Articles | Volume 37, issue 5
https://doi.org/10.5194/ejm-37-627-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-37-627-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vielleaureite-(Ce), a new epidote of the dollaseite group, coexisting with Mn-dominant hellandite in Mn deposits of the central Pyrenees
Alain Ragu
Institut des Sciences de la Terre de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121 Firenze, Italy
Paola Bonazzi
Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121 Firenze, Italy
deceased
Laurent Remusat
Institut de Minéralogie, Physique des Matériaux et Cosmochimie, UMR CNRS 7590, Sorbonne Université, Museum national d'Histoire naturelle, 61 rue Buffon, 75005, Paris, France
Christian Chopin
CORRESPONDING AUTHOR
Laboratoire de Géologie, ENS – CNRS – PSL, UMR8538, 24 rue Lhomond, 75005 Paris, France
Related authors
No articles found.
Alice Taddei, Dan Holtstam, Erik Jonsson, Hans-Jürgen Förster, Stefan S. Andersson, Oona Appelt, and Luca Bindi
Eur. J. Mineral., 37, 937–951, https://doi.org/10.5194/ejm-37-937-2025, https://doi.org/10.5194/ejm-37-937-2025, 2025
Short summary
Short summary
Åsgruvanite-(Ce) is a new rare Earth element (REE) mineral from Åsgruvan in Västmanland, Sweden, linked to Bastnäs-type mineralisation. The chemical formula ideally includes cerium, aluminium, silicon, arsenic, carbonate groups, chlorine, and fluorine. The mineral forms small, grey-green, lustrous grains with distinct cleavage and high density and is associated with carbonates and REE minerals like gadolinite and an allanite-like mineral. It has a unique layered crystal structure.
Luca Bindi, Jan B. Kihle, Guangming Cheng, Jinping Hu, Nan Yao, Chi Ma, Yunbin Guan, Paul D. Asimow, and Paul J. Steinhardt
Eur. J. Mineral., 37, 783–791, https://doi.org/10.5194/ejm-37-783-2025, https://doi.org/10.5194/ejm-37-783-2025, 2025
Short summary
Short summary
During project STARDUST, over 5500 specimens were recovered. Among them, a micrometeorite from Oslo (NMM/L2) revealed a new Al–Cu alloy with Al₄Cu₉ stoichiometry. This phase was approved as a new mineral named jonlarsenite. The microspherule shows features typical of micrometeorites. Its extraterrestrial origin is confirmed by oxygen isotope composition and chondritic chemistry, similar to previously known Al–Cu meteoritic materials.
Lorenzo Barni, Simone Tommasini, Marta Morana, Riccardo Avanzinelli, Tiziano Catelani, and Luca Bindi
Eur. J. Mineral., 37, 747–760, https://doi.org/10.5194/ejm-37-747-2025, https://doi.org/10.5194/ejm-37-747-2025, 2025
Short summary
Short summary
A suite of clinopyroxenes from ankaramitic magmas of the Miocene Teno massif and Roque del Conde shield volcanoes (Tenerife, Canary Islands) were studied to obtain geothermobarometric information on the anatomy of the volcano plumbing system.
Luca Bindi, Paola Bonazzi, Laura Chelazzi, Matteo M. N. Franceschini, Giovanni O. Lepore, Marta Morana, Giovanni Pratesi, Alice Taddei, Matteo Zoppi, and Silvio Menchetti
Eur. J. Mineral., 36, 615–622, https://doi.org/10.5194/ejm-36-615-2024, https://doi.org/10.5194/ejm-36-615-2024, 2024
Short summary
Short summary
The As4S6 molecule was missing in the reported structures of crystalline As chalcogenides. Here we report the first occurrence of the As4S6 molecule together with the other known As4Sn (n = 3, 4, 5) molecules randomly replacing each other in the crystalline structure of a new monoclinic product obtained by the light-induced alteration of the mineral alacranite, As8S9.
Catherine Leyx, Peter Schmid-Beurmann, Fabrice Brunet, Christian Chopin, and Christian Lathe
Eur. J. Mineral., 36, 417–431, https://doi.org/10.5194/ejm-36-417-2024, https://doi.org/10.5194/ejm-36-417-2024, 2024
Short summary
Short summary
This paper presents the results of an exploratory study on the pressure–volume–temperature behaviour of the main Mg-phosphates of geological interest, especially in high-pressure metamorphic rocks. The incentive for it was the growing body of experimental phase-equilibrium data acquired at high pressure in the MgO–(Al2O3)–P2O5–H2O systems, the thermodynamic evaluation of which has been begging for such volumetric data.
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Cited articles
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec V., Chopin, C., Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y., and Pasero, M.: Recommended nomenclature of epidote-group minerals, Eur. J. Mineral., 18, 551–567, https://doi.org/10.1127/0935-1221/2006/0018-0551, 2006.
Biagioni, C., Bonazzi, P., Pasero, M., Zaccarini, F., Balestra, C., Bracco, R., and Ciriotti, M. E.: Manganiakasakaite-(La) and ferriakasakaite-(Ce), two new epidote supergroup minerals from Piedmont, Italy, Minerals, 9, 353, https://doi.org/10.3390/min9060353, 2019.
Bindi, L., Holtstam, D., Fantappié, G., Andersson, U. B., and Bonazzi, P.: Ferriperbøeite-(Ce), [CaCe3]Σ=4[Fe3+Al2Fe2+]Σ=4[Si2O7][SiO4]3O(OH)2, a new member of the polysomatic epidote–törnebohmite series from the Nya Bastnäs Fe-Cu-REE deposit Sweden, Eur. J. Mineral., 30, 537–544, https://doi.org/10.1127/ejm/2018/0030-2717, 2018.
Bonazzi, P. and Menchetti, S.: Manganese in monoclinic members of the epidote group: Piemontite and related minerals, in: Epidotes, Rev. Mineral. Geochem., 56, 495–552, 2004.
Bonazzi, P., Menchetti, S., and Reinecke, T.: Solid solution between piemontite and androsite-(La), a new mineral of the epidote group from Andros island, Greece, Am. Mineral., 81, 735–743, 1996.
Bonazzi, P., Holtstam, D., and Bindi, L.: Gatelite-supergroup minerals: recommended nomenclature and review, Eur. J. Mineral., 31, 173-181, https://doi.org/10.1127/ejm/2019/0031-2809, 2019.
Brese, N. E. and O'Keeffe, M.: Bond-valence parameters for solids, Acta Cryst., B47, 192–197, 1991.
Brugger, J., Bonin, M., Schenk, K. J., Meisser, N., Berlepsch, P., and Ragu, A.: Description and crystal structure of nabiasite, BaMn9[(V,As)O4]6(OH)2, a new mineral from Central Pyrénées (France), Eur. J. Mineral., 11, 879–890, 1999.
Bruker AXS Inc.: APEX 3. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA. 2016.
Cenki-Tok, B., Ragu, A., Armbruster, T., Chopin, C., and Medenbach, O.: New Mn- and rare-earth-rich epidote-group minerals in metacherts: manganiandrosite-(Ce) and vanadoandrosite-(Ce), Eur. J. Mineral., 18, 569–582, https://doi.org/10.1127/0935-1221/2006/0018-0569, 2006.
Grew, E. S.: Tinzenite, a member of the axinite group with formula revised to Ca2Mn Al4[B2Si8O30](OH)2, Eur. J. Mineral., 30, 177–182, https://doi.org/10.1127/ejm/2018/0030-2708, 2018.
Grew, E. S., Essene, E. J., Peacor, D. R., Su, S.-C., and Asami, M.: Dissakisite-(Ce), a new member of the epidote group and the Mg analogue of allanite-(Ce) from Antarctica, Am. Mineral., 76, 1990–1997, 1991.
Holtstam, D. and Andersson, U. B.: The REE minerals of the Bastnäs-type deposits, South-Central Sweden, Can. Mineral., 45, 1073–1114, 2007.
Holtstam, D., Kolitsch, U., and Andersson, U. B.: Västmanlandite-(Ce) – a new lanthanide- and F-bearing sorosilicate mineral from Västmanland, Sweden: description, crystal structure, and relation to gatelite-(Ce), Eur. J. Mineral., 17, 129–141, https://doi.org/10.1127/0935-1221/2005/0017-0129, 2005.
Lacroix, A.: Sur les minéraux des gisements manganésifères des Hautes Pyrénées, Bull. Soc. Fr. Minéral., 23, 251–255, https://doi.org/10.3406/bulmi.1900.2569, 1900.
Lemirre, B., Cochelin, B., Duchene, S., de Saint Blanquat, M., and Poujol, M.: Origin and duration of late orogenic magmatism in the foreland of the Variscan belt (Lesponne – Chiroulet - Néouvielle area, French Pyrénées), Lithos, 336–337, 183–201, 2019.
Levinson, A. A.: A system of nomenclature for rare-earth minerals, Am. Mineral., 51, 152–158, 1966.
Lienau, H.: Manganese silico-carbonates from Hautes-Pyrenees, Chem. Zeit., XXIII, 418–419, 1899 (in German).
