CORRESPONDING AUTHOR
Fachbereich Geowissenschaften, Universität Bremen, Klagenfurter Straße 2, 28359 Bremen, Germany
Related authors
No articles found.
Stephan Lenz, Johannes Birkenstock, Lennart A. Fischer, Willi Schüller, Hartmut Schneider, and Reinhard X. Fischer
Eur. J. Mineral., 32, 673–673, https://doi.org/10.5194/ejm-32-673-2020, https://doi.org/10.5194/ejm-32-673-2020, 2020
Cited articles
Abrahams, S. C., Bernstein, J. L., and Svensson, C.: Orthorhombic phase of nickel bromine boracite Ni3B7O13Br: Room temperature ferroelectric-ferroelastic crystal structure, J. Chem. Phys., 75, 1912–1918, https://doi.org/10.1063/1.442216, 1981.
Ahtee, M.: Lattice constants of some binary alkali halide solid solutions, Ann. Acad. Sci. Fenn. A6: Physica., 313, 1–11, 1969.
Alekel III, T. and Keszler, D. A.: New strontium borate halides: Sr5(BO3)3X (X = F, Br), Inorg. Chem., 32, 101–105, https://doi.org/10.1021/ic00053a017, 1993.
Aleksandrova, M., Haeuseler, H., Jaquet, R., and Wagener, M.: Acidic salts of the decaoxodiperiodic acid: NiH4I2O10 ⋅ 6H2O, ZnH4I2O10 ⋅ 6H2O, and MgH4I2O10 ⋅ 6H2O; crystal structures, vibrational spectra, and thermal decomposition, Z. Naturforsch., B63, 1367–1376, https://doi.org/10.1515/znb-2008-1205, 2008.
Alexandrova, M. and Haeuseler, H.: Crystal structure, infrared and Raman spectra and thermal analysis of strontium-tetrahydrogen-hexaoxoperiodate-trihydrate, Sr(H4IO6)2 ⋅ 3H2O, J. Mol. Struct., 706, 7–13, https://doi.org/10.1016/j.molstruc.2003.12.069, 2004.
Anderson, O. L.: Optical properties of rock-forming minerals derived from atomic properties, Fortschr. Mineral., 52, 611–629, 1975.
Anderson, O. L. and Schreiber, E.: The relation between refractive index and density of minerals related to the Earth's mantle, J. Geophys. Res., 70, 1463–1471, https://doi.org/10.1029/JZ070i006p01463, 1965.
Appelman, E. H.: Perbromic acid and perbromates: synthesis and some properties, Inorg. Chem., 8, 223–227, https://pubs.acs.org/doi/10.1021/ic50072a008, 1969.
Armstrong, J. A. and Weller, M. T.: New sodalite frameworks; synthetic tugtupite and a beryllosilicate framework with a 3 : 1 Si : Be ratio, Dalton Transactions, 24, https://doi.org/10.1039/B600579A, 2006.
Ballard, S., Browder, J. S., and Ebersole, J. F.: Refractive index of special crystals and certain glasses, American Institute of Physics Handbook, 3rd Edn., Sect. 6b, edited by: Billings, B. H., McGraw-Hill, New York, 6-12–6-57, ISBN 007001485X, 9780070014855, 1972.
Barth, T. F. W.: Optical properties of mixed crystals, Am. J. Sci., s5–19, 135–146, https://doi.org/10.2475/ajs.s5-19.110.135, 1930.
Belsky, A., Hellenbrandt, M., Karen, V. L. and Luksch, P.: New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design, Acta Crystallogr., B58, 364–369, https://doi.org/10.1107/s0108768102006948, 2002.
Berg, R. W.: The CsBr-AlBr3 Phase diagram and the crystal structure of CsAlBr4, Acta Chemica Scandinavica, 51, 455–461, doinumber: 10.3891/acta.chem.scand.51-0455, 1997.
Berset, G., Depmeier, W., Boutellier, R., and Schmid, H.: Structure of boracite Cu3B7O13l, Acta Crystallogr., C41, 1694–1696, https://doi.org/10.1107/S0108270185009106, 1985.
Bigoli, F., Manotti Lanfredi, A. M., Tiripicchio, A., and Tiripicchio Camellini, M.: Crystal and molecular structure of hexaquomagnesium trihydrogenhexaoxoiodate(VII), Acta Crystallogr., B26, 1075–1079, https://doi.org/10.1107/S0567740870003643, 1970.
Birkenstock, J., Fischer, R. X., and Messner, T.: BRASS, the Bremen Rietveld analysis and structure suite, Z. Kristallogr. Suppl., 23, 237–242, https://doi.org/10.1524/9783486992526-041, 2006.
Blackburn, A. C. and Gerkin, R. E.: Structure of hexaaquacobalt(II) perbromate, Acta Crystallogr., C49, 1271–1275, https://doi.org/10.1107/S0108270192013465, 1993a.
