Articles | Volume 36, issue 4
https://doi.org/10.5194/ejm-36-657-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-657-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The composition of metapelitic biotite, white mica, and chlorite: a review with implications for solid-solution models
Benoît Dubacq
CORRESPONDING AUTHOR
Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre de Paris, ISTeP UMR 7193, 75005 Paris, France
Jacob B. Forshaw
Institute of Geological Sciences, University of Bern, Baltzestrasse 1+3, 3012 Bern, Switzerland
Related authors
Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste
Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, https://doi.org/10.5194/ejm-35-831-2023, 2023
Short summary
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Sarah Figowy, Benoît Dubacq, Yves Noël, and Philippe d'Arco
Eur. J. Mineral., 32, 387–403, https://doi.org/10.5194/ejm-32-387-2020, https://doi.org/10.5194/ejm-32-387-2020, 2020
Short summary
Short summary
Partition coefficients are key to petrological modelling yet hard to estimate independently of measurements. Here we model the partitioning of Cr between garnet and clinopyroxene ab initio. Incorporation of Cr into crystal structures causes strain, and its energetic toll defines whether Cr favours one mineral or another. Comparing to Cr content in metamorphic rocks shows how mineral composition and structure set equilibrium partition coefficients and how kinetics hampers equilibrium.
Mathieu Soret, Philippe Agard, Benoît Ildefonse, Benoît Dubacq, Cécile Prigent, and Claudio Rosenberg
Solid Earth, 10, 1733–1755, https://doi.org/10.5194/se-10-1733-2019, https://doi.org/10.5194/se-10-1733-2019, 2019
Short summary
Short summary
This study sheds light on the mineral-scale mechanisms controlling the progressive deformation of sheared amphibolites from the Oman metamorphic sole during subduction initiation and unravels how strain is localized and accommodated in hydrated mafic rocks at high temperature conditions. Our results indicate how metamorphic reactions and pore-fluid pressures driven by changes in pressure–temperature conditions and/or water activity control the rheology of mafic rocks.
Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste
Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, https://doi.org/10.5194/ejm-35-831-2023, 2023
Short summary
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Sarah Figowy, Benoît Dubacq, Yves Noël, and Philippe d'Arco
Eur. J. Mineral., 32, 387–403, https://doi.org/10.5194/ejm-32-387-2020, https://doi.org/10.5194/ejm-32-387-2020, 2020
Short summary
Short summary
Partition coefficients are key to petrological modelling yet hard to estimate independently of measurements. Here we model the partitioning of Cr between garnet and clinopyroxene ab initio. Incorporation of Cr into crystal structures causes strain, and its energetic toll defines whether Cr favours one mineral or another. Comparing to Cr content in metamorphic rocks shows how mineral composition and structure set equilibrium partition coefficients and how kinetics hampers equilibrium.
Mathieu Soret, Philippe Agard, Benoît Ildefonse, Benoît Dubacq, Cécile Prigent, and Claudio Rosenberg
Solid Earth, 10, 1733–1755, https://doi.org/10.5194/se-10-1733-2019, https://doi.org/10.5194/se-10-1733-2019, 2019
Short summary
Short summary
This study sheds light on the mineral-scale mechanisms controlling the progressive deformation of sheared amphibolites from the Oman metamorphic sole during subduction initiation and unravels how strain is localized and accommodated in hydrated mafic rocks at high temperature conditions. Our results indicate how metamorphic reactions and pore-fluid pressures driven by changes in pressure–temperature conditions and/or water activity control the rheology of mafic rocks.
Related subject area
Metamorphic petrology
Comparison between 2D and 3D microstructures and implications for metamorphic constraints using a chloritoid–garnet-bearing mica schist
Sedimentary protolith and high-P metamorphism of oxidized manganiferous quartzite from the Lanterman Range, northern Victoria Land, Antarctica
Metamorphic evolution of sillimanite gneiss in the high-pressure terrane of the Western Gneiss Region (Norway)
Halogen-bearing metasomatizing melt preserved in high-pressure (HP) eclogites of Pfaffenberg, Bohemian Massif
Île Dumet (Armorican Massif, France) and its glaucophane eclogites: the little sister of Île de Groix
Retrogression of ultrahigh-pressure eclogite, Western Gneiss Region, Norway
Electron backscatter diffraction analysis combined with NanoSIMS U–Pb isotope data reveal intra-grain plastic deformation in zircon and its effects on U–Pb age: examples from Himalayan eclogites, Pakistan
H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks
Very-low-grade phyllosilicates in the Aravis massif (Haute-Savoie, France) and the di-trioctahedral substitution in chlorite
Partial melting of amphibole–clinozoisite eclogite at the pressure maximum (eclogite type locality, Eastern Alps, Austria)
Petrological study of an eclogite-facies metagranite from the Champtoceaux Complex (La Picherais, Armorican Massif, France)
Corundum-bearing and spinel-bearing symplectites in ultrahigh-pressure eclogites record high-temperature overprint and partial melting during slab exhumation
Some thoughts about eclogites and related rocks
Metamorphic P–T paths of Archean granulite facies metasedimentary lithologies from the eastern Beartooth Mountains of the northern Wyoming Province, Montana, USA: constraints from quartz-in-garnet (QuiG) Raman elastic barometry, geothermobarometry, and thermodynamic modeling
Detrital garnet petrology challenges Paleoproterozoic ultrahigh-pressure metamorphism in western Greenland
Equilibrium and kinetic approaches to understand the occurrence of the uncommon chloritoid + biotite assemblage
Geochemistry and paleogeographic implications of Permo-Triassic metasedimentary cover from the Tauern Window (Eastern Alps)
Reaction progress of clay minerals and carbonaceous matter in a contact metamorphic aureole (Torres del Paine intrusion, Chile)
Partial melting of zoisite eclogite from the Sanddal area, North-East Greenland Caledonides
Fabiola Caso, Alessandro Petroccia, Sara Nerone, Andrea Maffeis, Alberto Corno, and Michele Zucali
Eur. J. Mineral., 36, 381–395, https://doi.org/10.5194/ejm-36-381-2024, https://doi.org/10.5194/ejm-36-381-2024, 2024
Short summary
Short summary
Despite the fact that rock textures depend on the 3D spatial distribution of minerals, our tectono-metamorphic reconstructions are mostly based on a 2D visualisation (i.e. thin sections). For 2D a thin section scan has been combined with chemical X-ray maps, whereas for 3D the X-ray computerised axial microtomography (μCT) has been applied. This study corroborates the reliability of the thin section approach, still emphasising that 3D visualisation can help understand rock textures.
Taehwan Kim, Yoonsup Kim, Simone Tumiati, Daeyeong Kim, Keewook Yi, and Mi Jung Lee
Eur. J. Mineral., 36, 323–343, https://doi.org/10.5194/ejm-36-323-2024, https://doi.org/10.5194/ejm-36-323-2024, 2024
Short summary
Short summary
The manganese-rich siliceous metasediment in the Antarctic Ross orogen most likely originated from Mn-nodule-bearing chert deposited not earlier than ca. 546 Ma. Subduction-related metamorphism resulted in the production of highly oxidized assemblages involving Mn3+ and rare-earth-element-zoned epidote-group mineral and Mn2+-rich garnet. A reduced environment was responsible for the Mn olivine-bearing assemblages from silica-deficient composition.
