Articles | Volume 36, issue 1
https://doi.org/10.5194/ejm-36-225-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-225-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Granite magmatism and mantle filiation
Michel Pichavant
CORRESPONDING AUTHOR
Institut des Sciences de la Terre d'Orléans, UMR 7327, Univ Orleans, CNRS, BRGM, OSUC, 45071 Orléans, France
Arnaud Villaros
Institut des Sciences de la Terre d'Orléans, UMR 7327, Univ Orleans, CNRS, BRGM, OSUC, 45071 Orléans, France
Julie A.-S. Michaud
Institut für Mineralogie, Leibniz Universität Hannover, Callinstr. 3, 30167 Hanover, Germany
Bruno Scaillet
Institut des Sciences de la Terre d'Orléans, UMR 7327, Univ Orleans, CNRS, BRGM, OSUC, 45071 Orléans, France
Related authors
Colin Fauguerolles, Teddy Castelain, Johan Villeneuve, and Michel Pichavant
Eur. J. Mineral., 36, 555–579, https://doi.org/10.5194/ejm-36-555-2024, https://doi.org/10.5194/ejm-36-555-2024, 2024
Short summary
Short summary
To explore the influence of the redox state of the environment on the serpentinization reaction, we have developed an original experimental setup. Reducing conditions, leading to the formation of serpentine and magnetite, and oxidizing conditions, leading to the formation of serpentine and hematite, are discussed in terms of analogues of low- and high-permeability hydrothermal systems, respectively. The influence of the redox on brucite stability and hydrogen production is also established.
Colin Fauguerolles, Teddy Castelain, Johan Villeneuve, and Michel Pichavant
Eur. J. Mineral., 36, 555–579, https://doi.org/10.5194/ejm-36-555-2024, https://doi.org/10.5194/ejm-36-555-2024, 2024
Short summary
Short summary
To explore the influence of the redox state of the environment on the serpentinization reaction, we have developed an original experimental setup. Reducing conditions, leading to the formation of serpentine and magnetite, and oxidizing conditions, leading to the formation of serpentine and hematite, are discussed in terms of analogues of low- and high-permeability hydrothermal systems, respectively. The influence of the redox on brucite stability and hydrogen production is also established.
Related subject area
Igneous petrology
Magmatic to solid-state evolution of a shallow emplaced agpaitic tinguaite (the Suc de Sara dyke, Velay volcanic province, France): implications for peralkaline melt segregation and extraction in ascending magmas
Inclusions in magmatic zircon from Slavonian mountains (eastern Croatia): anatase, kumdykolite and kokchetavite and implications for the magmatic evolution
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Constraining the volatile evolution of mafic melts at Mt. Somma–Vesuvius, Italy, based on the composition of reheated melt inclusions and their olivine hosts
Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources
Reactive interaction between migmatite-related melt and mafic rocks: clues from the Variscan lower crust of Palmi (southwestern Calabria, Italy)
ICDP Oman Drilling Project: varitextured gabbros from the dike–gabbro transition within drill core GT3A
A snapshot of the transition from monogenetic volcanoes to composite volcanoes: case study on the Wulanhada Volcanic Field (northern China)
40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems
Quantification of major and trace elements in fluid inclusions and gas bubbles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with no internal standard: a new method
New evidence for upper Permian crustal growth below Eifel, Germany, from mafic granulite xenoliths
Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone)
Thomas Pereira, Laurent Arbaret, Juan Andújar, Mickaël Laumonier, Monica Spagnoli, Charles Gumiaux, Gautier Laurent, Aneta Slodczyk, and Ida Di Carlo
Eur. J. Mineral., 36, 491–524, https://doi.org/10.5194/ejm-36-491-2024, https://doi.org/10.5194/ejm-36-491-2024, 2024
Short summary
Short summary
This work presents the results on deformation-enhanced melt segregation and extraction in a phonolitic magma emplaced at shallow depth in the Velay volcanic province (France). We provide evidence of the segregation and subsequent extraction of the residual melt during magma ascent and final emplacement. We highlight that melt segregation started by compaction as a loose packing of microlites emerged and continued with melt filling of a shear band network.
Petra Schneider and Dražen Balen
Eur. J. Mineral., 36, 209–223, https://doi.org/10.5194/ejm-36-209-2024, https://doi.org/10.5194/ejm-36-209-2024, 2024
Short summary
Short summary
The acid igneous rocks of eastern Croatia related to the Late Cretaceous closure of the Neotethys Ocean contain zircon as a main accessory mineral. Among others, zircon has inclusions of anatase, hematite and melt (nanogranitoids) with kokchetavite and kumdykolite. The first finding here of kokchetavite and kumdykolite in a magmatic nanogranitoid proves that these are not exclusively ultra-high pressure phases. The detected inclusions indicate rapid uplift and cooling of the oxidised magma.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Rosario Esposito, Daniele Redi, Leonid V. Danyushevsky, Andrey Gurenko, Benedetto De Vivo, Craig E. Manning, Robert J. Bodnar, Matthew Steele-MacInnis, and Maria-Luce Frezzotti
Eur. J. Mineral., 35, 921–948, https://doi.org/10.5194/ejm-35-921-2023, https://doi.org/10.5194/ejm-35-921-2023, 2023
Short summary
Short summary
Despite many articles published about eruptions at Mt. Somma–Vesuvius (SV), the volatile contents of magmas associated with mafic (quasi-primitive) melts were not directly analyzed for many eruptions based on melt inclusions (MIs). We suggest that several high-Fo olivines formed at depths greater than those of the carbonate platform based on MI chemical composition. We also estimated that 347 to 686 t d-1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries of volcanic activity.