Blackburn, A. C. and Gerkin, R. E.: Structure of tetraaquacalcium perbromate, Acta Crystallogr., C49, 1439–1442, https://doi.org/10.1107/S0108270193001714, 1993b.
Blackburn, A. C. and Gerkin, R. E.: Lithium perbromate monohydrate at 296 and 173K, Acta Crystallogr., C51, 3–7, https://doi.org/10.1107/S0108270194008449, 1995.
Blackburn, A. C., Gallucci, J. C., Gerkin, R. E., and Reppart, W. J.: Structure of sodium perbromate monohydrate, Acta Crystallogr., C48, 419–424, https://doi.org/10.1107/S0108270191010818, 1992.
Blackburn, A. C., Gallucci, J. C., Gerkin, R. E., and Reppart, W. J.: Structure of lithium perbromate trihydrate, Acta Crystallogr., C49, 1437–1439, https://doi.org/10.1107/S0108270193000538, 1993.
Bloss, F. D., Gunter, M., Su, S.-C., and Wolfe, H. E.: Gladstone-Dale constants; a new approach, Can. Mineral., 21, 93–99, 1983.
Borhade, A. V., Wakchaure, S. G., and Dholi, A. G.: One pot synthesis and crystal structure of aluminosilicate mixed chloro-iodo sodalite, Indian J. Phys., 84, 133–141, https://doi.org/10.1007/s12648-010-0032-0, 2010.
Botova, M., Botova, M., Nagel, R., Maneva, M., and Lutz, H. D.: Kristallstruktur, Infrarot- und Ramanspektren von Kupfertrihydrogenperiodatmonohydrat, CuH3IO6 ⋅ H2O, Z. Anorg. Allg. Chem., 627, 333–340, https://doi.org/10.1002/1521-3749(200103)627:3<333::AID-ZAAC333>3.0.CO;2-I, 2001.
Botova, M., Nagel, R., and Haeuseler, H.: Präparation, Kristallstruktur, Schwingungsspektren und thermische Analyse von Kupfer-tetrahydrogen-decaoxo-diperiodat-hexahydrat CuH4I2O10 ⋅ 6H2O, Z. Anorg. Allg. Chem., 630, 179–184, https://doi.org/10.1002/zaac.200300252, 2004.
Braibanti, A., Tiripicchio, A., Bigoli, F., and Pellinghelli, M. A.: Crystal and molecular structure of cadmium trihydrogenhexaoxoiodate(VII) trihydrate, Acta Crystallogr., B26, 1069–1074 https://doi.org/10.1107/S0567740870003631, 1970.
Brehler, B., Jacobi, H., and Siebert, H.: Kristallstruktur und Schwingungsspektrum von K4J2O9, Z. Anorg. Allg. Chem., 362, 301–311, https://doi.org/10.1002/zaac.19683620510, 1968.
Currie, D. B., Levason, W., Oldroyd, R. D., and Weller, M. T.: Reinvestigation of the mixed-metal periodates M′MIO6 (M alkali metal, M = Ge, Sn, Pb), J. Mater. Chem., 3, 447–451, https://doi.org/10.1039/JM9930300447, 1993.
Dang, Y., Meng, X., Jiang, K., Zhong, C., Chen, X., and Qin, J.: A promising nonlinear optical material in the Mid-IR region: new results on synthesis, crystal structure and properties of noncentrosymmetric β-HgBrCl, Dalton T., 42, 9893–9897, https://doi.org/10.1039/C3DT50291K, 2013.
Darminto, B., Rees, G. J., Cattermull, J., Hashi, K., Diaz-Lopez, M., Kuwata, N., Turrell, S. J., Milan, E., Chart, Y., Di Mino, C., Lee, H. J., Goodwin, A. L., and Pasta, M.: On the origin of the non-Arrhenius Na-ion conductivity in Na3OBr, Angew. Chem. Int. Edit., 62, e202314444, https://doi.org/10.1002/anie.202314444, 2023.
Degen, T., Sadki, M., Bron, E., König, U., and Nénert, G.: The HighScore suite, Powder Diffraction, 29, S13–S18, https://doi.org/10.1017/S0885715614000840, 2014.
Dennis, L. M. and Hance, F. E.: Germanium. III. Germaniumtetrabromid und Germaniumtetrachlorid, Z. Anorg. Allg. Chem., 122, 265–276, https://doi.org/10.1002/zaac.19221220125, 1922.
Dufet, M. H.: Forme cristalline et propriétés optiques du bromure de baryum, Bulletin de la Société Française de Minéralogie, 26, 65–80, https://doi.org/10.3406/bulmi.1903.2673, 1903.
Edwards, A. J. and Hana, A. A. K.: Fluoride crystal structures. Part 34. Antimony pentafluoride–iodine trifluoride dioxide, J. Chem. Soc. Dalton., 1734–1736, https://doi.org/10.1039/DT9800001734, 1980.