Ane K. Engvik and Johannes Jakob
Eur. J. Mineral., 36, 345–360, https://doi.org/10.5194/ejm-36-345-2024, https://doi.org/10.5194/ejm-36-345-2024, 2024
Short summary
Short summary
The paper documents sillimanite gneiss in the Western Gneiss Region (WGR) and its presence, composition, formation and metamorphic evolution. Peak metamorphism is modelled to T = 750 °C and P around 0.6 GPa. Subsequent retrogression consumes garnet and shows mineral replacement and melt crystallization involving sillimanite, white mica, K-feldspar and quartz. The petrological evolution is in accordance with the investigated eclogites and HP granulites in the northwestern part of WGR.
Alessia Borghini, Silvio Ferrero, Patrick J. O'Brien, Bernd Wunder, Peter Tollan, Jarosław Majka, Rico Fuchs, and Kerstin Gresky
Eur. J. Mineral., 36, 279–300, https://doi.org/10.5194/ejm-36-279-2024, https://doi.org/10.5194/ejm-36-279-2024, 2024
Short summary
Short summary
We studied primary granitic and halogen-rich melt inclusions trapped in mantle rocks in the Bohemian Massif (Germany) in order to retrieve important information about the nature of the melt and the source rock. The melt was produced by the partial melting of metasediments during the deepest stages of subduction and interacted with the mantle. This work is an excellent example of transfer of crustal material, volatiles in particular, in the mantle during the subduction of the continental crust.
Gaston Godard, David C. Smith, Damien Jaujard, and Sidali Doukkari
Eur. J. Mineral., 36, 99–122, https://doi.org/10.5194/ejm-36-99-2024, https://doi.org/10.5194/ejm-36-99-2024, 2024
Short summary
Short summary
Petrological and mineralogical studies of mica schists, orthogneisses and glaucophane eclogites from Dumet Island (Armorican Massif, NW France) indicate that this occurrence, which has undergone high-pressure metamorphism up to 16 kbar and 620 °C, is similar to that of Groix Island. There are about 10 similar occurrences within the Ibero-Armorican Arc, forming a discontinuous high-pressure belt, but most of them have remained unnoticed due to a high degree of retrogression.
Dirk Spengler, Adam Włodek, Xin Zhong, Anselm Loges, and Simon J. Cuthbert
Eur. J. Mineral., 35, 1125–1147, https://doi.org/10.5194/ejm-35-1125-2023, https://doi.org/10.5194/ejm-35-1125-2023, 2023
Short summary
Short summary
Rock lenses from the diamond stability field (>120 km depth) within ordinary gneiss are enigmatic. Even more when these lenses form an alternating exposure pattern with ordinary lenses. We studied 10 lenses from W Norway and found that many of them have a hidden history. Tiny needles of quartz enclosed in old pyroxene cores are evidence for a rock origin at great depth. These needles survived the rocks' passage to the surface that variably obscured the mineral chemistry – the rocks' memory.
Hafiz U. Rehman, Takanori Kagoshima, Naoto Takahata, Yuji Sano, Fabrice Barou, David Mainprice, and Hiroshi Yamamoto
Eur. J. Mineral., 35, 1079–1090, https://doi.org/10.5194/ejm-35-1079-2023, https://doi.org/10.5194/ejm-35-1079-2023, 2023
Short summary
Short summary
Zircon preserves geologic rock history. Electron backscatter diffraction (EBSD) analysis is useful to visualize deformed domains in zircons. Zircons from the Himalayan high-pressure eclogites were analzyed for EBSD to identify intra-grain plastic deformation. The U–Pb isotope age dating, using Nano-SIMS, showed that plastic deformation likely affects the geochronological records. For geologically meaningful results, it is necessary to identify undisturbed domains in zircon via EBSD.
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste
Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, https://doi.org/10.5194/ejm-35-831-2023, 2023
Short summary
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Simon Schorn, Anna Rogowitz, and Christoph A. Hauzenberger
Eur. J. Mineral., 35, 715–735, https://doi.org/10.5194/ejm-35-715-2023, https://doi.org/10.5194/ejm-35-715-2023, 2023
Short summary
Short summary
We investigate rocks called eclogite, which are related to subduction and the collision of continents. Our samples show evidence of limited melting at high pressure corresponding to about 70 km depth, which may play an important role in the exhumation of these rocks and the differentiation of the crust. However, due to their composition and metamorphic evolution, melt production is limited, suggesting that similar rocks are unlikely to contribute strongly to subduction-related magmatism.
Thomas Gyomlai, Philippe Yamato, and Gaston Godard
Eur. J. Mineral., 35, 589–611, https://doi.org/10.5194/ejm-35-589-2023, https://doi.org/10.5194/ejm-35-589-2023, 2023
Short summary
Short summary
The La Picherais metagranite is a key example of undeformed high-pressure quartzofeldspathic rock from the Armorican Massif. Through petrological observations and thermodynamic modelling, this study determines that the metagranite was pressured above 1.7 GPa and the associated mafic lenses at ~ 2.1 GPa. This metagranite provides an opportunity to study the degree of transformation of quartzofeldspathic rocks at high pressure, which may have a significant impact on the dynamics of subduction.
Pan Tang and Shun Guo
Eur. J. Mineral., 35, 569–588, https://doi.org/10.5194/ejm-35-569-2023, https://doi.org/10.5194/ejm-35-569-2023, 2023
Short summary
Short summary
In this study, unusual corundum- and spinel-bearing symplectites after muscovite were found in ultrahigh-pressure eclogites from the Dabie terrane, China. The results indicate that these symplectites formed by the low-pressure partial melting of muscovite during slab exhumation. We stress that the occurrence of corundum- and spinel-bearing symplectites after muscovite in eclogites provides important implications for fluid and melt actions in exhumed slabs.
Michael Brown
Eur. J. Mineral., 35, 523–547, https://doi.org/10.5194/ejm-35-523-2023, https://doi.org/10.5194/ejm-35-523-2023, 2023
Short summary
Short summary
The past 40 years have been a golden age for eclogite studies, supported by an ever wider range of instrumentation and enhanced computational capabilities, linked with ongoing developments in the determination of the temperatures and pressures of metamorphism and the age of these rocks. These data have been used to investigate the spatiotemporal distribution of metamorphism and secular change but not without controversy in relation to the emergence of plate tectonics on Earth.
Larry Tuttle and Darrell J. Henry
Eur. J. Mineral., 35, 499–522, https://doi.org/10.5194/ejm-35-499-2023, https://doi.org/10.5194/ejm-35-499-2023, 2023
Short summary
Short summary
Quartz inclusions in garnet are used to constrain the metamorphic pressure–temperature history of multiple ~2.8 Ga metasedimentary rocks from Montana, USA. Inclusion studies along with mineral and whole rock chemistry suggests that the rocks of interest experienced a clockwise metamorphic P–T history that included isobaric heating to peak metamorphic temperatures once inclusions were entrapped. These findings place fundamental constraints on the P–T evolution of this important geologic setting.