Gumer Galán, Gloria Gallastegui, Andrés Cuesta, Guillermo Corretgé, Ofelia Suárez, and Luis González-Menéndez
Eur. J. Mineral., 35, 845–871, https://doi.org/10.5194/ejm-35-845-2023, https://doi.org/10.5194/ejm-35-845-2023, 2023
Short summary
Short summary
Two examples of granites in the Variscan Iberian Massif were studied because they are associated with mafic rocks (appinites and vaugnerites), which raise the question of the role of mantle magma in the formation of granitic rocks. We conclude that appinites and vaugnerites derived from melting of different mantle sources, both previously modified by interaction with crustal materials. Subsequent differentiation of appinites and vaugnerites was influenced by contamination with coeval granites.
Maria Rosaria Renna
Eur. J. Mineral., 35, 1–24, https://doi.org/10.5194/ejm-35-1-2023, https://doi.org/10.5194/ejm-35-1-2023, 2023
Short summary
Short summary
Distribution of major and trace elements during anatexis at the source area was investigated in a portion of Variscan mid–lower crust exposed at Palmi (Calabria, Italy). Reactive migration of migmatitic melt imparted a mineralogical and chemical signature in mafic rocks associated with migmatites and promoted the crystallization of amphibole by a coupled dissolution–precipitation process. Amphibole and accessory allanite control the distribution of incompatible elements from the anatectic zone.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Gerhard Franz, Masafumi Sudo, and Vladimir Khomenko
Eur. J. Mineral., 34, 7–18, https://doi.org/10.5194/ejm-34-7-2022, https://doi.org/10.5194/ejm-34-7-2022, 2022
Short summary
Short summary
The age of formation of buddingtonite, ammonium-bearing feldspar, can be dated with the Ar–Ar method; however, it may often give only minimum ages due to strong resetting. In the studied example it gives a Precambrian minimum age of fossils, associated with this occurrence, and the age of the accompanying mineral muscovite indicates an age near 1.5 Ga. We encourage more dating attempts of buddingtonite, which will give valuable information of diagenetic or hydrothermal events.
Leonid Shumlyanskyy, Gerhard Franz, Sarah Glynn, Oleksandr Mytrokhyn, Dmytro Voznyak, and Olena Bilan
Eur. J. Mineral., 33, 703–716, https://doi.org/10.5194/ejm-33-703-2021, https://doi.org/10.5194/ejm-33-703-2021, 2021
Short summary
Short summary
In the paper we discuss the origin of large chamber pegmatite bodies which contain giant gem-quality crystals of black quartz (morion), beryl, and topaz. We conclude that these pegmatites develop under the influence of later intrusions of mafic rocks that cause reheating of the partly crystallized granite massifs and that they supply a large amount of fluids that facilitate the
inflationof pegmatite chambers and crystallization of giant crystals of various minerals.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Anastassia Y. Borisova, Stefano Salvi, German Velasquez, Guillaume Estrade, Aurelia Colin, and Sophie Gouy
Eur. J. Mineral., 33, 305–314, https://doi.org/10.5194/ejm-33-305-2021, https://doi.org/10.5194/ejm-33-305-2021, 2021
Short summary
Short summary
We developed a new method for quantifying elemental concentrations in natural and synthetic fluid inclusions and gas bubbles using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method with no internal standard. The method may be applied to estimate trace (metal and metalloid) elemental concentrations in hydrous carbonic (C–O–H) fluid inclusions and bubbles with uncertainty below 25 %.
Cliff S. J. Shaw
Eur. J. Mineral., 33, 233–247, https://doi.org/10.5194/ejm-33-233-2021, https://doi.org/10.5194/ejm-33-233-2021, 2021
Short summary
Short summary
Volcanic activity in the West Eifel region of Germany over the past million years has brought many samples of the Earth's mantle and crust to the surface. The samples from this study are pieces of the deep crust that formed between 264 and 253 million years ago at a depth of ~ 30 km. Samples like these reveal how the Earth's crust has grown and been modified over time.
Marta Antonicelli, Riccardo Tribuzio, Tong Liu, and Fu-Yuan Wu
Eur. J. Mineral., 32, 587–612, https://doi.org/10.5194/ejm-32-587-2020, https://doi.org/10.5194/ejm-32-587-2020, 2020
Short summary
Short summary
We present a petrological–geochemical investigation of peridotites of magmatic origin from the Ivrea–Verbano Zone (Italian Alps), a large-scale section of lower continental crust. The main purpose is to provide new insights into the processes governing the evolution of primitive mantle magmas. We propose that studied peridotites were formed by reaction of a melt-poor olivine-rich crystal mush, or a pre-existing peridotite, with upward-migrating melts possessing a substantial crustal component.
Cited articles
Albarède, F., Dupuis, C., and Taylor Jr., H. P.: evidence for non-cogenetic magmas associated in a 300 Ma old concentric pluton at Ploumanac'h (Brittany, France), J. Geol. Soc. Lond., 137, 641–647, 1980.
Annen, C., Blundy, J. D., and Sparks, R. S. J.: The genesis of intermediate and silicic magmas in deep crustal hot zones, J. Petrol., 47, 505–539, 2006.
Annen, C., Blundy, J. D., Leuthold, J., and Sparks, R. S. J.: Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism, Lithos, 230, 206–221, 2015.
Aranovich, L. Y., Newton, R. C., and Manning, C. E.: Brine-assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions, Earth Planet. Sc. Lett., 374, 111–120, 2013.
Aranovich, L. Y., Makhluf, A. R., Manning, C. E., and Newton, R. C.: Dehydration melting and the relationship between granites and granulites, Precambrian Res., 253, 26–37, 2014.
