Articles | Volume 36, issue 1
https://doi.org/10.5194/ejm-36-153-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-153-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Heimite, PbCu2(AsO4)(OH)3 ⋅ 2H2O, a new mineral from the Grosses Chalttal deposit, Switzerland
Thomas Malcherek
CORRESPONDING AUTHOR
Mineralogisch-Petrographisches Institut, FB Erdsystemwissenschaften, Universität Hamburg, Grindelallee 48, 20146 Hamburg, Germany
Boriana Mihailova
Mineralogisch-Petrographisches Institut, FB Erdsystemwissenschaften, Universität Hamburg, Grindelallee 48, 20146 Hamburg, Germany
Jochen Schlüter
Mineralogisch-Petrographisches Institut, FB Erdsystemwissenschaften, Universität Hamburg, Grindelallee 48, 20146 Hamburg, Germany
Philippe Roth
Swiss Seismological Service, ETH Zürich, Sonneggstr. 5, 8092 Zurich, Switzerland
Nicolas Meisser
Muséum cantonal des sciences naturelles (Naturéum), Département de géologie, Université de Lausanne, Anthropole, Dorigny, 1015 Lausanne, Switzerland
Related authors
No articles found.
Ferdinando Bosi, Frédéric Hatert, Nicolas Meisser, Marco Pasero, and Stuart Mills
Eur. J. Mineral., 37, 871–876, https://doi.org/10.5194/ejm-37-871-2025, https://doi.org/10.5194/ejm-37-871-2025, 2025
Short summary
Short summary
This study explains how scientists determine whether a newly found solid phase is truly a natural mineral. We refine existing guidelines by introducing updated recommendations that improve the credibility of proposals for minerals with uncertain origins. Using three examples, we show how geological and textural evidence can confirm or challenge natural authenticity. Our new checklist helps reduce misinterpretation and ensures more reliable mineral recognition.
Giancarlo Della Ventura, Roberta Oberti, Valeria Misiti, Francesco Radica, Gunther J. Redhammer, Simone Bernardini, Massimo Boiocchi, and Boriana Mihailova
Eur. J. Mineral., 37, 535–547, https://doi.org/10.5194/ejm-37-535-2025, https://doi.org/10.5194/ejm-37-535-2025, 2025
Short summary
Short summary
The thermal reaction Fe2+ + OH- → Fe3+ + O2- + e- + H+ in hydrous silicates has tremendous implications in planetary-scale phenomena like electrical anomalies, water cycling, seismicity, volcanism, and ore generation. We annealed riebeckite crystals up to 750 °C and P = 0.7 GPa and show that the amphibole stability is extended without any Fe oxidation, implying that thermally activated electron hopping contributes to the electrical conductivity of lithospheric rocks during subduction.
Mariko Nagashima and Boriana Mihailova
Eur. J. Mineral., 35, 267–283, https://doi.org/10.5194/ejm-35-267-2023, https://doi.org/10.5194/ejm-35-267-2023, 2023
Short summary
Short summary
We provide a tool for fast preparation-free estimation of the Fe3+ content in Al–Fe3+ series epidotes by Raman spectroscopy. The peaks near 570, 600, and 1090 cm−1, originating from Si2O7 vibrations, strongly correlated with Fe content, and all three signals are well resolved in a random orientation. Among them, the 570 cm−1 peak is the sharpest and easily recognized. Hence, the linear trend, ω570 = 577.1(3) − 12.7(4)x, gives highly reliable Fe content, x, with accuracy ± 0.04 Fe3+ apfu.
Stylianos Aspiotis, Jochen Schlüter, Günther J. Redhammer, and Boriana Mihailova
Eur. J. Mineral., 34, 573–590, https://doi.org/10.5194/ejm-34-573-2022, https://doi.org/10.5194/ejm-34-573-2022, 2022
Short summary
Short summary
Combined Raman-scattering and wavelength-dispersive electron microprobe (WD-EMP) analyses of natural biotites expanding over the whole biotite solid-solution series demonstrate that the chemical composition of the MO6 octahedra, TO4 tetrahedra, and interlayer space can be non-destructively determined by Raman spectroscopy with relative uncertainties below 8 %. The content of critical minor elements such as Ti at the octahedral site can be quantified as well with a relative error of ~ 20 %.
Jochen Schlüter, Stephan Schuth, Raúl O. C. Fonseca, and Daniel Wendt
Eur. J. Mineral., 33, 373–387, https://doi.org/10.5194/ejm-33-373-2021, https://doi.org/10.5194/ejm-33-373-2021, 2021
Short summary
Short summary
On the west coast of the German North Sea island of Sylt, an electrum–quartz pebble weighing 10.4 g was discovered in a cliff of Saalian glaciogenic sediments. This is an unusually large and rare precious metal to find. Within our paper we document and characterize this discovery. An attempt to investigate its provenance points towards a southern Norwegian origin. This leads to the conclusion that ice advance events were involved in transporting this pebble from Norway to Germany.
Stylianos Aspiotis, Jochen Schlüter, Kaja Harter-Uibopuu, and Boriana Mihailova
Eur. J. Mineral., 33, 189–202, https://doi.org/10.5194/ejm-33-189-2021, https://doi.org/10.5194/ejm-33-189-2021, 2021
Short summary
Short summary
A Raman scattering study of authentic inscribed marble demonstrates that cracks formed during the engraving enhance the development of weathering-related products whose signals could be potentially used to improve the readability of an inscribed text affected by rock weathering. Comprehensive analyses of different marble inscriptions reveal the effect of the environmental conditions, inscription age, grain size, and letter colouring on the abundance and penetration depth of alteration products.