Eggleton, R. A.: Gladstone-Dale constants for the major elements in silicates: Coordination number, polarizability and the Lorentz-Lorentz relation, Can. Mineral., 29, 525–532, 1991.
Elliott, P., Cooper, M. A., and Pring, A.: Barlowite, Cu4FBr(OH)6, a new mineral isostructural with claringbullite: Description and crystal structure, Mineral. Mag., 78, 1755–1762, https://doi.org/10.1180/minmag.2014.078.7.17, 2014.
Erdmann, H.: Die Salze des Rubidiums und ihre Bedeutung für die Pharmazie, Arch. Pharm., 232, 3–36, https://doi.org/10.1002/ardp.18942320103, 1894.
Fairchild, J. G.: Artificial jarosites- the separation of potassium from cesium, Am. Mineral., 18, 543–547, 1933.
Farrugia, L. J.: WinGX and ORTEP for Windows: An update, J. Appl. Crystallogr., 45, 849–854, https://doi.org/10.1107/S0021889812029111, 2012.
Feikema, Y. D.: The crystal structures of two oxy-acids of iodine. I. A study of orthoperiodic acid, H5IO6, by neutron diffraction, Acta Crystallogr., 20, 765–769, https://doi.org/10.1107/S0365110X66001828, 1966.
Feklichev, V. G.: Diagnostic Constants of Minerals, 1st Edn., Mir Publishers/CRC Press, Moscow, Russia/Boca Raton, Florida, ISBN 0849375401, 1992.
Ferrari, A., Braibanti, A., and Tiripicchio, A.: The crystal structure of tetrapotassium dihydrogendecaoxodiiodate(VII) octahydrate, Acta Crystallogr., 19, 629–636, https://doi.org/10.1107/S0365110X65004000, 1965.
Fischer, D., Müller, A., and Jansen, M.: Existiert eine Wurtzit-Modifikation von Lithiumbromid? Untersuchungen im System LiBr/LiI, Z. Anorg. Allg. Chem., 630, 2697–2700, https://doi.org/10.1002/zaac.200400352, 2004.
Fischer, R. X., Burianek, M., and Shannon, R. D.: POLARIO, a computer program for calculating refractive indices from chemical compositions, Am. Mineral., 103, 1345–1348, https://doi.org/10.2138/am-2018-6587, 2018.
Fleet, M. E.: Structures of sodium alumino-germanate sodalites [Na8(Al6Ge6O24)A2, A = Cl, Br, I], Acta Crystallogr., C45, 843–847, https://doi.org/10.1107/S0108270188013964, 1989.
Gallucci, J. C., Gerkin, R. E., and Reppart, W. J.: Structure of nickel(II) perbromate hexahydrate at 296 K, Acta Crystallogr., C46, 1580–1584, https://doi.org/10.1107/S0108270189013533, 1990.
Gerkin, R. E., Reppart, W. J., and Appelman, E. H.: The structure of barium perbromate trihydrate Ba(BrO4)2 ⋅ 3H2O, Acta Crystallogr., C44, 960–962, https://doi.org/10.1107/S0108270188002215, 1988.
Gesing, T. M.: Structure and properties of tecto-gallosilicates II. sodium chloride, bromide and iodide sodalites, Z. Krist-Cryst. Mater., 222, 289–296, https://doi.org/10.1524/zkri.2007.222.6.289, 2007.
Gier, T. E., Harrison, W. T. A., and Stucky, G. D.: The synthesis and structure of some new sodalites: the lithium haloberyllophosphates and -arsenates, Angew. Chem. Int. Edit., 30, 1169–1171, https://doi.org/10.1002/anie.199111691, 1991.
Gladstone, J. H. and Dale, T. P.: XIV. Researches on the refraction, dispersion, and sensitiveness of liquids, Philos. T. R. Soc., 153, 317–343, https://doi.org/10.1098/rstl.1863.0014, 1863.
Gundelach, E.: Die Dispersion von KBr-Kristallen im Ultraroten, Z. Phys., 66, 775–783, https://doi.org/10.1007/BF01390801, 1930.
Gunter, M. E. and Ribbe, P. H.: Natrolite group zeolites: Correlations of optical properties and crystal chemistry, Zeolites., 13, 435–440, https://doi.org/10.1016/0144-2449(93)90117-L, 1993.
Gyulai, Z.: Die Dispersion einiger Alkalihalogenide im Ultravioletten, Z. Phys., 46, 80–87, https://doi.org/10.1007/BF02055759, 1927.
Haase, M.: Kürzere Originalmitteilungen und Notizen. Die Dispersion des Ammoniumbromid, Z. Krist-Cryst. Mater., 80, 132–133, https://doi.org/10.1524/zkri.1931.80.1.132, 1931.
Haberkorn, R., Bauer, J., and Kickelbick, G.: Ba2PO4I, Sr2PO4I, and Pb2PO4I – A new structure type and three of its representatives, Z. Anorg. Allg. Chem., 640, 3153–3158, https://doi.org/10.1002/zaac.201400221, 2014.