Bacon, C. R.: Magmatic inclusions in silicic and intermediate volcanic rocks, J. Geophys. Res., 91, 6091–6112, 1986.
Barbarin, B.: A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos, 46, 605–626, 1999.
Barbarin, B. and Didier, J.: Genesis and evolution of mafic magmatic enclaves through various types of interactions between coeval felsic and mafic magmas, T. Roy. Soc. Edin.-Earth, 83, 145–153, 1992.
Barbero, L. and Villaseca, C.: The Layos granite, hercynian complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area, T. Roy. Soc. Edin.-Earth, 83, 127–138, 1992.
Barbey, P., Allé, P., Brouand, M., and Albarède, F.: Rare earth element patterns in zircons from the Manaslu granite and Tibetan Slab migmatites (Himalaya): insights in the origin and evolution of crustally-derived magmas, Chem. Geol., 125, 1–17, 1995.
Barbey, P., Brouand, M., Le Fort, P., and Pêcher, A.: Granite-migmatite genetic link: the example of the Manaslu granite and Tibetan Slab migmatites in central Nepal, Lithos, 38, 63–79, 1996.
Barbey, P., Nachit, H., and Pons, J.: Magma–host interactions during differentiation and emplacement of a shallow-level, zoned granitic pluton (Tarcouate pluton, Morocco): implications for magma emplacement, Lithos, 58, 125–143, 2001.
Bartoli, O. and Carvalho, B. B.: Anatectic granites in their source region: A comparison between experiments, thermodynamic modelling and nanogranitoids, Lithos, 402–403, 106046, https://doi.org/10.1016/j.lithos.2021.106046, 2021.
Bartoli, O., Acosta-Vigil, A., Cesare, B., Remusat, L., Gonzalez-Cano, A., Wälle, M., Tajčmanová, L., and Langone, A.: Geochemistry of Eocene-Early Oligocene low-temperature crustal melts from Greater Himalayan Sequence (Nepal): a nanogranitoid perspective, Contrib. Mineral. Petr., 174, 82, https://doi.org/10.1007/s00410-019-1622-2, 2019.
Bea, F.: The sources of energy for crustal melting and the geochemistry of heat producing elements, Lithos, 153, 278–291, 2012.
Bea, F., Montero, P., and Molina, J. F.: Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: a model for the generation of Variscan batholiths in Iberia, J. Geol., 107, 399–419, 1999.
Bea, F., Gallastegui, G., Montero, P., Molina, J.-F., Scarrow, J., Cuesta, A., and Gonzalez-Menedez, L.: Contrasting high-Mg, high-K rocks in Central Iberia: the appinite–vaugnerite conundrum and their (non-existent) relation with arc magmatism, J. Iberian Geol., 47, 235–261, 2021.
Bergantz, G. W. and Dawes, R.: Aspects of magma generation and ascent in continental lithosphere, in: Magmatic Systems, edited by: Ryan, M. P., Academic Press, 291–317, https://doi.org/10.1016/s0074-6142(09)60101-7, 1994.
Best, M. G., Christiansen, E. H., de Silva, S., and Lipman, P. W.: Slab-rollback ignimbrite flareups in the southern Great Basin and other Cenozoic American arcs: A distinct style of arc volcanism, Geosphere, 12, 1095–1135, 2016.
Bonin, B.: Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review, Lithos, 78, 1–24, 2004.
Bowen, N. L.: The behavior of inclusions in igneous magma, J. Geol., XXX, 513–570, 1922.
Brown, M.: Retrograde processes in migmatites and granulites revisited, J. Metamorph. Geol., 20, 25–40, 2002.
Brown, M.: Granites: from genesis to emplacement, Geol. Soc. Am. Bull., 125, 1079–113, 2013.
Burgess, S. D. and Miller, J. S.: Construction, solidification and internal differentiation of a large felsic arc pluton: Cathedral Peak granodiorite, Sierra Nevada Batholith, in: Dynamics of Crustal Magma Transfer, Storage and Differentiation, edited by: Annen, C. and Zellmer, G. F., Geological Society, London, Special Publications, Vol. 304, 203–233, https://doi.org/10.1144/sp304.11, 2008.
Cadoux, A., Scaillet, B., Druitt, T. H., and Deloule, E.: Magma storage conditions of large Plinian eruptions of Santorini volcano (Greece), J. Petrol., 55, 1129–1171, 2014.
Carlier, G., Lorand, J.-P., Liégeois, J.-P., Fornari, M., Soler, P., Carlotto, V., and Cardenas, J.: Potassic-ultrapotassic mafic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano, Geology, 33, 601–604, 2005.
Carvalho, B. B., Sawyer, E. S., and Janasi, V. A.: Enhancing maficity of granitic magma during anatexis: Entrainment of infertile mafic lithologies, J. Petrol., 58, 1333–1362, 2017.
Carvalho, B. B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., Capizzi, L. S., and Poli, S.: Anatexis and fluid regime of the deep continental crust: new clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy), J. Metamorph. Geol., 37, 951–975, 2019.
Castro, A.: The dual origin of I-type granites: the contribution from experiments, in: Post-Archean Granitic Rocks: Contrasting Petrogenetic Processes and Tectonic Environments, edited by: Janousek, V., Bonin, B., Collins, W. J., Farina, F., and Bowden, P., Geological Society, London, Special Publications, Vol. 491, 101–145, https://doi.org/10.1144/sp491-2018-110, 2020.
Castro, A., Patiño Douce, A. E., Corretge, L. G., de la Rosa, J. D., El-Biad, M., and El-Hmidi, H.: Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis, Contrib. Mineral. Petr., 135, 255–276, 1999.