Jan Schönig, Carsten Benner, Guido Meinhold, Hilmar von Eynatten, and N. Keno Lünsdorf
Eur. J. Mineral., 35, 479–498, https://doi.org/10.5194/ejm-35-479-2023, https://doi.org/10.5194/ejm-35-479-2023, 2023
Short summary
Short summary
When and how modern-style plate tectonics initiated is a matter of debate. Although the earliest unequivocal evidence for ultrahigh-pressure metamorphism is Neoproterozoic, similar processes have been proposed for Paleoproterozoic rocks of western Greenland. We intensely screened the area by studying detrital heavy minerals, garnet chemistry, and mineral inclusion assemblages in garnet. Our results raise considerable doubts on the existence of Paleoproterozoic ultrahigh-pressure rocks.
Sara Nerone, Chiara Groppo, and Franco Rolfo
Eur. J. Mineral., 35, 305–320, https://doi.org/10.5194/ejm-35-305-2023, https://doi.org/10.5194/ejm-35-305-2023, 2023
Short summary
Short summary
The coexistence of chloritoid and biotite in medium-pressure Barrovian terranes is uncommon, with chloritoid usually occurring at lower temperatures than biotite. A petrologic approach using equilibrium thermodynamic modelling points out how metapelites can attain H2O-undersaturated conditions even at medium pressure and amphibolite-facies conditions and consequently can be affected by kinetic barriers, which need to be taken into account.
Gerhard Franz, Martin Kutzschbach, Eleanor J. Berryman, Anette Meixner, Anselm Loges, and Dina Schultze
Eur. J. Mineral., 33, 401–423, https://doi.org/10.5194/ejm-33-401-2021, https://doi.org/10.5194/ejm-33-401-2021, 2021
Short summary
Short summary
Metamorphic rocks contain information about their original rocks and thus provide insight into the earlier stages of a region of interest. Here, we used the whole-rock chemical composition and stable boron isotopes of a suite of rocks from the Alps (Italy–Austria), which were deposited in a restricted intramontane basin before the Alpine orogeny. It is possible to reconstruct the depositional conditions for these sediments, which are now common metamorphic rocks such as schists and gneisses.
Annette Süssenberger, Susanne Theodora Schmidt, Florian H. Schmidt, and Manuel F. G. Weinkauf
Eur. J. Mineral., 32, 653–671, https://doi.org/10.5194/ejm-32-653-2020, https://doi.org/10.5194/ejm-32-653-2020, 2020
Wentao Cao, Jane A. Gilotti, and Hans-Joachim Massonne
Eur. J. Mineral., 32, 405–425, https://doi.org/10.5194/ejm-32-405-2020, https://doi.org/10.5194/ejm-32-405-2020, 2020
Short summary
Short summary
Zoisite eclogites from the Sanddal area, North-East Greenland, contain numerous textures, such as cusps and neoblasts, which are interpreted as melt-related textures. Mineral chemistry and thermodynamic modeling demonstrate that they were partially melted through the breakdown of hydrous minerals, phengite, paragonite and zoisite. Pressure–temperature phase diagrams show that the eclogites reached a maximum depth of ∼70 km and were partially melted near that depth and during exhumation.
Cited articles
Abad, I., Nieto, F., Peacor, D. R., and Velilla, N.: Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espuña (Spain), Clay Miner., 38, 1–23, https://doi.org/10.1180/0009855033810074, 2003.
Abad, I., Nieto, F., Gutierrez-Alonso, G., do Campo, M., Lopez-Munguira, A., and Velilla, N.: Illitic substitution in micas of very low-grade metamorphic clastic rocks. Eur. J. Miner., 18, 59–69, https://doi.org/10.1127/0935-1221/2006/0018-0059, 2006.
Abrecht, J. and Hewitt, D. A.: Experimental evidence on the substitution of Ti in biotite, Am. Mineral., 73, 1275–1284, 1988.
Agard, P., Vidal, O., and Goffé, B.: Interlayer and Si content of phengite in HP–LT carpholite-bearing metapelites, J. Metamorph. Geol., 19, 479–495, https://doi.org/10.1046/j.0263-4929.2001.00322.x, 2001.
Airaghi, L., Bellahsen, N., Dubacq, B., Chew, D., Rosenberg, C., Janots, E., Waldner, M., and Magnin, V.: Pre-orogenic upper crustal softening by lower greenschist facies metamorphic reactions in granites of the central Pyrenees, J. Metamorph. Geol., 38, 183–204, https://doi.org/10.1111/jmg.12520, 2020.
Alaoui, K., Airaghi, L., Dubacq, B., Rosenberg, C. L., Bellahsen, N., and Précigout, J.: Role of pre-kinematic fluid-rock interactions on phase mixing, quartz recrystallization and strain localization in low-temperature granitic shear zones, Tectonophysics, 850, 229735, https://doi.org/10.1016/j.tecto.2023.229735, 2023.
Amisano-Canesi, A., Chiari, G., Ferraris, G., Ivaldi, G., and Soboleva, S. V.: Muscovite- and phengite-3T, crystal structure and conditions of formation, Eur. J. Mineral., 6, 489–496, https://doi.org/10.1127/ejm/6/4/0489, 1994.
Anderson, C. S. and Bailey, S. W.: A new cation ordering pattern in amesite-2H2, Am. Mineral., 66, 185–195, 1981.
Andrieux, P. and Petit, S.: Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series: Part I: Influence of experimental conditions, Appl. Clay Sci., 48, 5–17, https://doi.org/10.1016/j.clay.2009.11.019, 2010.
Atkin, B. P.: Hercynite as a breakdown product of staurolite from within the aureole of the Ardara Pluton, Co. Donegal, Eire, Mineral. Mag., 42, 237–239, https://doi.org/10.1180/minmag.1978.042.322.10, 1978.
Auzanneau, E., Schmidt, M. W., Vielzeuf, D., and Connolly, J. A. D.: Titanium in phengite: a geobarometer for high temperature eclogites, Contrib. Mineral. Petr., 159, 1–24, https://doi.org/10.1007/s00410-009-0412-7, 2010.
Bailey, S. and Lister, J.: Structures, compositions, and X-ray-diffraction identification of dioctahedral chlorites, Clay. Clay Miner., 37, 193–202, https://doi.org/10.1346/CCMN.1989.0370301, 1989.
Bailey, S. W.: Cation ordering and pseudosymmetry in layer silicates, Am. Mineral., 60, 175–187, 1975.
Bailey, S. W.: Crystal chemistry of the true micas, Micas, 13, 13–60, https://doi.org/10.1515/9781501508820-006, 1984.
Bailey, S. W.: Re-evaluation of ordering and local charge-balance in Ia chlorite, Can. Mineral., 24, 649–654, 1986.
Baker, J. and Holland, T. J. B.: Experimental reversals of chlorite compositions in divariant MgO + Al2O3 + SiO2 + H2O assemblages, Am. Mineral., 81, 676–684, https://doi.org/10.2138/am-1996-5-615, 1996.