Cited articles
Bächtiger, K.: Die Kupfer- und Uranmineralisationen der Mürtschenalp (Kt. Glarus, Schweiz), Beiträge zur Geologie der Schweiz, Geotechnische Serie, Lieferung 38, 113 pp., https://doi.org/10.3929/ethz-a-000088857, 1963.
Badertscher, N. P., Beaudoin, G., Therrien, R., and Burkhard, M.: Glarus overthrust: A major pathway for the escape of fluids out of the Alpine orogen, Geology, 30, 875–878, 2001.
Callegari, A. M., Boiocchi, M., Zema, M., and Tarantino, S. C.: Crystal structure refinement of duftite, PbCu(AsO4)(OH), from Grube Clara, Oberwolfach, Schwarzwald, Germany, Neues Jb. Miner. Abh., 194, 157–164, 2017.
Dill, H. G, Gerdes, A., and Weber, B.: Age and mineralogy of supergene uranium minerals – tools to unravel geomorphological and palaeohydrological processes in granitic terrains (Bohemian Massif, SE Germany), Geomorphology, 117, 44–65, 2010.
Eby, R. K. and Hawthorne, F. C.: Clinoclase and the Geometry of [5]-Coordinate Cu2+ in Minerals, Acta Crystallogr. C, 46, 2291–2294, 1990.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr. B, 71, 562–578, 2015.
Gattow, G. and Zemann, J.: Neubestimmung der Kristallstruktur von Azurit, Cu3(OH)2(CO3)2, Acta Crystallogr., 11, 866–872, 1958.
Hooft, R. W. W.: Powderize, Bruker AXS BV, 2000.
Lafuente, B., Downs, R. T., Yang, H., and Stone, N.: The power of databases: the RRUFF project, in: Highlights in Mineralogical Crystallography, edited by: Armbruster, T. and Danisi, R. M., W. De Gruyter, Berlin, Germany, 1–30, https://doi.org/10.1515/9783110417104, 2015.
Le Bail, A.: Whole powder pattern decomposition methods and applications: A retrospection, Powder Diffr., 20, 316–326, 2005.
Letsch, D.: The Glarus Double Fold: a serious scientific advance in mid nineteenth century Alpine Geology, Swiss J. Geosci., 107, 65–80, 2014.
Libowitzky, E.: Correlation of O-H Stretching Frequencies and O-H O Hydrogen Bond Lengths in Minerals, Monatsh. Chem., 130, 1047–1059, 1999.
Magalhães, M. C. F., De Jesus, J. D. P., and Williams, P. A.: The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II), Miner. Mag., 52, 679–690, 1988.
Majzlan, J., Števko, M., Dachs, E., Benisek, A., Plášil, J., and Sejkora, J.: Thermodynamics, stability, crystal structure, and phase relations among euchroite, Cu2(AsO4)(OH) ⋅ 3H2O, and related minerals, Eur. J. Mineral., 29, 5–16, https://doi.org/10.1127/ejm/2017/0029-2584, 2017.
Malcherek, T. and Schlüter, J.: Cu3MgCl2(OH)6 and the bond-valence parameters of the OH–Cl bond, Acta Crystallogr. B, 63, 157–160, 2007.
Meisser, N.: Les minéraux d'altération des indices de cuivre et uranium de la Mürtschenalp (SG/GL), Le Cristallier Suisse, 11, 489–503, 1999 (in French and German).
Meisser, N.: La minéralogie de l'uranium dans le massif des Aiguilles Rouges, Matér. Géol. Suisse, Sér. géotech., 96, 1–183, 2012.
Palatinus, L. and Chapuis, G.: Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, J. Appl. Crystallogr., 40, 786–790, 2007.
Palmer, D.: Visualization and analysis of crystal structures using CrystalMaker software, Z. Kristallogr., 230, 559–572, 2015.
Petříček, V., Dušek, M., and Palatinus, L.: Crystallographic Computing System JANA2006: General features, Z. Kristallogr., 229, 345–352, 2014.
Pfiffner, A. O.: Geology of the Alps, Wiley-Blackwell, Chichester, 376 pp., 2014.
Preusser, F., Drescher-Schneider, R., Fiebig, M., and Schlüchter, C.: Re-interpretation of the Meikirch pollen record, Swiss Alpine Foreland, and implications for Middle Pleistocene chronostratigraphy, J. Quaternary Sci., 20, 607–620, 2005.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 21, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Roth, P.: Heimit, ein unerwartetes, weltweit neues Mineral von einer vermeintlich bescheidenen Fundstelle, Schweizer Strahler, 4, 2–9, 2022 (in French and German).
Schreurs, A. M. M., Xian, X., and Kroon-Batenburg, L. M. J.: EVAL15: a diffraction data integration method based on ab initio predicted profiles, J. Appl. Crystallogr., 43, 70–82, 2010.
Wildner, M., Giester, G., Kersten, M., and Langer, K.: Polarized electronic absorption spectra of colourless chalcocyanite, CuSO4, with a survey on crystal fields in Cu2+ minerals, Phys. Chem. Minerals, 41, 669–680, 2014.
Short summary
The new mineral heimite was originally discovered on the mine dumps of the Grosses Chalttal deposit, Mürtschenalp district, Glarus, Switzerland. Its relatively simple chemistry is formed by water and ions of lead, copper, arsenic, hydrogen and oxygen. The mineral's crystal structure is related to the well-known duftite, which is also observed to grow on crystals of heimite. While heimite has so far only been found in the central Alps, it is expected to occur in other copper deposits worldwide.
The new mineral heimite was originally discovered on the mine dumps of the Grosses Chalttal...