Castro, A., Corretge, L. G., de la Rosa, J. D., Fernandez, C., Lopez, S., Garcia-Moreno, O., and Chacon, H.: The appinite-migmatite complex of Sanabria, NW Iberian Massif, Spain, J. Petrol., 44, 1309–1344, 2003.
Chalier, M. and Sabourdy, G.: Les lamprophyres du granite hyperalumineux de Saint-Sylvestre (Limousin, Massif Central français). Caractères pétrologiques et origine, C.R. Acad. Sci. Paris, 305, 99–105, 1987.
Chappell, B. W. and Stephens, W. E.: Origin of infracrustal (I-type) granite magmas, T. Roy. Soc. Edin.-Earth, 79, 71–86, 1988.
Chappell, B. W. and White, A. J. R.: Two contrasting granite types, Pacific Geology, 8, 173–174, 1974.
Chappell, B. W., White, A. J. R., and Wyborn, D.: The importance of residual source material (restite) in granite petrogenesis, J. Petrol., 28, 1111–1138, 1987.
Cheilletz, A., Clark, A. H., Farrar, E., Arroyo Pauca, G., Pichavant, M., and Sandeman, H. A.: Volcano-stratigraphy and 40Ar/39Ar geochronology of the Macusani ignimbrite field: monitor of the Miocene geodynamic evolution of the Andes of southeast Peru, Tectonophys., 205, 307-327, 1992.
Christiansen, E. H. and McCurry, M.: Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States, Contrib. Mineral. Petr., 70, 251–267, 2008.
Christiansen, E. H., Haapala, I., and Hart, G. L.: Are Cenozoic topaz rhyolites the erupted equivalents of Proterozoic rapakivi granites? Examples from the western United States and Finland, Lithos, 97, 219–246, 2007.
Clark, C., Fitzsimons, I. C. W., Healy, D., and Harley, S. L.: How does the continental crust get really hot?, Elements, 7, 235–240, 2011.
Clarke, D. B.: The mineralogy of peraluminous granites: A review, Can. Mineral., 19, 3–17, 1981.
Clarke, D. B.: The origins of strongly peraluminous granitoid rocks, Can. Mineral., 57, 529–550, 2019.
Clemens, J. C. and Vielzeuf, D.: Constraints on melting and magma production in the crust, Earth Planet. Sc. Lett., 86, 287–306, 1987.
Clemens, J. C. and Wall, V. J.: Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics, Contrib. Mineral. Petr., 88, 354–371, 1984.
Collins, W. J.: Lachlan Fold Belt granitoids: products of three-component mixing, T. Roy. Soc. Edin.-Earth, 87, 171–181, 1996.
Collins, W. J., Beams, S. D., White, A. J. R., and Chappell, B. W.: Nature and origin of A-type granites with particular reference to southeastern Australia, Contrib. Mineral. Petr., 80, 189–200, 1982.
Connolly, J. A. D. and Cesare, B.: C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites, J. Metamorph. Geol., 11, 379–388, 1993.
Conrad, W. K., Nicholls, I. A., and Wall, V. J.: Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: Evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences, J. Petrol., 29, 765–803, 1988.
Couzinié, S., Laurent, O., Moyen, J.-F., Zeh, A., Bouilhol, P., and Villaros, A.: Post-collisional magmatism: crustal growth not identified by zircon Hf–O isotopes, Earth Planet. Sc. Lett., 456, 182–195, 2016.
Creaser, R. A., Price, R. C., and Wormald, R. J.: A-type granites revisited: Assessment of a residual-source model, Geology, 19, 163–166, 1991.
Cuney, M. and Barbey, P.: Uranium, rare metals, and granulite-facies metamorphism, Geosci. Front., 5, 729–745, 2014.
Dall'Agnol, R., Scaillet, B., and Pichavant, M.: An experimental study of a lower Proterozoic A-type granite from the eastern Amazonian craton, Brazil, J. Petrol., 40, 1673–1698, 1999.
Dasgupta, R., Jackson, M. G., and Lee, C.-T. A.: Major element chemistry of ocean island basalts – conditions of mantle melting and heterogeneity of mantle source, Earth Planet. Sc. Lett., 289, 377–392, 2010.
Ding, L., Kapp, P., Zhong, D., and Deng, W.: Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction, J. Petrol., 44, 1833–1865, 2003.
Dorais, M. J. and Campbell, S.: Peritectic and phenocrystic garnet accumulation and the origin of strongly peraluminous granitic rocks: The Flagstaff Lake Igneous Complex, Maine, Lithos, 418–419, 106680, https://doi.org/10.1016/j.lithos.2022.106680, 2022.
Dufek, J. and Bergantz, G. W.: Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction, J. Petrol., 46, 2167–2195, 2005.
Eggler, D. H.: Principles of melting of hydrous phases in silicate melt, Carnegie I. Wash., 72, 491–495, 1973.
Eichelberger, J. C.: Andesites in island arcs and continental margins: relationship to crustal evoIution, B. Volcanol., 41, 480–500, 1978.
Eichelberger, J. C., Chertkoff, D. G., Dreher, S. T., and Nye, C. J.: Magmas in collision: rethinking chemical zonation in silicic magmas, Geology, 28, 603–606, 2000.
Eichelberger, J. C., Izbekov, P. E., and Browne, B. L.: Bulk chemical trends at arc volcanoes are not liquid lines of descent, Lithos, 87, 135–154, 2006.
England, P. E. and Thompson, A.: Some thermal and tectonic models for crustal melting in continental collision zones, in: Collision Tectonics, edited by: Coward, M. P. and Ries, A. C., Geological Society Special Publication, Vol. 19, 83–94, https://doi.org/10.1144/gsl.sp.1986.019.01.05, 1986.