Haeuseler, H. and Botova, M.: Zur Kenntnis von Calciumtetrahydrogen-hexaoxo-diperiodattetrahydrat CaH4I2O10 ⋅ 4H2O: Kristallstruktur, Schwingungsspektren und thermische Analyse, Z. Naturforsch., B57, 1337–1345, https://doi.org/10.1515/znb-2002-1201, 2002.
Haeuseler, H. and Wagener, M.: Crystal structure and vibrational spectra of BaH4I2O10 ⋅ 2H2O, J. Mol. Struct., 892, 1–7, https://doi.org/10.1016/j.molstruc.2008.04.039, 2008.
Han, X., Lahera, D. E., Serrano, M. D., Cascales, C., and Zaldo, C.: Ultraviolet to infrared refractive indices of tetragonal double tungstate and double molybdate laser crystals, Appl. Phys., B108, 509–514, https://doi.org/10.1007/s00340-012-4936-6, 2012.
Harting, H.: Die Brechzahlen einiger Halogenidkristalle, Sitzber. Deut. Akad. Wiss. Berlin, IV, 1, 1948.
Hellwege, K. H. and Hellwege, A. M.: Landolt-Börnstein, Band II. Teil 8. Optische Konstanten, Springer, Berlin, ISBN 3540051783, 1962.
Hoppe, R. and Schneider, J.: Eine “misslungene” Synthese: Über K4Li[IO6] und K5I2[AuO2], J. Less-Common Met., 137, 85–103, https://doi.org/10.1016/0022-5088(88)90078-1, 1988.
Hull, S., Keen, D. A., Sivia, D. S., and Berastegui, P.: Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides: I. Superionic phases of stoichiometry MA4I5: RbAg4I5, KAg4I5, and KCu4I5, J. Solid. State. Chem., 165, 363–371, https://doi.org/10.1006/jssc.2002.9552, 2002.
Hummel, T., Salk, F., Ströbele, M., Enseling, D., Jüstel, T., and Meyer, H.-J.: The orthoperiodates of calcium, strontium, and barium, Eur. J. Inorg. Chem., 977–981, https://doi.org/10.1002/ejic.201403094, 2015.
Jaffe, H. W.: Crystal Chemistry and Refractivity, Dover Books in Science and Mathematics, Dover Publications, ISBN 9780486691732, 1996.
Jansen, M. and Kraft, T.: Li2H3IO6, eine neue Variante der Molybdänitstruktur, Z. Anorg. Allg. Chem., 620, 53–57, https://doi.org/10.1002/zaac.19946200109, 1994.
Jemmer, P., Fowler, P. W., Wilson, M., and Madden, P. A.: Environmental effects on anion polarizability: Variation with lattice parameter and coordination number, J. Phys. Chem., A102, 8377–8385, https://doi.org/10.1021/jp982029j, 1998.
Johnson, G. M. and Weller, M. T.: Synthesis and characterisation of gallium and germanium containing sodalites, in: Studies in Surface Science and Catalysis, edited by: Chon, H., Ihm, S.-K., and Uh, Y. S., 105, 269–275, https://doi.org/10.1016/S0167-2991(97)80565-4, 1997.
Johnson, G. M. and Weller, M. T.: A powder neutron diffraction study of lithium-substituted gallosilicate and aluminogermanate halide sodalites, Inorg. Chem., 38, 2442–2450, https://doi.org/10.1021/ic9812510, 1999.
Jones, E. M., Levason, W., Oldroyd, R. D., Webster, M., Thomas, M., and Hutchings, J.: Synthesis, spectroscopic and structural characterisation of periodate complexes of iron(III), J. Chem. Soc. Dalton., 3367–3373, https://doi.org/10.1039/DT9950003367, 1995.
Kellersohn, T.: Structure of potassium sodium orthoperiodate(VII) tetrahydrate Acta Crystallogr., C47, 1133–1136, https://doi.org/10.1107/S0108270190013269, 1991.
Kent, G. T., Morgan, E., Albanese, K. R., Kallistova, A., Brumberg, A., Kautzsch, L., Wu, G., Vishnoi, P., Seshadri, R., and Cheetham, A. K.: Elusive Double Perovskite Iodides: Structural, Optical, and Magnetic Properties, Angew. Chem. Int. Edit., 62, e202306000, https://doi.org/10.1002/anie.202306000, 2023.
Knyazev, A. V., Chernorukov, N. G., and Bulanov, E. N.: Apatite-structured compounds: Synthesis and high-temperature investigation, Mater. Chem. Phys., 132, 773–781, https://doi.org/10.1016/j.matchemphys.2011.12.011, 2012.
Kondo, H., Kobayashi, A., and Sasaki, Y.: The structure of the hexamolybdoperiodate anion in its potassium salt, Acta Crystallogr., B36, 661–664, https://doi.org/10.1107/S0567740880004037, 1980.
Korth, K.: Dispersionsmessungen an Kaliumbromid und Kaliumjodid im Ultraroten, Z. Phys., 84, 677–685, https://doi.org/10.1007/BF01330491, 1933.
Kovalevskiy, A. and Jansen, M.: Synthesis, Crystal Structure Determination, and Physical Properties of Ag5IO6, Z. Anorg. Allg. Chem., 632, 577–581, https://doi.org/10.1002/zaac.200500476, 2006.
Kraemer, K., Meyer, G., Fischer, P., Hewat, A. W., and Güdel, H. U.: Neutron diffraction investigation of magnetic phase transitions to long-range antiferromagnetic ordering in the “free-electron” praseodymium halides Pr2X5 (X = Br, I), J. Solid. State. Chem., 95, 1–13, https://doi.org/10.1016/0022-4596(91)90370-W, 1991.
Kraft, T. and Jansen, M.: Zur Existenz des Tetrahydrogenorthoperiodations: Die Kristallstruktur von LiH4IO6 ⋅ H2O, Z. Anorg. Allg. Chem., 620, 805–808, https://doi.org/10.1002/zaac.19946200508, 1994.
Kraft, T. and Jansen, M.: Die Kristallstruktur von Lithiummetaperiodat, LiIO4, Z. Anorg. Allg. Chem., 621, 484–487, https://doi.org/10.1002/zaac.19956210326, 1995.
Kubel, F., Mao, S. Y., and Schmid, H.: Structure of the fully ferroelectric/fully ferroelastic orthorhombic room-temperature phase of cobalt bromine boracite, Co3B7O13Br and nickel chlorine boracite, Ni3B7O13Cl, Acta Crystallogr., C48, 1167–1170, https://doi.org/10.1107/S0108270191014129, 1992.
Kublitzky, A.: Einige optische Konstanten von Alkalihalogenidkristallen, Ann. Phys-Berlin., 412, 793–808, https://doi.org/10.1002/andp.19344120708, 1934.
Larsen, E. S.: The microscopic determination of the nonopaque minerals (Bulletin 679), United States Government Printing Office, Washington, DC, https://doi.org/10.3133/b679, 1921.
Leuenberger, B., Briat, B., Canit, J. C., Furrer, A., Fischer, P., and Guedel, H. U.: Synthesis, structural characterization, and magnetic properties of V3+ dimer compounds. Neutron scattering and magnetic circular dichroism study of Cs3V2Cl9 and Rb3V2Br9, Inorg. Chem., 25, 2930–2935, https://doi.org/10.1021/ic00237a003, 1986.
Li, Y., Wang, M., Zhu, T., Meng, X., Zhong, C., Chen, X., and Qin, J.: Synthesis, crystal structure and properties of a new candidate for nonlinear optical material in the IR region: Hg2BrI3, Dalton. T., 41, 763–766, https://doi.org/10.1039/C1DT11317H, 2012.
Lorentz, H. A.: Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte, Ann. Phys.-Berlin, 245, 641–665, https://doi.org/10.1002/andp.18802450406, 1880.
Lorenz, L.: Ueber die Refractionsconstante, Ann. Phys.-Berlin, 247, 70–103, https://doi.org/10.1002/andp.18802470905, 1880.
Mandarino, J. A.: The Gladstone-Dale relationship, Part I, Derivation of new constants, Can. Mineral., 14, 498–502, 1976.
Mandarino, J. A.: The Gladstone-Dale relationship, Part III, Some general applications, Can. Mineral., 17, 71–76, 1979.
Mandarino, J. A.: The Gladstone-Dale relationship, Part IV, The compatibility concept and its application, Can. Mineral., 19, 441–450, 1981.
Mathew, M., Takagi, S., and Brown, W. E.: Planar Ca-PO4 sheet-Type structures: calcium bromide dihydrogenphosphate tetrahydrate, CaBr(H2PO4) ⋅ 4H2O, and calcium iodide dihydrogenphosphate tetrahydrate, CaI(H2PO4) ⋅ 4H2O, Acta Crystallogr., C40, 1662–1665, https://doi.org/10.1107/S0108270184009082, 1984.
Mattes, R. and Richter, K.-L.: Darstellung und Struktur des Polyvanadato-periodates Na6[H2V2I2O16] ⋅ 10H2O, Z. Naturforsch., B37, 1241–1244, https://doi.org/10.1515/znb-1982-1005, 1982.
Mattes, R., Matz, C., and Sicking, E.: Monomolybdato- und Monowolframato-perjodate: Die Kristallstruktur von K6[Mo2J2O16] ⋅ 10 H2O, Z. Anorg. Allg. Chem., 435, 207–213, https://doi.org/10.1002/zaac.19774350128, 1977.
May, A., Sjoberg, J. J., and Baglin, E. G.: Synthetic argentojarosite: physical properties and thermal behavior, Am. Mineral., 58, 936–941, 1973.
Merwin, H. E.: International Critical Tables, McGraw-Hill Book Co., New York, NY, Vol. 7, p. 27, ISBN 978-1015896604, 1930.
Mormann, Th. J. and Jeitschko, W.: Crystal structure of trimercury(II) dihydrogenhexaoxoiodate(VII), Hg3(H2IO6)2, Z. Krist. New. Cryst. St., 215, 315–316, https://doi.org/10.1515/ncrs-2000-0303, 2000.
Mormann, Th. J. and Jeitschko, W.: Crystal structure of mercury(II) trihydrogenhexaoxoiodate(VII), HgH3IO6, Z. Krist. New. Cryst. St., 216, 1–2, https://doi.org/10.1524/ncrs.2001.216.14.1, 2001.
Morosin, B.: Crystal Structure of manganese (II) and cobalt (II) bromide dihydrate, J. Chem. Phys., 47, 417–420, https://doi.org/10.1063/1.1711911, 1967.
Mudring, A.-V. and Babai, A.: [Nd6(μ6-O)(μ3-OH)8(H2O)24]I8(H2O)12 the first basic rare earth iodide with an oxygen-centred M6X8-cluster core, Z. Anorg. Allg. Chem., 631, 261–263, https://doi.org/10.1002/zaac.200400377, 2005.
Murshed, M. M. and Gesing, T. M.: Isomorphous gallium substitution in the alumosilicate sodalite framework: synthesis and structural studies of chloride and bromide containing phases, Z. Krist-Cryst. Mater., 222, 341–349, https://doi.org/10.1524/zkri.2007.222.7.341, 2007.
Nesse, W. D.: Introduction to Optical Mineralogy, 2nd Edn., Oxford University Press, New York, ISBN 0195060245, 2013.
Needs, R. L., Weller, M. T., Scheler, U., and Harris, R. K.: Synthesis and structure of Ba2InO3X (X = F, Cl, Br) and Ba2ScO3F; oxide/halide ordering in K2NiF4-type structures, J. Mater. Chem., 6, 1219–1224, https://doi.org/10.1039/JM9960601219, 1996.
Nezamabadi, S.: Determination of the electronic polarizabilities of bromine in bromides, bromates, and perbromates, Master thesis, University of Bremen, 2023.
O'Sullivan, S. E., Montoya, E., Sun, S.-K., George, J., Kirk, C., Dixon Wilkins, M. C., Weck, P. F., Kim, E., Knight, K. S., and Hyatt, N. C.: Crystal and Electronic Structures of A2NaIO6 Periodate Double Perovskites (A = Sr, Ca, Ba): Candidate Wasteforms for I-129 Immobilization, Inorg. Chem., 59, 18407–18419, https://doi.org/10.1021/acs.inorgchem.0c03044, 2020.
Palik, E. D. (Ed.): Handbook of Optical Constants of Solids II, Academic Press, College Park, Maryland, ISBN 0-12-544422-2, 1991.
Palik, E. D. (Ed.): Handbook of Optical Constants of Solids III, Academic Press, ISBN 0-12-544423-0, 1998.
Penhouet, T., Hagemann, H., Kubel, F., and Rief, A.: Calcium-free solid solutions in the system Ba7F12Cl2−xBrx (x < 1.5), a single-component white phosphor host, J. Chem. Crystallogr., 37, 469–472, https://doi.org/10.1007/s10870-007-9195-8, 2007.
Pfitzner, A., Lutz, H. D., and Cockcroft, J. K.: Li2ZnI4: A neutron powder study, J. Solid State Chem., 87, 463–466, https://doi.org/10.1016/0022-4596(90)90050-8, 1990.
Pogue, E. A., Bond, J., Imperato, C., Abraham, J. B. S., Drichko, N., and McQueen, T. M.: A gold(I) oxide double perovskite: Ba2AuIO6, J. Am. Chem. Soc., 143, 19033–19042, https://doi.org/10.1021/jacs.1c08241, 2021.
Rögner, P., Schießl, U., and Range, K.-J.: On the space group of cesium perbromate, CsBrO4, Z. Naturforsch., B48, 235–236, https://doi.org/10.1515/znb-1993-0219, 1993.
Rosu, C. and Weakley, T. J. R.: Disodium chromium(III) hexamolybdoiodate(VII) 24-hydrate, Na2Cr[IMo6O24] ⋅ 24H2O, Acta Crystallogr., C56, e170–e171, https://doi.org/10.1107/S0108270100005229, 2000.
Sarp, H., Pushcharovsky, D. Y., MacLean, E. J., Teat, S. J., and Zubkova, N. V.: Tillmannsite, (Ag3Hg)(V,As)O4, a new mineral: its description and crystal structure, Eur. J. Mineral., 15, 177–180, https://doi.org/10.1127/0935-1221/2003/0015-0177, 2003.
Sasaki, M., Yarita, T., and Sato, S.: Ba(H3IO6), Acta Crystallogr., C51, 1968–1970, https://doi.org/10.1107/S0108270195004744, 1995.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., A32, 751–761, https://doi.org/10.1107/S0567739476001551, 1976.
Shannon, R. D.: Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys., 73, 348–366, https://doi.org/10.1063/1.353856, 1993.
Shannon, R. D. and Fischer, R. X.: Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides, Phys. Rev., B73, 235111, https://doi.org/10.1103/PhysRevB.73.235111, 2006.
Shannon, R. D. and Fischer, R. X.: Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices: Oxides and oxysalts, Am. Mineral., 101, 2288–2300, https://doi.org/10.2138/am-2016-5730, 2016.
Shannon, R. C., Lafuente, B., Shannon, R. D., Downs, R. T., and Fischer, R. X.: Refractive indices of minerals and synthetic compounds, Am. Mineral., 102, 1906–1914, https://doi.org/10.2138/am-2017-6144, 2017.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr., C71, 3–8, https://doi.org/10.1107/S2053229614024218, 2015.
Siegel, S., Tani, B., and Appelman, E.: Crystal structure of potassium perbromate, Inorg. Chem., 8, 1190–1191 https://doi.org/10.1021/ic50075a036, 1969.
Smaha, R. W., He, W., Sheckelton, J. P., Wen, J., and Lee, Y. S.: Synthesis-dependent properties of barlowite and Zn-substituted barlowite, J. Solid. State. Chem., 268, 123–129, https://doi.org/10.1016/j.jssc.2018.08.016, 2018.
Spangenberg, K.: Dichte und Lichtbrechung der Alkalihalogenide, Z. Krist-Cryst. Mater., 57, 494–534, https://doi.org/10.1524/zkri.1922.57.1.494, 1922.
Sprockhoff, M.: Beiträge zu den Beziehungen zwischen dem Krystall und seinem chemischen Bestand, Neues. Jahrb. Geol. Paläontol, Beilagen-Band., 18, 151, 117–154, 1903.
Stein, A., Ozin, G. A., Macdonald, P. M., Stucky, G. D., and Jelinek, R.: Silver, sodium halosodalites: class A sodalites, J. Am. Chem. Soc., 114, 5171–5186, https://doi.org/10.1021/ja00039a032, 1992.
Subban, B. and Dhanraj, R.: Luminescence and structural characterization on praseodymium (Pr3+) doped potassium bromide (KBr) single crystals, Luminescence., 33, 885–890, https://doi.org/10.1002/bio.3486, 2018.
Swanson, H. and Fuyat, E.: Standard X-ray Diffraction Powder Patterns, National Bureau of Standards Circular 539, Vol. 2, Washington, D.C., U.S. Government Printing Office, https://doi.org/10.6028/NBS.CIRC.539v2, 1953.
Swanson, H. and Tatge, R. K.: Standard X-ray Diffraction Powder Patterns, National Bureau of Standards Circular 539, Vol. 1, Washington, D.C., U.S. Government Printing Office, https://doi.org/10.6028/NBS.CIRC.539v1, 1953.
Swanson, H. E., Fuyat, R. K., and Ugrinic, G. M.: Standard X-ray Diffraction Powder Patterns, National Bureau of Standards Circular 539, Vol. 3, Washington, D.C., U.S. Government Printing Office, https://doi.org/10.6028/NBS.CIRC.539v3, 1954.
Swanson, H., Fuyat, R. K., and Ugrinic, G. M.: Standard X-ray Diffraction Powder Patterns, National Bureau of Standards Circular 539, Vol. 4, Washington, D.C., U.S. Government Printing Office, https://doi.org/10.6028/NBS.CIRC.539v4, 1955a.
Swanson, H., Gilfrich, N. T., and Ugrinic, G. M.: Standard X-ray Diffraction Powder Patterns, National Bureau of Standards Circular 539, Vol. 5, Washington, D.C., U.S. Government Printing Office, https://doi.org/10.6028/NBS.CIRC.539v5, 1955b.
Swanson, H. E., Gilfrich, N. T., and Cook, M. I.: Standard X-ray Diffraction Powder Patterns, National Bureau of Standards Circular 539, Vol. 7, Superintendent of Documents, U.S. Government Printing Office, Washington, https://doi.org/10.6028/NBS.CIRC.539v7, 1957.
Timofte, T., Babai, A., Meyer, G., and Mudring, A.-V.: Praseodymium triiodide nonahydrate, Acta Crystallogr., E61, i94–i95, https://doi.org/10.1107/S1600536805012857, 2005.
Topsoe, H. and Christiansen, C.: Recherches optiques sur quelques séries de substances isomorphes, 5th ser., 21, Crochard / V. Masson, Paris, ISBN 1273201892, 1874.
Tutov, A. G., Gavrilov, V. V., Isupov, V. K., Kolycheva, T. I., and Fundamenskii, V. S.: Preparation and X-ray structure analysis of crystals of rubidium and ammonium perbromates, Zh. Neorg. Khim., 31, 589–592, 1986.
Untenecker, H. and Hoppe, R.: Ein neues Periodat. Zum Aufbau von K9Li3I2O13= K9Li3O[IO6]2, Z. Anorg. Allg. Chem., 549, 129–138, https://doi.org/10.1002/zaac.19875490613, 1987.
Verbist, J., Piret, P., and Van Meerssche, M.: Structure cristalline et protonique de l'iodure de sodium dihydraté NaI ⋅ 2H2O, B. Soc. Fr. Mineral. Cr., 93, 509–514, https://doi.org/10.3406/bulmi.1970.6506, 1970.
Volkov, S. N., Charkin, D. O., Arsent'ev, M. Y., Povolotskiy, A. V., Stefanovich, S. Y., Ugolkov, V. L., Krzhizhanovskaya, M. G., Shilovskikh, V. V., and Bubnova, R. S.: Bridging the salt-inclusion and open-framework structures: The case of acentric Ag4B4O7X2 (X = Br, I) borate halides, Inorg. Chem., 59, 2655–2658, https://doi.org/10.1021/acs.inorgchem.0c00306, 2020.
Waal, D. D., Zabel, M., and Range, K.-J.: The crystal structure of β-CsIO4, the room-temperature modification of cesium periodate, Z. Naturforsch., B51, 441–443, https://doi.org/10.1515/znb-1996-0323, 1996.
Weast, R. C., Astle, M. J., and Beyer, W. H.: CRC Handbook of Chemistry and Physics, 66th Edn., CRC Press, United States, ISBN 0849304857, 1985.
Weller, M. T. and Wong, G.: Mixed halide sodalites, Eu. J. Solid state Inorg. Chem., 26, 619–633, 1989.
Wernicke, W.: Ueber die Brechung und Dispersion des Lichtes in Jod-, Brom- und Chlorsilber, Ann. Phys., 142, 560–573, https://gallic a.bnf.fr/ark:/12148/bpt6k15226m, 1871.
Wilson, R. E., Skanthakumar, S., Burns, P. C., and Soderholm, L.: Structure of the homoleptic thorium(IV) Aqua Ion [Th(H2O)10]Br4, Angew. Chem. Int. Edit., 46, 8043–8045, https://doi.org/10.1002/anie.200702872, 2007.
Winchell, A. N.: Elements of Optical Mineralogy, An Introduction to Microscopic Petrography, John Wiley and Sons, New York, ISBN 140670055X, 1933.
Winchell, N. H. and Winchell, A. N.: The Microscopic Characters of Artificial Inorganic Solid Substances or Artificial Minerals, John Wiley and Sons, New York, 1931.
Wu, Q., Meng, X., Zhong, C., Chen, X., and Qin, J.: Rb2CdBr2I2: A new IR nonlinear optical material with a large laser damage threshold, J. Am. Chem. Soc., 136, 5683–5686, https://doi.org/10.1021/ja412405u, 2014.
Wu, Q., Liu, X., Xu, S., Pi, H., Han, X., Liu, Y., and Li, Y.: Synthesis, crystal structures and nonlinear optical properties of β-RbCdI3 ⋅ H2O and CsCdI3 ⋅ H2O, Dalton. T., 48, 6787–6793, https://doi.org/10.1039/C9DT01408J, 2019.
Wulff, P. and Schaller, D.: Refraktometrische Messungen an Kristallen und Vergleich isomorpher Salze mit edelgasähnlichen und edelgasunähnlichen Kationen: 8. Mitteilung über Refraktion und Dispersion von Kristallen, Z. Krist-Cryst. Mater., 87, 43–71, https://doi.org/10.1524/zkri.1934.87.1.43, 1934.
Zhang, Z., Suchanek, E., Eßer, D., Lutz, H. D., Nikolova, D., and Maneva-Petrova, M.: NiH3IO6 ⋅ 6H2O Kristallstruktur und Schwingungsspektren, Z. Anorg. Allg. Chem., 622, 845–852, https://doi.org/10.1002/zaac.19966220516, 1996.
Zhao, J. and Li, R. K.: Two new barium borate bromides: Ba2BO3Br and Ba3BO3Br3, Solid. State. Sci., 24, 54–57, https://doi.org/10.1016/j.solidstatesciences.2013.07.009, 2013.
Short summary
We conducted experimental and computational studies, compiling datasets of compounds with established refractive indices and supplementing them with our measurements of compounds containing I⁻, Br⁻, or Br7+. We calculated the electronic polarizabilities of these ions to estimate the mean refractive index of I- and Br-containing compounds. Results were compared to the Gladstone–Dale approach, confirming their reliability in predicting optical properties.
We conducted experimental and computational studies, compiling datasets of compounds with...