Miyawaki, R., Yokoyama, K., Matsubara, S., Tsutsumi, Y., and Goto, A.: Uedaite-(Ce), a new member of the epidote group with Mn at the A site, from Shodoshima, Kagawa Prefecture, Japan, Eur. J. Mineral., 20, 261–269, https://doi.org/10.1127/0935-1221/2008/0020-1783, 2008.
Miyawaki, R., Moma, K., Yokoyama, K., Shigeoka, M., Matsubara, S., Ito, M., Nakai, I., and Kristiansen, R.: Mn-bearing hellandite-(Y) from the Heftetjern pegmatite, Tørdal, Norway, Can. Mineral., 53, 345–356, 2015.
Nagashima, M., Nishio-Hamane, D., Tomita, N., Minakawa, T., and Inaba, S.: Ferriakasakaite-(La) and ferriandrosite-(La): new epidote supergroup minerals from Ise, Mie Prefecture, Japan, Mineral. Mag., 79, 735–753, https://doi.org/10.1180/minmag.2015.079.3.16, 2015.
Nagashima, M., Nishio-Hamane, D., Ohnishi, M., and Harada, A.: Vanadoakasakaite-(Ce), IMA 2024-044, in: IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 82, Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, 2024.
Nikischer, T.: Hellandite, (Ca,Y)6(Al,Fe3+)2Si4B4O20(OH)4, Added to Franklin Species List, The Picking Table, 43, 7, https://www.fomsnj.org/PDF/PickingTable/PT43-1.pdf (last access: September 2025), 2002.
Oberti, R., Della Ventura, G., Ottolini, L., Hawthorne, F. C., and Bonazzi, P.: Re-definition, nomenclature and crystal-chemistry of the hellandite group, Am. Mineral., 87, 745–752, 2002.
Oberti, R., Langone, A., Boiocchi, M., Bernabè, E., and Hawthorne, F. C.: News from the hellandite group: the redefinition of mottanaite and ciprianiite and the new mineral description of ferri-mottanaite-(Ce), the first Fe3+-dominant hellandite, Eur. J. Mineral., 31, 799–806, https://doi.org/10.1127/ejm/2019/0031-2858, 2019.
Pautov, L. A., Khorov, P. V., Ignatenko, K. I., Sokolova, E. V., and Nadezhina, T. N.: Khristovite-(Ce), (Ca,REE)REE(Mg,Fe)AlMnSi3O11(OH)(F,O) – a new mineral of the epidote group. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 122, 103–111, 1993.
Peacor, D. R. and Dunn, P. J.: Dollaseite-(Ce) (magnesium orthite redefined): structure refinement and implications for F + M2+ substitution in epidote-group minerals, Am. Mineral., 73, 838–842, 1988.
Pouchou, J. L. and Pichoir, F.: “PAP” φ(ρZ) procedure for improved quantitative microanalysis, in: Microbeam analysis – 1985, San Francisco Press, San Francisco, 104–160, 1985.
Ragu, A.: Pétrologie et minéralogie des minéralisations manganésées métamorphiques dans le Paléozoïque des Pyrénées Centrales. Mémoire des Sciences de la Terre, no. 90-15, Univ. P. et M. Curie, Paris, 328 pp., 1990.
Ragu, A.: Helvite from the French Pyrénées as evidence for granite-related hydrothermal activity, Can. Mineral., 32, 111–120, 1994.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Cryst., C71, 3–8, 2015.
Števko, M., Myšlan, P., Biagioni, C., Mauro, D., and Mikuš, T.: Ferriandrosite-(Ce), a new member of the epidote supergroup from Betliar, Slovakia, Mineral. Mag., 87, 887–895, https://doi.org/10.1180/mgm.2023.62, 2023.
Taddei, A., Bonazzi, P., Förster, H.-J., Casey, P., Holtstam, D., Karlsson, A., and Bindi, L.: Multi-analytical characterization of an unusual epidote-supergroup mineral from Malmkärra, Sweden: Toward the new (OH)-analog of dollaseite-(Ce), Am. Mineral., 110, 594–602, https://doi.org/10.2138/am-2024-9438, 2025.
Short summary
A new rare-earth-bearing silicate is described from a manganese ore deposit in the Pyrenees. It belongs to the epidote family and is characterised by the formula Mn2+Ce(MgAlMn2+)(Si2O7)(SiO4)F(OH). This new mineral commonly contains inclusions of an Mn-rich yttrium borosilicate, a potentially new mineral of the hellandite family. This is a new type of occurrence for hellandite – while rare earths are under the spotlight.
A new rare-earth-bearing silicate is described from a manganese ore deposit in the Pyrenees. It...