Erdmann, S., Jamieson, R. A., and Macdonald, M. A.: Evaluating the origin of garnet, cordierite, and biotite in granitic rocks: a case study from the South Mountain Batholith, Nova Scotia, J. Petrol., 50, 1477–1503, 2009.
Farina, F., Dini, A., Rocchi, S., and Stevens, G.: Extreme mineral-scale Sr isotope heterogeneity in granites by disequilibrium melting of the crust, Earth Planet. Sc. Lett., 399, 103–115, 2014.
Fowler, M. B., Henney, P. J., Darbyshire, D. P. F., and Greenwood, P. B.: Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland, J. Geol. Soc. Lond., 158, 521–534, 2001.
France-Lanord, C., Sheppard, S. M. F., and Le Fort, P.: Hydrogen and oxygen isotope variations in the High Himalaya peraluminous Manaslu leucogranite: evidence for heterogeneous sedimentary source, Geochim. Cosmochim. Ac., 52, 513–526, 1988.
Gao, L.-E., Zeng, L., and Asimow, P. D.: Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: the Himalayan leucogranites, Geology, 45, 39–42, 2017.
García-Arias, M.: Decoupled Ca and Fe + Mg content of S-type granites: An investigation on the factors that control the Ca budget of S-type granites, Lithos, 318–319, 30–46, 2018.
García-Arias, M. and Stevens, G.: Phase equilibrium modelling of granite magma petrogenesis: an evaluation of the magma compositions produced by crystal entrainment in the source, Lithos, 277, 131–153, 2017.
Gardien, V., Thompson, A. B., Grujic, D., and Ulmer, P.: Experimental melting of biotite + plagioclase + quartz + muscovite assemblages and implications for crustal melting, J. Geophys. Res., 100, 15581–15591, 1995.
Gebelin, A., Roger, F., and Brunel, M.: Syntectonic crustal melting and high-grade metamorphism in a transpressional regime, Variscan Massif Central, France, Tectonophysics, 477, 229–243, 2009.
Gill, J. B.: Orogenic andesites and plate tectonics, Springer, 390 pp., https://doi.org/10.1007/978-3-642-68012-0, 1981.
Gomez-Frutos, D. and Castro, A.: Sanukitoid crystallization relations at 1.0 and 0.3 GPa, Lithos, 414–415, 106632, https://doi.org/10.1016/j.lithos.2022.106632, 2022.
Gomez-Frutos, D., Castro, A., and Gutierrez-Alonso, G.: Post-collisional batholiths do contribute to continental growth, Earth Planet. Sc. Lett., 603, 117978, https://doi.org/10.1016/j.epsl.2022.117978, 2023.
Gray, W., Glazner, A., Coleman, D. S., and Bartley, J. M.: Long-term geochemical variability of the Late Cretaceous Tuolumne Intrusive Suite, central Sierra Nevada, California, in: Dynamics of Crustal Magma Transfer, Storage and Differentiation, edited by: Annen, C. and Zellmer, G. F., Geological Society, London, Special Publications, Vol. 304, 183–201, https://doi.org/10.1144/sp304.10, 2008.
Guillot, S. and Le Fort, P.: Geochemical constraints on the bimodal origin of High Himalayan leucogranites, Lithos, 35, 221–234, 1995.
Hammouda, T., Pichavant, M., and Chaussidon, M.: Isotopic equilibration during partial melting: an experimental test of the behaviour of Sr, Earth Planet. Sc. Lett., 144, 109–121, 1996.
Harris, N. B. W. and Inger, S.: Trace element modelling of pelite-derived granites, Contrib. Mineral. Petr., 110, 46–56, 1992.
Harris, N., Vance, D., and Ayres, M.: From sediment to granite: timescales of anatexis in the upper crust, Chem. Geol., 162, 155–167, 2000.
Hildreth, W.: Gradients in silicic magma chambers. Implications for lithospheric magmatism, J. Geophys. Res., 86, 10153–10192, 1981.
Hildreth, W. and Moorbath, S.: Crustal contribution to arc magmatism in the Andes of Central Chile, Contrib. Mineral. Petr., 98, 455–489, 1988.
Hogan, J. P. and Sinha, A. K.: The effect of accessory minerals on the redistribution of lead isotopes during crustal anatexis: a model, Geochim. Cosmochim. Ac., 55, 335–348, 1991.
Holland, T. J. B. and Powell, R.: An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving new equations of state for solids, J. Metamorph. Geol., 29, 333–383, 2011.
Holloway, J. R.: Fluids in the evolution of granitic magmas: Consequences of finite CO2 solubility, Geol. Soc. Am. Bull., 87, 1513–1518, 1976.
Inger, S. and Harris, N.: Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya, J. Petrol., 34, 345–368, 1993.
Janoušek, V., Hanžl, P., Svojtka, M., Hora, J. M., Erban Kochergina, Y. V., Gadas, P., Holub, F. V., Gerdes, A., Verner, K., Hrdličková, K., Daly, J. S., and Buriánek, D.: Ultrapotassic magmatism in the heyday of the Variscan Orogeny: the story of the Třebíč Pluton, the largest durbachitic body in the Bohemian Massif, Int. J. Earth Sci., 109, 1767–1810, 2020.
Jaupart, C. and Provost, A.: Heat focussing, granite genesis and inverted metamorphic gradients in continental collision zones, Earth Planet. Sc. Lett., 73, 385–397, 1985.
Johannes, W. and Holtz, F.: Petrogenesis and Experimental Petrology of Granitic Rocks, Springer-Verlag, 301 pp., https://doi.org/10.1007/978-3-642-61049-3, 1996.