Baldelli, C., Franceschelli, M., Leoni, L., and Memmi, I.: Ferrimuscovite and celadonite substitutions in muscovite from Fe3+-rich low-grade psammitic rocks (Northern Apennines, Italy), Lithos, 23, 201–208, https://doi.org/10.1016/0024-4937(89)90005-4, 1989.
Bauluz, B. and Nieto, F.: Ammonium-bearing micas in very low-grade metapelites: micro- and nano-texture and composition, Clay Miner., 53, 105–116, https://doi.org/10.1180/clm.2018.8, 2018.
Battaglia, S.: Variations in the chemical composition of illite from five geothermal fields: a possible geothermometer, Clay Miner., 39, 501–510, https://doi.org/10.1180/0009855043940150, 2004.
Bosenick, A., Dove, M. T., Myers, E. R., Palin, E. J., Sainz-Diaz, C. I., Guiton, B. S., Warren, M. C., Craig, M. S., and Redfern, S. A. T.: Computational methods for the study of energies of cation distributions: applications to cation-ordering phase transitions and solid solutions, Mineral. Mag., 65, 193–219, https://doi.org/10.1180/002646101550226, 2001.
Bourdelle, F., Benzerara, K., Beyssac, O., Cosmidis, J., Neuville, D., Brown, G. E. J., and Paineau, E.: Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2,3 edges, Contrib. Mineral. Petr., 166, 423–434, https://doi.org/10.1007/s00410-013-0883-4, 2013.
Bourdelle, F. and Cathelineau, M.: Low-temperature chlorite geothermometry: a graphical representation based on a T–R2+–Si diagram, Eur. J. Mineral., 27, 617–626, https://doi.org/10.1127/ejm/2015/0027-2467, 2015.
Brigatti, M. F.: Refinement of the Structure of Natural Ferriphlogopite, Clay. Clay Miner., 44, 540–545, https://doi.org/10.1346/CCMN.1996.0440413, 1996.
Brown, B. E. and Bailey, S. W.: Chlorite polytypism: II. crystal structure of a one-layer Cr-chlorite, Am. Mineral., 48, 42–61, 1963.
Brown, E. H.: The greenschist facies in part of eastern Otago, New Zealand: Contrib. Mineral. Petr., 14, 259–292, https://doi.org/10.1007/bf00373808, 1967.
Cathelineau, M. and Nieva, D.: A chlorite solid solution geothermometer – the Los Azufres (Mexico) geothermal system, Contrib. Mineral. Petr., 91, 235–244, https://doi.org/10.1007/BF00413350, 1985.
Cesare, B., Cruciani, G., and Russo, U.: Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain): Crystal-chemical aspects and implications for high-temperature petrogenesis, Am. Mineral., 88, 583–595, https://doi.org/10.2138/am-2003-0412, 2003.
Cesare, B., Satish-Kumar, M., Cruciani, G., Pocker, S., and Nodari, L.: Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions, Am. Mineral., 93, 327–338, https://doi.org/10.2138/am.2008.2579, 2008.
Chambers, J. A. and Kohn, M. J.: Titanium in muscovite, biotite, and hornblende: Modeling, thermometry, and rutile activities of metapelites and amphibolites, Am. Mineral., 97, 543–555, https://doi.org/10.2138/am.2012.3890, 2012.
Clemens, J., Circone, S., Navrotsky, A., McMillan, P., Smith, B., and Wall, V.: Phlogopite: High temperature solution calorimetry, thermodynamic properties, Al-Si and stacking disorder, and phase equilibria, Geochim. Cosmochim. Ac., 51, 2569–2578, https://doi.org/10.1016/0016-7037(87)90307-3, 1987.
Cuadros, J., Michalski, J. R., Dyar, M. D., and Dekov, V.: Controls on tetrahedral Fe(III) abundance in 2 : 1 phyllosilicates, Am. Mineral., 104, 1608–1619, https://doi.org/10.2138/am-2019-7036, 2019.
Dachs, E. and Benisek, A.: A new activity model for Mg-Al biotites determined through an integrated approach, Contrib. Mineral. Petr., 174, 76, https://doi.org/10.1007/s00410-019-1606-2, 2019.
Dachs, E. and Benisek, A.: A new activity model for Fe-Mg-Al biotites: Derivation and calibration of mixing parameters, Contrib. Mineral. Petr., 176, 22, https://doi.org/10.1007/s00410-020-01770-5, 2021.
Das, B. K.: The greenschist facies assemblages of the lower Kumaon Himalaya, Geol. Mag., 110, 59–66, https://doi.org/10.1017/s0016756800047300, 1973.
Dove, M., Thayaparam, S., Heine, V., and Hammonds, K.: The phenomenon of low Al-Si ordering temperatures in aluminosilicate framework structures, Am. Mineral., 81, 349–362, https://doi.org/10.2138/am-1996-3-409, 1996.
Droop, G. T. R.: A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 51, 431–435, https://doi.org/10.1180/minmag.1987.051.361.10, 1987.
Dubacq, B.: Thermodynamics of ordering and mixing in plagioclase feldspars: atomistic modelling in favour of Landau theory, Contrib. Mineral. Petr., 177, 102, https://doi.org/10.1007/s00410-022-01965-y, 2022.
Dubacq, B., Bonnet, G., Warembourg, M., and Baptiste, B.: Very-low-grade phyllosilicates in the Aravis massif (Haute-Savoie, France) and the di-trioctahedral substitution in chlorite, Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, 2023.
Dubacq, B., Vidal, O., and De Andrade, V.: Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates, Contrib. Mineral. Petr., 159, 159–174, https://doi.org/10.1007/s00410-009-0421-6, 2010.
Dubacq, B., Vidal, O., and Lewin, É.: Atomistic investigation of the pyrophyllitic substitution and implications on clay stability, Am. Mineral., 96, 241–249, https://doi.org/10.2138/am.2011.3564, 2011.
Dyar, M.: Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas – Discussion, Am. Mineral., 78, 665–668, 1993.
Dyar, M. D.: Optical and Mössbauer Spectroscopy of Iron in Micas, Rev. Miner. Geochem., 46, 313–349, https://doi.org/10.2138/rmg.2002.46.06, 2002.
Dyar, M. D. and Burns, R. G.: Mössbauer spectral study of ferruginous one-layer trioctahedral micas, Am. Mineral., 71, 955–965, 1986.
Dyar, M. D., Colucci, M. T., and Guidotti, C. V.: Forgotten major elements: Hydrogen and oxygen variation in biotite from metapelites, Geology, 19, 1029–1032, https://doi.org/10.1130/0091-7613(1991)019<1029:FMEHAO>2.3.CO;2, 1991.
Dyar, M. D., Guidotti, C. V., Holdaway, M. J., and Colucci, M.: Nonstoichiometric hydrogen contents in common rock-forming hydroxyl silicates, Geochim. Cosmochim. Ac., 57, 2913–2918, https://doi.org/10.1016/0016-7037(93)90399-H, 1993.
Eggleton, R. A. and Bailey, S. W.: Structural aspects of dioctahedral chlorite, Am. Mineral., 52, 673–689, 1967.
Ferrow, E. A. and Bagiński, B.: Chloritisation of hornblende and biotite: a HRTEM study, Acta Geol. Pol., 1, 107–113, 1998.
Fialin, M., Wagner, C., Métrich, N., Humler, E., Galoisy, L., and Bézos, A.: Fe3+/ΣFe vs. FeLα peak energy for minerals and glasses: Recent advances with the electron microprobe, Am. Mineral., 86, 456–465, https://doi.org/10.2138/am-2001-0409, 2001.
Fialin, M., Bézos, A., Wagner, C., and Humler, E.: Quantitative electron microprobe analysis of : Basic concepts and experimental protocol for glasses, Am. Mineral., 89, 654–662, https://doi.org/10.2138/am-2004-0421, 2004.
Figowy, S., Dubacq, B., and D'Arco, P.: Crystal chemistry and partitioning of halogens in hydrous silicates, Contrib. Mineral. Petr., 176, 100, https://doi.org/10.1007/s00410-021-01860-y, 2021.
Forbes, W. C.: An interpretation of the hydroxyl contents of biotites and muscovites, Mineral. Mag., 38, 712–720, https://doi.org/10.1180/minmag.1972.038.298.07, 1972.
Forshaw, J. B. and Pattison, D. R. M.: Ferrous/ferric (Fe2+/Fe3+) partitioning among silicates in metapelites, Contrib. Mineral. Petr., 176, 63, https://doi.org/10.1007/s00410-021-01814-4, 2021.
Forshaw, J. B. and Pattison, D. R.: Bulk Compositional Influence on Diverse Metapelitic Mineral Assemblages in the Whetstone Lake Area, Ontario, J. Petr., 64, egad071, https://doi.org/10.1093/petrology/egad071, 2023a.
Forshaw, J. B. and Pattison, D. R.: Major-element geochemistry of pelites, Geology, 51, 39–43, https://doi.org/10.1130/G50542.1, 2023b.
Foster, M.: Water content of micas and chlorites, US Geological Survey Report, Professional Paper 474-F, https://doi.org/10.3133/pp474F, 1964.
Gable, D. J., Sims, P. K., and Weiblen, P. W.: Thermal metamorphism of cordierite-garnet-biotite gneiss, Front Range, Colorado, J. Geol., 78, 661–685, 1970.
Gueydan, F., Leroy, Y. M., Jolivet, L., and Agard, P.: Analysis of continental midcrustal strain localization induced by microfracturing and reaction-softening, J. Geophys. Res.-Sol. Ea., 108, 2064, https://doi.org/10.1029/2001JB000611, 2003.
Guggenheim, S. and Bailey, S. W.: Refinement of the margarite structure in subgroup symmetry, Am. Mineral., 60, 1023–1039, 1975.
Guggenheim, S. and Bailey, S. W.: Refinement of the margarite structure in subgroup symmetry, correction, further refinement, and comments, Am. Mineral., 63, 186–187, 1978.
Guggenheim, S. and Zhan, W.: Crystal structures of two partially dehydrated chlorites: the “modified” chlorite structure, Am. Mineral., 84, 1415–1421, https://doi.org/10.2138/am-1999-0920, 1999.
Guidotti, C.: Micas in Metamorphic Rocks, Micas, 13, 357–468, https://doi.org/10.1515/9781501508820-014, 1984.
Guidotti, C. and Dyar, M. D.: Ferric iron in metamorphic biotite and its petrologic and crystallochemical implications, Am. Mineral., 76, 161–175, 1991.
Guidotti, C. and Sassi, F.: Petrogenetic significance of Na-K white mica mineralogy: Recent advances for metamorphic rocks, Eur. J. Mineral., 10, 815–854, https://doi.org/10.1127/ejm/10/5/0815, 1998.
Guidotti, C. V., Cheney, J. T., and Guggenheim, S.: Distribution of titanium between coexisting muscovite and biotite in pelitic schists from northwestern Maine, Am. Mineral., 62, 438–448, 1977.
Guitard, G.: La composition des biotites des gneiss œillés du Canigou (Pyrénées-Orientales) et l'origine de ces gneiss, B. Soc. Fr. Mineral. Cr., 86, 139–142, https://doi.org/10.3406/bulmi.1963.8306, 1963.
Güven, N. and Burnham, C. W.: The crystal structure of 3 T muscovite, Z. Kristallogr., 125, 163–183, https://doi.org/10.1524/zkri.1967.125.16.163, 1967.
Hall, S. H.: Cation Ordering Pattern in Amesite, Clay. Clay Miner., 27, 241–247, https://doi.org/10.1346/CCMN.1979.0270401, 1979.
Hawthorne, F. C. and Oberti, R.: Classification of the Amphiboles, Rev. Miner. Geochem., 67, 55–88, https://doi.org/10.2138/rmg.2007.67.2, 2007.
Harte, B.: Stratigraphy, structure and metamorphism in the south-eastern Grampian Highlands of Scotland, Doctoral thesis, University of Cambridge, 1966.
Herrero, C. and Sanz, J.: Short-range order of the Si, Al distribution in layer silicates, J. Phys. Chem. Solids, 52, 1129–1135, https://doi.org/10.1016/0022-3697(91)90045-2, 1991.
Herrero, C. P., Gregorkiewitz, M., Sanz, J., and Serratosa, J. M.: 29Si MAS-NMR spectroscopy of mica-type silicates: Observed and predicted distribution of tetrahedral Al-Si, Phys. Chem. Miner., 15, 84–90, https://doi.org/10.1007/BF00307613, 1987.
Herviou, C. and Bonnet, G.: Paleocene-Eocene High-Pressure Carbonation of Western Alps Serpentinites: Positive Feedback Between Deformation and CO2-CH4 Fluid Ingression Responsible for Slab Slicing?, Geochem. Geophy. Geosy., 24, e2022GC010557, https://doi.org/10.1029/2022GC010557, 2023.
Herviou, C., Agard, P., Plunder, A., Mendes, K., Verlaguet, A., Deldicque, D., and Cubas, N.: Subducted fragments of the Liguro-Piemont ocean, Western Alps: Spatial correlations and offscraping mechanisms during subduction, Tectonophysics, 827, 229267, https://doi.org/10.1016/j.tecto.2022.229267, 2022.
Hewitt, D. A. and Abrecht, J.: Limitations on the interpretation of biotite substitutions from chemical analyses of natural samples, Am. Mineral., 71, 1126–1128, 1986.
Hewitt, D. A. and Wones, D. R.: Experimental Phase Relations of the Micas, Micas, 13, 201–256, https://doi.org/10.1515/9781501508820-011, 1984.
Hietanen, A.: Kyanite, andalusite, and sillimanite in the schist in Boehls Butte Quadrangle, Idaho, Am. Mineral., 41, 1–27, 1956.
Holland, T. J. B. and Powell, R.: An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x, 1998.
Holland, T. J. B. and Powell, R.: Mineral activity–composition relations and petrological calculations involving cation equipartition in multisite minerals: a logical inconsistency, J. Metamorph. Geol., 24, 851–861, https://doi.org/10.1111/j.1525-1314.2006.00672.x, 2006.
Holland, T., Baker, J., and Powell, R.: Mixing properties and activity-composition and relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O, Eur. J. Mineral., 10, 395–406, 1998.
Jiang, W.-T., Peacor, D. R., and Essene, E. J.: Clay Miner. in the MacAdams Sandstone, California: Implications for Substitution of H3O+ and H2O and Metastability of Illite, Clay. Clay Miner., 42, 35–45, https://doi.org/10.1346/CCMN.1994.0420105, 1994.
Joswig, W., Takéuchi, Y., and Fuess, H.: Neutron-diffraction study on the orientation of hydroxyl groups in margarite, Z. Kristallogr., 165, 295–304, 1983.
Kanisawa, S., Onuki, H., and Yanai, K.: Chemical Characteristics of Biotites and Hornblendes from Metamorphic Rocks around Lutzow-Holmbukta, East Antarctica, Memoirs of National Institute of Polar Research, Special issue, 14, 153–163, 1979.
Kelley, W.: Calculating formulas for fine grained minerals on the basis of chemical analysis, Am. Mineral., 30, 1–26, 1945.
Kizaki, K.: On Migmatites of the Hidaka Metamorphic Belt: Journal of the Faculty of Science, Hokkaido University, Series 4, Geol. Mineral., 12, 111–169, 1964.
Kretz, R.: Metamorphic differentiation at Einasleigh, northern Queensland, J. Geol. Soc. Australia, 13, 561–582, https://doi.org/10.1080/00167616608728632, 1966.
Kwak, T. A.: Ti in biotite and muscovite as an indication of metamorphic grade in almandine amphibolite facies rocks from Sudbury, Ontario, Geochim. Cosmochim. Ac., 32, 1222–1229, https://doi.org/10.1016/0016-7037(68)90124-5, 1968.
Laird, J.: Chlorites: metamorphic petrology, in: Hydrous phyllosilicates (Exclusive of micas), edited by: Bailey, S. W., Chap. 11, De Gruyter, 405–454, https://doi.org/10.1515/9781501508998-016, 1988.
Lanari, P., Wagner, T., and Vidal, O.: A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: applications to P–T sections and geothermometry, Contrib. Mineral. Petr., 167, 968, https://doi.org/10.1007/s00410-014-0968-8, 2014.
Lebedev, M. M., Tararin, I. A., and Lagovskaya, E. A.: Metamorphic zones of Kamchatka as an example of the metamorphic assemblages of the inner part of the pacific belt, Tectonophysics, 4, 445–461, https://doi.org/10.1016/0040-1951(67)90010-8, 1967.
Lefeuvre, B.: La lawsonite dans les métasédiments en base de zone sismogénique: géochimie, échelles de migration des fluides et rôle de la déformation dans les Schistes Lustrés, Sorbonne Université, Ecole Doctorale GRNE, 232 pp., 2020.
Lefeuvre, B., Agard, P., Verlaguet, A., Dubacq, B., and Plunder, A.: Massive formation of lawsonite in subducted sediments from the Schistes Lustrés (W. Alps): Implications for mass transfer and decarbonation in cold subduction zones, Lithos, 370–371, 105629, https://doi.org/10.1016/j.lithos.2020.105629, 2020.
Lefeuvre, B., Dubacq, B., Verlaguet, A., Herviou, C., Walker, S., Caron, B., Baxter, E., and Agard, P.: Disentangling the compositional variations of lawsonite in blueschist-facies metasediments (Schistes Lustrés, W. Alps), Contrib. Mineral. Petr., 179, 25, https://doi.org/10.1007/s00410-024-02104-5, 2024.
Lempart-Drozd, M., Błachowski, A., Gumsley, A., and Ciesielska, Z.: Thermal decomposition of minnesotaite and dehydrogenation during Fe2+ oxidation, with implications for redox reactions in Banded Iron Formations, Chem. Geol., 601, 120867, https://doi.org/10.1016/j.chemgeo.2022.120867, 2022.
Lempart, M., Derkowski, A., Luberda-Durnaś, K., Skiba, M., and Błachowski, A.: Dehydrogenation and dehydroxylation as drivers of the thermal decomposition of Fe-chlorites, Am. Mineral., 103, 1837–1850, https://doi.org/10.2138/am-2018-6541, 2018.
Lempart, M., Derkowski, A., Strączek, T., and Kapusta, C.: Systematics of H2 and H2O evolved from chlorites during oxidative dehydrogenation, Am. Mineral., 105, 932–944, https://doi.org/10.2138/am-2020-7326, 2020.
Li, G., Peacor, D. R., Coombs, D. S. and Kawachi, Y.: Solid solution in the celadonite family; the new minerals ferroceladonite, K2Fe Fe Si8O20(OH)4, and ferroaluminoceladonite, K2Fe Al2Si8O20(OH)4, Am. Mineral., 82, 503–511, https://doi.org/10.2138/am-1997-5-609, 1997.
Li, X., Zhang, C., Almeev, R. R., Zhang, X.-C., Zhao, X.-F., Wang, L.-X., Koepke, J., and Holtz, F.: Electron probe microanalysis of ratios in calcic and sodic-calcic amphibole and biotite using the flank method, Chem. Geol., 509, 152–162, https://doi.org/10.1016/j.chemgeo.2019.01.009, 2019.
Li, X., Zhang, C., Behrens, H., and Holtz, F.: Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression, Lithos, 356–357, 105371, https://doi.org/10.1016/j.lithos.2020.105371, 2020.
Livi, K. J. T. and Veblen, D. R.: “Eastonite” from Easton, Pennsylvania, a mixture of phlogopite and a new form of serpentine, Am. Mineral., 72, 113–125, 1987.
Loucks, R. R.: The bound interlayer H2O content of potassic white micas: Muscovite-hydromuscovite-hydropyrophyllite solutions, Am. Mineral., 76, 1563–1579, 1991.
Lyons, J. B. and Morse, S. A.: Mg/Fe partitioning in garnet and biotite from some granitic, pelitic, and calcic rocks, Am. Mineral., 55, 231–245, 1970.
Masci, L., Dubacq, B., Verlaguet, A., Chopin, C., De Andrade, V., and Herviou, C.: A XANES and EPMA study of Fe3+ in chlorite: Importance of oxychlorite and implications for cation site distribution and thermobarometry, Am. Mineral., 104, 403–417, https://doi.org/10.2138/am-2019-6766, 2019.
Massonne, H.-J. and Schreyer, W.: Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz, Contrib. Mineral. Petr., 96, 212–224, https://doi.org/10.1007/BF00375235, 1987.
Matejovská, O.: Composition of coexisting garnet and biotite from some granulites of Moldanubiucum, Czechoslovakia, Neues Jb. Miner. Monat., 6, 249–263, 1970.
Miyashiro, A.: Notes on Rock-forming Minerals. (23) Metamorphic Biotite from the Yon-chhyon System in Central Korea, The Journal of the Geological Society of Japan, 68, 351–352, https://doi.org/10.5575/geosoc.68.351, 1962.
Morse, S.: Linear partitioning in binary solutions: A review with a novel partitioning array, Am. Mineral., 100, 1021–1032, https://doi.org/10.2138/am-2015-5056, 2015.
Myhill, R. and Connolly, J. A. D.: Notes on the creation and manipulation of solid solution models, Contrib. Mineral. Petr., 176, 86, https://doi.org/10.1007/s00410-021-01825-1, 2021.
Neiva, A. M. R.: Chlorite and biotite from contact metamorphism of phyllite and metagraywacke by granite, aplite-pegmatite and quartz veins, Chem. Geol., 29, 49–71, https://doi.org/10.1016/0009-2541(80)90005-4, 1980.
Nelson, D. O. and Guggenheim, S.: Inferred limitations to the oxidation of Fe in chlorite: A high-temperature single-crystal X-ray study, Am. Mineral., 78, 1197–1207, 1993.
Nieto, F.: Characterization of coexisting NH4- and K-micas in very low-grade metapelites, Am. Mineral., 87, 205–216, https://doi.org/10.2138/am-2002-2-302, 2002.
Onuki, H.: Almandine hornfelses from Tono contact aureole, Kitakami mountainland, Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 59, 9–20, https://doi.org/10.2465/ganko1941.59.9, 1968.
Palin, E. and Dove, M.: Investigation of Al/Si ordering in tetrahedral phyllosilicate sheets by Monte Carlo simulation, Am. Mineral., 89, 176–184, https://doi.org/10.2138/am-2004-0120, 2004.
Palin, E., Dove, M., Redfern, S., Bosenick, A., Sainz-Diaz, C., and Warren, M.: Computational study of tetrahedral Al-Si ordering in muscovite, Phys. Chem. Miner., 28, 534–544, https://doi.org/10.1007/s002690100184, 2001.
Patino Douce, A. E., Johnston, A. D., and Rice, J. M.: Octahedral excess mixing properties in biotite: A working model with applications to geobarometry and geothermometry, Am. Mineral., 78, 113–131, 1993.
Pattison, E. F.: Coexisting micas in igneous and metamorphic rocks, Masters thesis, McGill University, 1965.
Phillips, T. L., Loveless, J. K., and Bailey, S. W.: Cr3+ coordination in chlorites: a structural study of ten chromian chlorites, Am. Mineral., 65, 112–122, 1980.
Plamenevskaya, N. L.: Biotite and the Facies of Contact Metamorphism, Int. Geol. Rev., 17, 300–310, https://doi.org/10.1080/00206817509471696, 1975.
Plunder, A., Agard, P., Dubacq, B., Chopin, C., and Bellanger, M.: How continuous and precise is the record of P–T paths? Insights from combined thermobarometry and thermodynamic modelling into subduction dynamics (Schistes Lustrés, W. Alps), J. Metamorph. Geol., 30, 323–346, https://doi.org/10.1111/j.1525-1314.2011.00969.x, 2012.
Powell, R., White, R., Green, E., Holland, T., and Diener, J.: On parameterizing thermodynamic descriptions of minerals for petrological calculations, J. Metamorph. Geol., 32, 245–260, https://doi.org/10.1111/jmg.12070, 2014.
Rancourt, D. G.: Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas – Reply, Am. Mineral., 78, 669–671, 1993.
Rancourt, D. G., Dang, M. Z., and Lalonde, A. E.: Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas, Am. Mineral., 77, 34–43, 1992.
Rancourt, D. G., Mercier, H. J., Cherniak, D. J., Desgreniers, S., Kodama, H., Robert, J.-L., and Murad, E.: Mechanisms and crystal chemistry of oxidation in annite: resolving the hydrogen-loss and vacancy reactions, Clay. Clay Miner., 49, 455–491, https://doi.org/10.1346/CCMN.2001.0490601, 2001.
Ransom, B. and Helgeson, H.: Compositional End Members and Thermodynamic Components of Illite and Dioctahedral Aluminous Smectite Solid Solutions, Clay. Clay Miner., 41, 537–550, https://doi.org/10.1346/CCMN.1993.0410503, 1993.
Rebbert, C. R., Partin, E., and Hewitt, D. A.: Synthetic biotite oxidation under hydrothermal conditions, Am. Mineral., 80, 345–354, https://doi.org/10.2138/am-1995-3-416, 1995.
Reynes, J., Jollands, M., Hermann, J., and Ireland, T.: Experimental constraints on hydrogen diffusion in garnet, Contrib. Mineral. Petr., 173, 69, https://doi.org/10.1007/s00410-018-1492-z, 2018.
Rieder, M., Povondra, P., and Fryda, J.: Coexisting biotite and muscovite: An example from a Moinian mica schist at Glenfinnan, Scottish Highlands, Miner. Petrol., 53, 63–74, https://doi.org/10.1007/bf01171947, 1995.
Righter, K., Dyar, M. D., Delaney, J. S., Vennemann, T. W., Hervig, R. L., and King, P. L.: Correlations of octahedral cations with OH−, O2−, Cl−, and F− in biotite from volcanic rocks and xenoliths, Am. Mineral., 87, 142–153, https://doi.org/10.2138/am-2002-0115, 2002.
Rimšaite, J.: On micas from magmatic and metamorphic rocks, Beiträge zur Mineralogie und Petrographie, 10, 152–183, https://doi.org/10.1007/bf02652613,1964.
Rule, A. C. and Bailey, S. W.: Refinement of the crystal structure of a monoclinic ferroan clinochlore, Clay. Clay Miner., 35, 129–138, 1987.
Ryan, C. and Reynolds, R. C. J.: The Chemical Composition of Serpentine/Chlorite in the Tuscaloosa Formation, United States Gulf Coast: EDX vs. XRD Determinations, Implications for Mineralogic Reactions and the Origin of Anatase, Clay. Clay Miner., 45, 339–352, https://doi.org/10.1346/CCMN.1997.0450305, 1997.
Sainz-Diaz, C. I., Hernández-Laguna, A., and Dove, M. T.: Modeling of dioctahedral 2 : 1 phyllosilicates by means of transferable empirical potentials, Phys. Chem. Miner., 28, 130–141, https://doi.org/10.1007/s002690000139, 2001.
Schingaro, E., Kullerud, K., Lacalamita, M., Mesto, E., Scordari, F., Zozulya, D., Erambert, M., and Ravna, E. J.: Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): Structure, composition and origin, Lithos, 210–211, 1–13, https://doi.org/10.1016/j.lithos.2014.09.020, 2014.
Schumacher, J. C.: Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers, Mineral. Mag., 55, 3–18, https://doi.org/10.1180/minmag.1991.055.378.02, 1991.
Scordari, F., Ventruti, G., Sabato, A., Bellatreccia, F., Della Ventura, G. and Pedrazzi, G.: Ti-rich phlogopite from Mt. Vulture (Potenza, Italy) investigated by a multianalytical approach: substitutional mechanisms and orientation of the OH dipoles, Eur. J. Mineral., 18, 379–391, https://doi.org/10.1127/0935-1221/2006/0018-0379, 2006.
Serna, C. J., Velde, B., and White, J. L.: Infrared evidence of order-disorder in amesites, Am. Mineral., 62, 296–303, 1977.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Siron, G., Baumgartner, L., and Bouvier, A.-S.: Significance of OH, F and Cl content in biotite during metamorphism of the Western Adamello contact aureole, Contrib. Mineral. Petr., 173, 63, https://doi.org/10.1007/s00410-018-1491-0, 2018.
Smyth, J., Dyar, M. D., May, H. M., Bricker, O., and Acker, J. G.: Crystal structure refinement and Mössbauer spectroscopy of an ordered, triclinic clinochlore, Clay. Clay Miner., 45, 544–550, https://doi.org/10.1346/CCMN.1997.0450406, 1997.
Tajčmanová, L., Connolly, J. A. D., and Cesare, B.: A thermodynamic model for titanium and ferric iron solution in biotite, J. Metamorph. Geol., 27, 153–165, https://doi.org/10.1111/j.1525-1314.2009.00812.x, 2009.
Thompson, J. B.: The Graphical Analysis of Mineral Assemblages in Pelitic Schists, Am. Mineral., 42, 842–858, 1957.
Thompson, J. B.: Biopyriboles and polysomatic series, Am. Mineral., 63, 239–249, 1978.
Tischendorf, G., Rieder, M., Förster, H.-J., Gottesmann, B., and Guidotti, C.: A new graphical presentation and subdivision of potassium micas, Mineral. Mag., 68, 649–667, https://doi.org/10.1180/0026461046840210, 2004.
Tischendorf, G., Förster, H.-J., Gottesmann, B., and Rieder, M.: True and brittle micas: composition and solid-solution series, Mineral. Mag., 71, 285–320, https://doi.org/10.1180/minmag.2007.071.3.285, 2007.
Trincal, V. and Lanari, P.: Al-free di-trioctahedral substitution in chlorite and a ferri-sudoite end-member, Clay Miner., 51, 675–689, https://doi.org/10.1180/claymin.2016.051.4.09, 2016.
Trzcienski Jr., W. E.: Staurolite and garnet parageneses and related metamorphic reactions in metapelites from the Whetstone Lake area, Southeastern Ontario, Doctoral thesis, McGill University, 1971.
Veblen, D. R. and Buscek, R.: Microstructures and reaction mechanisms in biopyriboles, Am. Mineral., 65, 599–623, 1980.
Velde, B.: Phengite micas: synthesis, stability, and natural occurrence, Am. J. Sci., 263, 886–913, https://doi.org/10.2475/ajs.263.10.886, 1965.
Vidal, O. and Parra, T.: Exhumation paths of high-pressure metapelites obtained from local equilibria for chlorite–phengite assemblages, Geol. J., 35, 139–161, https://doi.org/10.1002/gj.856, 2000.
Vidal, O., Parra, T., and Trotet, F.: A Thermodynamic Model for Fe-Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100 ° to 600 °C, 1 to 25 kb Range, Am. J. Sci., 301, 557–592, https://doi.org/10.2475/ajs.301.6.557, 2001.
Vidal, O., De Andrade, V., Lewin, E., Munoz, M., Parra, T., and Pascarelli, S.: P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan), J. Metamorph. Geol., 24, 669–683, https://doi.org/10.1111/j.1525-1314.2006.00661.x, 2006.
Vidal, O., Lanari, P., Munoz, M., Bourdelle, F., and De Andrade, V.: Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation, Clay Miner., 51, 615–633, https://doi.org/10.1180/claymin.2016.051.4.06, 2016.
Vinograd, V.: Substitution of [4]Al in layer silicates: Calculation of the Al-Si configurational entropy according to 29Si NMR Spectra, Phys. Chem. Miner., 22, 87–98, https://doi.org/10.1007/BF00202468, 1995.
Walker, J. R. and Bish, D. L.: Application of Rietveld Refinement Techniques to a Disordered IIb Mg-Chamosite, Clay. Clay Miner., 40, 319–322, https://doi.org/10.1346/CCMN.1992.0400311, 1992.
Warr, L. N.: Recommended abbreviations for the names of clay minerals and associated phases, Clay Miner., 55, 261–264, https://doi.org/10.1180/clm.2020.30, 2020.
Waters, D. and Charnley, N.: Local equilibrium in polymetamorphic gneiss and the titanium substitution in biotite, Am. Mineral., 87, https://doi.org/10.2138/am-2002-0402, 2002.
Waters, D. J.: Metamorphic constraints on the tectonic evolution of the High Himalaya in Nepal: the art of the possible, Geol. Soc. Lond. Spec. Publ., 483, 325–375, https://doi.org/10.1144/SP483-2018-187, 2019.
Welch, M. D. and Marshall, W. G.: High-pressure behavior of clinochlore, Am. Mineral., 86, 1380–1386, https://doi.org/10.2138/am-2001-11-1206, 2001.
Welch, M. D., Barras, J., and Klinowski, J.: A multinuclear NMR study of clinochlore, Am. Mineral., 80, 441–457, 1995.
White, R. W., Powell, R., and Holland, T. J. B.: Progress relating to calculation of partial melting equilibria for metapelites, J. Metamorph. Geol., 25, 511–527, https://doi.org/10.1111/j.1525-1314.2007.00711.x, 2007.
White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., and Green, E. C. R.: New mineral activity-composition relations for thermodynamic calculations in metapelitic systems, J. Metamorph. Geol., 32, 261–286, https://doi.org/10.1111/jmg.12071, 2014.
Yamada, H.: On Biotites in Thermally Metamorphosed Slates from Senmaya, Iwate Prefecture, Japan, P. Jpn. Acad., 29, 172–177, https://doi.org/10.2183/pjab1945.29.172, 1953.
Zanazzi, P., Montagnoli, M., Nazzareni, S., and Comodi, P.: Structural effects of pressure on triclinic chlorite: A single-crystal study, Am. Mineral., 91, 1871–1878, https://doi.org/10.2138/am.2006.2191, 2006.
Zanazzi, P., Montagnoli, M., Nazzareni, S., and Comodi, P.: Structural effects of pressure on monoclinic chlorite: A single-crystal study, Am. Mineral., 92, 655–661, https://doi.org/10.2138/am.2007.2341, 2007.
Zanazzi, P., Francesco Comodi, P., Nazzareni, S., and Battista, A. G.: Thermal behaviour of chlorite: an in situ single-crystal and powder diffraction study, Eur. J. Mineral., 21, 581–589, https://doi.org/10.1127/0935-1221/2009/0021-1928, 2009.
Short summary
This article reviews the crystal chemistry of chlorite, biotite, and white mica in metamorphosed sediments. These minerals have complex compositions because many atom exchanges may take place in their structure. Such exchanges include easily measured cations but also structurally bound H2O, notoriously hard to measure; iron oxidation; and vacancies. Consequently, formula units are often calculated from incomplete measurements and some exchanges may appear solely due to normalization issues.
This article reviews the crystal chemistry of chlorite, biotite, and white mica in metamorphosed...