Juteau, M., Michard, A., and Albarède, F.: The Pb-Sr-Nd isotope geochemistry of some recent circum-Mediterranean granites, Contrib. Mineral. Petr., 92, 331–340, 1986.
Le Fort, P.: Himalaya: the collided range. Present knowledge of the continental arc, Am. J. Sci., 275A, 1–44, 1975.
Le Fort, P.: Manaslu leucogranite: a collision signature of the Himalaya. A model for its genesis and emplacement, J. Geophys. Res., 86, 10545–10568, 1981.
Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S. M. F., Upreti, B. N., and Vidal, P.: Crustal generation of the Himalayan leucogranites, Tectonophysics, 134, 39–57, 1987.
Linnen, R. L. and Cuney, M.: Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization, in Rare-element Geochemistry and Mineral Deposits, edited by: Linnen, R. L. and Samson, I. M., Geological Association of Canada, Ottawa, 45–68, 2005.
London, D.: Reply to Thomas and Davidson on “A petrologic assessment of internal zonation in granitic pegmatites” (London, 2014a), Lithos, 212–215, 469–484, 2015.
Ma, Y. and Clayton, R. W.: The crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis, Earth Planet. Sc. Lett., 395, 61–70, 2014.
Manning, C. E. and Aranovich, L. Y.: Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects, Precambrian Res., 253, 6–16, 2014.
Marxer, F., Ulmer, P., and Müntener, O.: Polybaric fractional crystallisation of arc magmas: an experimental study simulating trans-crustal magmatic systems, Contrib. Mineral. Petr., 177, 3, https://doi.org/10.1007/s00410-021-01856-8, 2022.
Mehnert, K. R.: Migmatites and the origin of granitic rocks, Elsevier, 393 pp., 1968.
Michaud, J. A.-S. and Pichavant, M.: Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: evidence from Argemela (Central Portugal), Geochim. Cosmochim. Ac., 289, 130–157, 2020.
Michaud, J. A.-S., Pichavant, M., and Villaros, A.: Rare elements enrichment in crustal peraluminous magmas: insights from partial melting experiments, Contrib. Mineral. Petr., 176, 96, https://doi.org/10.1007/s00410-021-01855-9, 2021.
Montel, J.-M., Weber, C., Barbey, P., and Pichavant, M.: Thermo-barométrie du domaine anatectique du Velay (Massif Central, France) et conditions de genèse des granites tardi-migmatitiques, C.R. Acad. Sci. Paris, 302, 647–652, 1986.
Montel, J.-M., Didier, J., and Pichavant, M.: Origin of surmicaceous enclaves in intrusive granites, in: Enclaves and Granite Petrology, edited by: Didier, J. and Barbarin, B., Elsevier, 509–528, 1991.
Moyen, J.-F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A., and Gardien, V.: Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth, Lithos, 277, 154–177, 2017.
Moyen, J.-F.: Granites and crustal heat budget, in: Post-Archean Granitic Rocks: Contrasting Petrogenetic Processes and Tectonic Environments, edited by: Janousek, V., Bonin, B., Collins, W. J., Farina, F., and Bowden, P., Geological Society, London, Special Publications, Vol. 491, 77–100, 2020.
Moyen, J.-F., Janousek, V., Laurent, O., Bachmann, O, Jacob, J.-B., Farina, F., Fiannacca, P, and Villaros, A.: Crustal melting vs. fractionation of basaltic magmas: Part 1, granites and paradigms, Lithos, 402–403, 106291, https://doi.org/10.1016/j.lithos.2021.106291, 2021.
Nabelek, P. I.: Petrogenesis of leucogranites in collisional orogens, in: Post-Archean Granitic Rocks: Contrasting Petrogenetic Processes and Tectonic Environments, edited by: Janousek, V., Bonin, B., Collins, W. J., Farina, F., and Bowden, P., Geological Society, London, Special Publications, Vol. 491, 179–207, https://doi.org/10.1144/sp491-2018-181, 2020.
Nabelek, P. I. and Nabelek, J. L.: Thermal characteristics of the Main Himalaya Thrust and the Indian lower crust with implications for crustal rheology and partial melting in the Himalaya orogen, Earth Planet. Sc. Lett., 395, 116–123, 2014.
Nabelek, P. I., Russ-Nabelek, C., and Haeussler, G. T.: Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota, Geochim. Cosmochim. Ac., 56, 403–417, 1992.
Newton, R. C.: Young and old granulites: a volatile connection, J. Geol., 128, 395–413, 2020.
Nicoli, G., Stevens, G., Moyen, J.-F., Vézinet, A., and Mayne, M.: Insights into the complexity of crustal differentiation: K2O-poor leucosomes within metasedimentary migmatites from the Southern Marginal Zone of the Limpopo Belt, South Africa, J. Metamorph. Geol., 35, 999–1022, 2017.
Noble, D. C., Vogel, T. A., Peterson, P. S., Landis, G. P., Grant, N. K., Jezek, P. A., and McKee, E. H.: Rare-element-enriched, S-type ash-flow tuffs containing phenocrysts of muscovite, andalusite, and sillimanite, southeastern Peru, Geology, 12, 35–39, 1984.
Patiño-Douce, A. E.: Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks, J. Geophys. Res., 100, 15623–15639, 1995.
Patiño-Douce, A. E. and Harris, N.: Experimental constraints on Himalayan anatexis, J. Petrol., 39, 689–710, 1998.
Pichavant, M.: Experimental crystallization of the Beauvoir granite as a model for the evolution of Variscan rare metal magmas, J. Petrol., 63, 1–28, 2022.
Pichavant, M. and Macdonald, R.: Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc, Contrib. Mineral. Petr., 154, 535–558, 2007.
Pichavant, M., Valencia Herrera, J., Boulmier, S., Briqueu, L., Joron, J.-L., Juteau, M., Michard, A., Sheppard, S. M. F., Treuil, M., and Vernet, M.: The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas, in: Magmatic Processes: Physicochemical Principles, edited by: Mysen, B. O., The Geochemical Society, University Park, 359–373, 1987.
Pichavant, M., Kontak, D., J., Valencia Herrera, J., and Clark, A. H.: The Miocene-Pliocene Macusani Volcanics, I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite, Contrib. Mineral. Petr., 100, 300–324, 1988a.
Pichavant, M., Kontak, D. J., Briqueu, L., Valencia Herrera, J., and Clark, A. H.: The Miocene-Pliocene Macusani Volcanics, II. Geochemistry and origin of a felsic peraluminous magma, Contrib. Mineral. Petr., 100, 325–338, 1988b.
Pichavant, M., Di Carlo, I., Le Gac, Y., Rotolo, S. G., and Scaillet, B.: Experimental Constraints on the Deep Magma Feeding System at Stromboli Volcano, Italy, J. Petrol., 50, 601–624, 2009.
Pichavant, M., Weber, C., and Villaros, A.: Effect of anorthite on granite phase relations: experimental data and models, C.R. Geosci., 351, 540–550, 2019.
Pichavant, M., Erdmann, S., Kontak, D. J., Michaud, J. A.-S., and Villaros, A.: Trace element partitioning in strongly peraluminous rare-metal silicic magmas – Implications for fractionation processes and for the origin of the Macusani Volcanics (SE Peru), Geochim. Cosmochim. Ac., 365, 229–252, https://doi.org/10.1016/j.gca.2023.11.021, 2023.
Pin, C. and Vielzeuf, D.: Granulites and related rocks in Variscan median Europe: a dualistic interpretation, Tectonophys., 93, 47–74, 1983.
Pinet, C. and Jaupart, C.: A thermal model for the distribution in space and time of the Himalayan granites, Earth Planet. Sc. Lett., 84, 87–99, 1987.
Raimbault, L. and Burnol, L.: The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare-metal granites, Can. Mineral., 36, 265–282, 1998.
Romer, R. L. and Pichavant, M.: Rare metal granites and pegmatites, in: Encyclopedia of Geology, 2nd Edn., edited by: Alderton, D. and Elias, S. A., Academic Press, 840–846, https://doi.org/10.1016/b978-0-08-102908-4.00003-5, 2021.
Sandeman, H. A. and Clark, A. H.: Glass-rich, cordierite-biotite rhyodacite, Valle Ninahuisa, Puno, SE Peru: petrological evidence for hybridization of “Lachlan S-type” and potassic mafic magmas, J. Petrol., 44, 355–385, 2003.
Sandeman, H. A. and Clark, A. H.: Commingling and mixing of S-type peraluminous, ultrapotassic and basaltic magmas in the Cayconi volcanic field, Cordillera de Carabaya, SE Peru, Lithos, 73, 187–213, 2004.
Scaillet, B. and Searle, M. P.: Mechanisms and timescales of felsic magma segregation, ascent and emplacement in the Himalaya, in: Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones, edited by: Law, R. D., Searle, M. P., and Godin, L., Geological Society, London, Special Publications, 268, 293–308, https://doi.org/10.1144/gsl.sp.2006.268.01.14, 2006.
Scaillet, B., France-Lanord, C., and Le Fort, P.: Badrinath–Gangotri plutons (Garhwal, India): petrological and geochemical evidence for fractionation processes in High Himalayan leucogranite, J. Volcanol. Geoth. Res., 44, 163–188, 1990.
Scaillet, B., Pichavant, M., and Roux, J.: Experimental crystallization of leucogranite magmas, J. Petrol., 36, 663–705, 1995.
Scaillet, B., Holtz, F., and Pichavant, M.: Phase equilibrium constraints on the viscosity of silicic magmas. 1. Volcanic-plutonic comparison, J. Geophys. Res., 103, 27257–27266, 1998.
Sinigoi, S., Quick, J. E., Demarchi, G., and Klötzli, U. S.: Production of hybrid granitic magma at the advancing front of basaltic underplating: inferences from the Sesia Magmatic System (south-western Alps, Italy), Lithos, 252–253, 109–122, 2016.
Soder, C. L. and Romer, R. L.: Post-collisional potassic–ultrapotassic magmatism of the Variscan orogen: implications for mantle metasomatism during continental subduction, J. Petrol., 59, 1007–1034, 2018.
Stevens, G., Villaros, A., and Moyen, J.-F.: Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites, Geology, 35, 9–12, 2007.
Tang, M., Wang, X.-L., Shu, X.-J., Wang, D., Yang, T., and Gopon, P.: Hafnium isotopic heterogeneity in zircons from granitic rocks: geochemical evaluation and modeling of “zircon effect” in crustal anatexis, Earth Planet. Sc. Lett., 389, 188–199, 2014.
Thompson, A.: Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids, Am. J. Sci., 282, 1567–1595, 1982.
Touret, J.: Le facies granulite en Norvège méridionale: II. Les inclusions fluides, Lithos, 4, 423–436, 1971.
Touret, J. L. R. and Huizenga, J. M.: Fluid-assisted granulite metamorphism: a continental journey, Gondwana Res., 21, 224–235, 2012.
Turpin, L., Velde, D., and Pinte, G.: Geochemical comparison between minettes and kersantites from the Western European Hercynian orogen: trace element and Pb-Sr-Nd isotope constraints on their origin, Earth Planet. Sc. Lett., 88, 73–86, 1988.
Turpin, L., Cuney, M., Friedrich, M., Bouchez, J.-L., and Aubertin, M.: Meta-igneous origin of Hercynian peraluminous granites in NW French Massif Central: implications for crustal history reconstructions, Contrib. Mineral. Petr., 104, 163–172, 1990.
Tuttle, O. F. and Bowen, N. L.: Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O, Geol. Soc. Am. Mem., 74, 153 pp., https://doi.org/10.1130/mem74-p1, 1958.
Vernon, R. H.: Problems in identifying restite in S-type granites of southeastern Australia, with speculations on sources of magma and enclaves, Can. Mineral., 45, 147–178, 2007.
Vielzeuf, D. and Vidal, P. (Eds.): Granulites and crustal evolution, Nato Science Series C, 396 pp., https://doi.org/10.1007/978-94-009-2055-2, 1990.
Vielzeuf, D., Paquette, J.-L., Clemens, J. C., Stevens, G., Gannoun, A., Suchorski, K., and Saul, A.: Age, duration and mineral markers of magma interactions in the deep crust: an example from the Pyrenees, Contrib. Mineral. Petr., 176, 39, https://doi.org/10.1007/s00410-021-01789-2, 2021.
Visona, D., Carosi, R., Montomoli, C., Tiepolo, M., and Peruzzo, L.: Miocene andalusite leucogranite in central-east Himalaya (Everest–Masang Kang area): Low-pressure melting during heating, Lithos, 144–145, 194–208, 2012.
Walker Jr., B. A., Bergantz, G. A., Otamendi, J. E., Ducea, M. N., and Cristofolini, E. A.: A MASH zone revealed: the mafic complex of the Sierra Valle Fertil, J. Petrol., 56, 1863–1896, 2015.
Wang, J.-M., Rubatto, D., and Zhang, J.-J.: Timing of partial melting and cooling across the Greater Himalayan crystalline complex (Nyalam, Central Himalaya): in-sequence thrusting and its implications, J. Petrol., 56, 1677–1702, 2015.
Wang, Q., Chung, S.-L., Li, X.-H., Wyman, D., Li, Z.-X., Sun, W.-D., Qiu, H.-N., Liu, Y.-S., and Zhu, Y.-T.: Crustal melting and flow beneath northern Tibet: evidence from mid-miocene to quaternary strongly peraluminous rhyolites in the Southern Kunlun Range, J. Petrol., 53, 2523–2566, 2012.
Weinberg, R. F. and Hasalova, P.: Water-fluxed melting of the continental crust: a review, Lithos, 212, 158–188, 2015.
Weisbrod, A., Pichavant, M., Marignac, C., Macaudière, J., and Leroy, J.: Relations structurales et chronologiques entre le magmatisme basique, les granitisations et l'évolution tectonométamorphique tardihercynienne dans les Cévennes Médianes, Massif Central Français, C.R. Acad. Sci., Série D, 291, 665–668, 1980.
White, A. J. R. and Chappell, B. W.: Ultrametamorphism and granitoid genesis, Tectonophys, 43, 7–22, 1977.
White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., and Green, E. C. R.: New mineral activity-composition relations for thermodynamic calculations in metapelitic systems, J. Metamorph. Geol., 32, 261–286, 2014.
Wolf, M. B., Romer, R. L., and Glodny, J.: Isotope disequilibrium during partial melting of metasedimentary rocks, Geochim. Cosmochim. Ac., 257, 163–183, 2019.
Wolfram, L. C., Weinberg, R. F., Hasalova, P., and Becchio, R.: How melt segregation affects granite chemistry: Migmatites from the Sierra de Quilmes, NW Argentina, J. Petrol., 58, 2339–2364, 2017.
Wolfram, L. C., Weinberg, R. F., Nebel, O., Hamza, K., Hasalova, P., Mikova, J., and Becchio, R.: A 60-Myr record of continental back-arc differentiation through cyclic melting, Nat. Geosci., 12, 215–219, 2019.
Wu, F.-Y., Liu, X.-C., Liu, Z.-C., Wang, R.-C., Xie, L., Wang, J.-M., Ji, W.-Q., Yang, L., Liu, C., Khanal, G. P., and He, S.-X.: Highly fractionated Himalayan leucogranites and associated rare-metal mineralization, Lithos, 352–353, 105319, https://doi.org/10.1016/j.lithos.2019.105319, 2020.
Yang, L., Liu, X.-C., Wang, J.-M., and Wua, F.-Y.: Is Himalayan leucogranite a product by in situ partial melting of the Greater Himalayan Crystalline? a comparative study of leucosome and leucogranite from Nyalam, southern Tibet, Lithos, 342–343, 542–556, 2019.
Yardley, B. W. D.: The role of water in the evolution of the continental crust, J. Geol. Soc. Lond., 166, 585–600, 2009.
Zeng, L., Asimow, P. D., and Saleeby, J. B.: Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source, Geochim. Cosmochim. Ac., 69, 3671–3682, 2005.
Zheng, Y.-C., Hou, Z.-Q., Fu, A., Zhu, D.-C., Liang, W., and Xua, P.: Mantle inputs to Himalayan anatexis: insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves, Lithos, 264, 125–140, 2016.
Short summary
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting and basaltic origin. Peraluminous felsic leucogranites are considered as the only granite examples showing no mantle input. This interpretation is re-evaluated, and we show that leucogranites, as most other crustal granite types, can have a mantle filiation. This stresses the critical importance of the mantle for granite generation and opens the way for unification of silicic magma generation models.
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting...