Articles | Volume 35, issue 6
https://doi.org/10.5194/ejm-35-921-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-35-921-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constraining the volatile evolution of mafic melts at Mt. Somma–Vesuvius, Italy, based on the composition of reheated melt inclusions and their olivine hosts
Rosario Esposito
CORRESPONDING AUTHOR
Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Milano-Bicocca, Milano (Italy), Milan, 20160, Italy
Daniele Redi
Mazzeschi s.r.l., Colle Val d'Elsa, 53034, Italy
Leonid V. Danyushevsky
CODE, University of Tasmania, Hobart, 7001, Australia
Andrey Gurenko
Centre de Recherches Pétrographiques et Géochimiques, Université de Lorraine, Vandoeuvre-lès-Nancy, 54501, France
Benedetto De Vivo
Pegaso Università Telematica, Naples, 80143, Italy
Craig E. Manning
Earth, Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, California 90095, USA
Robert J. Bodnar
Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
Matthew Steele-MacInnis
Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2R3, Alberta, Canada
Maria-Luce Frezzotti
Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Milano-Bicocca, Milano (Italy), Milan, 20160, Italy
Related authors
No articles found.
Harvey E. Belkin and Benedetto De Vivo
Eur. J. Mineral., 35, 25–44, https://doi.org/10.5194/ejm-35-25-2023, https://doi.org/10.5194/ejm-35-25-2023, 2023
Short summary
Short summary
Members of the epidote supergroup, epidote, clinozoisite, allanite, and ferriallanite, are described from the calcium–aluminum silicate and thermometamorphic zones in drill cores obtained from the Mofete and San Vito wells in the Campi Flegrei (Italy) geothermal field. Compositional zoning is ubiquitous. The epidote group encompasses nearly the complete range of coupled Al–Fe3+ substitution, and the allanite group is light rare earth element enriched.
Related subject area
Igneous petrology
Magmatic to solid-state evolution of a shallow emplaced agpaitic tinguaite (the Suc de Sara dyke, Velay volcanic province, France): implications for peralkaline melt segregation and extraction in ascending magmas
Granite magmatism and mantle filiation
Inclusions in magmatic zircon from Slavonian mountains (eastern Croatia): anatase, kumdykolite and kokchetavite and implications for the magmatic evolution
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources
Reactive interaction between migmatite-related melt and mafic rocks: clues from the Variscan lower crust of Palmi (southwestern Calabria, Italy)
ICDP Oman Drilling Project: varitextured gabbros from the dike–gabbro transition within drill core GT3A
A snapshot of the transition from monogenetic volcanoes to composite volcanoes: case study on the Wulanhada Volcanic Field (northern China)
40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems
Quantification of major and trace elements in fluid inclusions and gas bubbles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with no internal standard: a new method
New evidence for upper Permian crustal growth below Eifel, Germany, from mafic granulite xenoliths
Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone)
Thomas Pereira, Laurent Arbaret, Juan Andújar, Mickaël Laumonier, Monica Spagnoli, Charles Gumiaux, Gautier Laurent, Aneta Slodczyk, and Ida Di Carlo
Eur. J. Mineral., 36, 491–524, https://doi.org/10.5194/ejm-36-491-2024, https://doi.org/10.5194/ejm-36-491-2024, 2024
Short summary
Short summary
This work presents the results on deformation-enhanced melt segregation and extraction in a phonolitic magma emplaced at shallow depth in the Velay volcanic province (France). We provide evidence of the segregation and subsequent extraction of the residual melt during magma ascent and final emplacement. We highlight that melt segregation started by compaction as a loose packing of microlites emerged and continued with melt filling of a shear band network.
Michel Pichavant, Arnaud Villaros, Julie A.-S. Michaud, and Bruno Scaillet
Eur. J. Mineral., 36, 225–246, https://doi.org/10.5194/ejm-36-225-2024, https://doi.org/10.5194/ejm-36-225-2024, 2024
Short summary
Short summary
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting and basaltic origin. Peraluminous felsic leucogranites are considered as the only granite examples showing no mantle input. This interpretation is re-evaluated, and we show that leucogranites, as most other crustal granite types, can have a mantle filiation. This stresses the critical importance of the mantle for granite generation and opens the way for unification of silicic magma generation models.
Petra Schneider and Dražen Balen
Eur. J. Mineral., 36, 209–223, https://doi.org/10.5194/ejm-36-209-2024, https://doi.org/10.5194/ejm-36-209-2024, 2024
Short summary
Short summary
The acid igneous rocks of eastern Croatia related to the Late Cretaceous closure of the Neotethys Ocean contain zircon as a main accessory mineral. Among others, zircon has inclusions of anatase, hematite and melt (nanogranitoids) with kokchetavite and kumdykolite. The first finding here of kokchetavite and kumdykolite in a magmatic nanogranitoid proves that these are not exclusively ultra-high pressure phases. The detected inclusions indicate rapid uplift and cooling of the oxidised magma.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Gumer Galán, Gloria Gallastegui, Andrés Cuesta, Guillermo Corretgé, Ofelia Suárez, and Luis González-Menéndez
Eur. J. Mineral., 35, 845–871, https://doi.org/10.5194/ejm-35-845-2023, https://doi.org/10.5194/ejm-35-845-2023, 2023
Short summary
Short summary
Two examples of granites in the Variscan Iberian Massif were studied because they are associated with mafic rocks (appinites and vaugnerites), which raise the question of the role of mantle magma in the formation of granitic rocks. We conclude that appinites and vaugnerites derived from melting of different mantle sources, both previously modified by interaction with crustal materials. Subsequent differentiation of appinites and vaugnerites was influenced by contamination with coeval granites.
Maria Rosaria Renna
Eur. J. Mineral., 35, 1–24, https://doi.org/10.5194/ejm-35-1-2023, https://doi.org/10.5194/ejm-35-1-2023, 2023
Short summary
Short summary
Distribution of major and trace elements during anatexis at the source area was investigated in a portion of Variscan mid–lower crust exposed at Palmi (Calabria, Italy). Reactive migration of migmatitic melt imparted a mineralogical and chemical signature in mafic rocks associated with migmatites and promoted the crystallization of amphibole by a coupled dissolution–precipitation process. Amphibole and accessory allanite control the distribution of incompatible elements from the anatectic zone.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Gerhard Franz, Masafumi Sudo, and Vladimir Khomenko
Eur. J. Mineral., 34, 7–18, https://doi.org/10.5194/ejm-34-7-2022, https://doi.org/10.5194/ejm-34-7-2022, 2022
Short summary
Short summary
The age of formation of buddingtonite, ammonium-bearing feldspar, can be dated with the Ar–Ar method; however, it may often give only minimum ages due to strong resetting. In the studied example it gives a Precambrian minimum age of fossils, associated with this occurrence, and the age of the accompanying mineral muscovite indicates an age near 1.5 Ga. We encourage more dating attempts of buddingtonite, which will give valuable information of diagenetic or hydrothermal events.
Leonid Shumlyanskyy, Gerhard Franz, Sarah Glynn, Oleksandr Mytrokhyn, Dmytro Voznyak, and Olena Bilan
Eur. J. Mineral., 33, 703–716, https://doi.org/10.5194/ejm-33-703-2021, https://doi.org/10.5194/ejm-33-703-2021, 2021
Short summary
Short summary
In the paper we discuss the origin of large chamber pegmatite bodies which contain giant gem-quality crystals of black quartz (morion), beryl, and topaz. We conclude that these pegmatites develop under the influence of later intrusions of mafic rocks that cause reheating of the partly crystallized granite massifs and that they supply a large amount of fluids that facilitate the
inflationof pegmatite chambers and crystallization of giant crystals of various minerals.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Anastassia Y. Borisova, Stefano Salvi, German Velasquez, Guillaume Estrade, Aurelia Colin, and Sophie Gouy
Eur. J. Mineral., 33, 305–314, https://doi.org/10.5194/ejm-33-305-2021, https://doi.org/10.5194/ejm-33-305-2021, 2021
Short summary
Short summary
We developed a new method for quantifying elemental concentrations in natural and synthetic fluid inclusions and gas bubbles using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method with no internal standard. The method may be applied to estimate trace (metal and metalloid) elemental concentrations in hydrous carbonic (C–O–H) fluid inclusions and bubbles with uncertainty below 25 %.
Cliff S. J. Shaw
Eur. J. Mineral., 33, 233–247, https://doi.org/10.5194/ejm-33-233-2021, https://doi.org/10.5194/ejm-33-233-2021, 2021
Short summary
Short summary
Volcanic activity in the West Eifel region of Germany over the past million years has brought many samples of the Earth's mantle and crust to the surface. The samples from this study are pieces of the deep crust that formed between 264 and 253 million years ago at a depth of ~ 30 km. Samples like these reveal how the Earth's crust has grown and been modified over time.
Marta Antonicelli, Riccardo Tribuzio, Tong Liu, and Fu-Yuan Wu
Eur. J. Mineral., 32, 587–612, https://doi.org/10.5194/ejm-32-587-2020, https://doi.org/10.5194/ejm-32-587-2020, 2020
Short summary
Short summary
We present a petrological–geochemical investigation of peridotites of magmatic origin from the Ivrea–Verbano Zone (Italian Alps), a large-scale section of lower continental crust. The main purpose is to provide new insights into the processes governing the evolution of primitive mantle magmas. We propose that studied peridotites were formed by reaction of a melt-poor olivine-rich crystal mush, or a pre-existing peridotite, with upward-migrating melts possessing a substantial crustal component.
Cited articles
Allison, C. M., Roggensack, K., and Clarke, A. B.: MafiCH: a general model for H2O–CO2 solubility in mafic magmas, Contrib. Mineral. Petr., 177, 1–22, 2022.
Avanzinelli, R., Casalini, M., Elliott, T., and Conticelli, S.: Carbon fluxes from subducted carbonates revealed by uranium excess at Mount Vesuvius, Italy, Geology, 46, 259–262, 2018.
Ayuso, R. A., De Vivo, B., Rolandi, G., Seal II, R. R., and Paone, A.: Geochemical and isotopic (Nd–Pb–Sr–O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy, J. Volcanol. Geoth. Res., 82, 53–78, https://doi.org/10.1016/S0377-0273(97)00057-7, 1998.
Balcone-Boissard, H., Villemant, B., Boudon, G., and Michel, A.: Non-volatile vs volatile behaviours of halogens during the AD 79 plinian eruption of Mt. Vesuvius, Italy, Earth Planet. Sc. Lett., 269, 66–79, 2008.
Balcone-Boissard, H., Boudon, G., Ucciani, G., Villemant, B., Cioni, R., Civetta, L., and Orsi, G.: Magma degassing and eruption dynamics of the Avellino pumice Plinian eruption of Somma–Vesuvius (Italy). Comparison with the Pompeii eruption, Earth Planet. Sc. Lett., 331, 257–268, 2012.
Barth, A. and Plank, T.: The ins and outs of water in olivine-hosted melt inclusions: hygrometer vs. speedometer, Frontiers Earth Sci., 9, 614004, https://doi.org/10.3389/feart.2021.614004, 2021.
Barth, A., Newcombe, M., Plank, T., Gonnermann, H., Hajimirza, S., Soto, G. J., Saballos, A., and Hauri, E.: Magma decompression rate correlates with explosivity at basaltic volcanoes – Constraints from water diffusion in olivine, J. Volcanol. Geoth. Res., 387, 106664, https://doi.org/10.1016/j.jvolgeores.2019.106664, 2019.
Bartoli, O., Cesare, B., Poli, S., Bodnar, R. J., Acosta-Vigil, A., Frezzotti, M. L., and Meli, S.: Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation, Geology, 41, 115–118, 2013.
Belkin, H. E. and De Vivo, B.: Fluid inclusion studies of ejected nodules from plinian eruptions of Mt. Somma-Vesuvius, J. Volcanol. Geoth. Res., 58, 89–100, 1993.
Belkin, H. E., De Vivo, B., Török, K., and Webster, J. D.: Pre-eruptive volatile content, melt-inclusion chemistry, and microthermometry of interplinian Vesuvius lavas (pre-A.D. 1631), J. Volcanol. Geoth. Res., 82, 79–95, https://doi.org/10.1016/S0377-0273(97)00058-9, 1998.
Berrino, G., Corrado, G., and Riccardi, U.: Sea gravity data in the Gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian area, J. Volcanol. Geoth. Res., 82, 139–150, 1998.
Borghini, A., Nicoli, G., Ferrero, S., O'brien, P. J., Laurent, O., Remusat, L., Borghini, G., and Milani, S.: The role of continental subduction in mantle metasomatism and carbon recycling revealed by melt inclusions in UHP eclogites, Sci. Adv., 9, eabp9482, https://doi.org/10.1126/sciadv.abp9482, 2023.
Borisov, A. and Shapkin, A.: A new empirical equation rating in magmas to their composition, oxygen fugacity, and temperature, Geochem. Int., 27, 111–116, 1990.
Brocchini, D., Principe, C., Castradori, D., Laurenzi, M., and Gorla, L.: Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well, Miner. Petrol., 73, 67–91, 2001.
Bucholz, C. E., Gaetani, G. A., Behn, M. D., and Shimizu, N.: Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions, Earth Planet. Sc. Lett., 374, 145–155, https://doi.org/10.1016/j.epsl.2013.05.033, 2013.
Burke, E. A.: Raman microspectrometry of fluid inclusions, Lithos, 55, 139–158, 2001.
Caliro, S., Chiodini, G., Avino, R., Cardellini, C., and Frondini, F.: Volcanic degassing at Somma–Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater, Appl. Geochem., 20, 1060–1076, 2005.
Cannatelli, C.: Tracing magma evolution at Vesuvius volcano using melt inclusions: a review, Vesuvius, Campi Flegrei, and Campanian Volcanism, edited by: De Vivo, B., Belkin, H. E., and Rolandi, G., Elsevier, 121–139, https://doi.org/10.1016/B978-0-12-816454-9.00006-7, 2020.
Cashman, K. V., Sparks, R. S. J., and Blundy, J. D.: Vertically extensive and unstable magmatic systems: a unified view of igneous processes, Science, 355, eaag3055, https://doi.org/10.1126/science.aag3055, 2017.
Chiodini, G., Marini, L., and Russo, M.: Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy, Geochim. Cosmochim. Ac., 65, 2129–2147, 2001.
Cioni, R., Civetta, L., Marianelli, P., Metrich, N., Santacroce, R., and Sbrana, A.: Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber: the AD 79 Plinian eruption of Vesuvius, J. Petrol., 36, 739–776, 1995.
Cioni, R., Marianelli, P., and Santacroce, R.: Thermal and compositional evolution of the shallow magma chambers of Vesuvius: evidence from pyroxene phenocrysts and melt inclusions, J. Geophys. Res.-Sol. Ea., 103, 18277–18294, 1998.
Civetta, L. and Santacroce, R.: Steady state magma supply in the last 3400 years of Vesuvius activity, Acta Vulcanologica, 2, 147–159, 1992.
Civetta, L., Galati, R., and Santacroce, R.: Magma mixing and convective compositional layering within the Vesuvius magma chamber, B. Volcanol., 53, 287–300, 1991.
Dallai, L., Cioni, R., Boschi, C., and D'Oriano, C.: Carbonate-derived CO2 purging magma at depth: influence on the eruptive activity of Somma-Vesuvius, Italy, Earth Planet. Sc. Lett., 310, 84–95, 2011.
Danyushevsky, L. and Lima, A.: Relationships between Campi Flegrei and Mt. Somma volcanism: evidence from melt inclusions in clinopyroxene phenocrysts from volcanic breccia xenoliths, Miner. Petrol., 73, 107–119, 2001.
Danyushevsky, L. V. and Plechov, P.: Petrolog3: Integrated software for modeling crystallization processes, Geochem. Geophy., 12, 7, https://doi.org/10.1029/2011GC003516, 2011.
Danyushevsky, L. V., McNeill, A. W., and Sobolev, A. V.: Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications, Chem. Geol., 183, 5–24, https://doi.org/10.1016/S0009-2541(01)00369-2, 2002.
Del Moro, A., Fulignati, P., Marianelli, P., and Sbrana, A.: Magma contamination by direct wall rock interaction: constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption), J. Volcanol. Geoth. Res., 112, 15–24, 2001.
De Vivo, B., Petrosino, P., Lima, A., Rolandi, G., and Belkin, H.: Research progress in volcanology in the Neapolitan area, southern Italy: a review and some alternative views, Miner. Petrol., 99, 1–28, 2010.
Doronzo, D. M., Di Vito, M. A., Arienzo, I., Bini, M., Calusi, B., Cerminara, M., Corradini, S., De Vita, S., Giaccio, B., and Gurioli, L.: The 79 CE eruption of Vesuvius: A lesson from the past and the need of a multidisciplinary approach for developments in volcanology, Earth-Sci. Rev., 231, 104072, https://doi.org/10.1016/j.earscirev.2022.104072, 2022.
Duan, X.: A general model for predicting the solubility behavior of H2O–CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions, Geochim. Cosmochim. Ac., 125, 582–609, 2014.
Edmonds, M. and Wallace, P. J.: Volatiles and exsolved vapor in volcanic systems, Elements, 13, 29–34, 2017.
Esposito, R.: Magmatism of the Phlegrean Volcanic Fields as revealed by melt inclusions, in: Vesuvius, Campi Flegrei, and Campanian Volcanism, edited by: De Vivo, B., Belkin, H. E., and Rolandi, G., Elsevier, 141–174, https://doi.org/10.1016/B978-0-12-816454-9.00007-9, 2020.
Esposito, R.: A protocol and review of methods to select, analyze and interpret melt inclusions to determine pre-eruptive volatile contents of magmas, in: Fluid and Melt Inclusions: Applications to Geologic Processes, edited by: Lecumberri-Sanchez, P., Steele-MacInnis, M., and Kontak, D., Topics in Mineral Sciences, Mineralogical Association of Canada, London, Ontario, 163–194, ISBN 9780921294634, 2021.
Esposito, R., Bodnar, R. J., Danyushevsky, L., De Vivo, B., Fedele, L., Hunter, J., Lima, A., and Shimizu, N.: Volatile Evolution of Magma Associated with the Solchiaro Eruption in the Phlegrean Volcanic District (Italy), J. Petrol., 52, 2431–2460, 2011.
Esposito, R., Klebesz, R., Bartoli, O., Klyukin, Y. I., Moncada, D., Doherty, A. L., and Bodnar, R. J.: Application of the Linkam TS1400XY heating stage to melt inclusion studies, Cent. Eur. J. Geosci., 4, 208–218, https://doi.org/10.2478/S13533-011-0054-Y, 2012.
Esposito, R., Hunter, J., Schiffbauer, J., Shimizu, N., and Bodnar, R. J.: An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas, Am. Mineral., 99, 976–998, 2014.
Esposito, R., Lamadrid, H. M., Redi, D., Steele-MacInnis, M., Bodnar, R. J., Manning, C. E., De Vivo, B., Cannatelli, C., and Lima, A.: Detection of liquid H2O in vapor bubbles in reheated melt inclusions: Implications for magmatic fluid composition and volatile budgets of magmas?, Am. Mineral., 101, 1691–1695, 2016.
Esposito, R., Badescu, K., Steele-MacInnis, M., Cannatelli, C., De Vivo, B., Lima, A., Bodnar, R. J., and Manning, C. E.: Magmatic evolution of the Campi Flegrei and Procida volcanic fields, Italy, based on interpretation of data from well-constrained melt inclusions, Earth-Sci. Rev., 185, 325–356, 2018.
Esposito, R., Badescu, K., Boyce, J. W., and Frezzotti, M.-L.: Chemical characterization of a magma recharging and mixing before an eruption: Insights from chronologically constrained melt inclusions, Lithos, 456, 107301, https://doi.org/10.1016/j.lithos.2023.107301, 2023.
Ferriss, E., Plank, T., Newcombe, M., Walker, D., and Hauri, E.: Rates of dehydration of olivines from San Carlos and Kilauea Iki, Geochim. Cosmochim. Ac., 242, 165–190, 2018.
Ford, C., Russell, D., Groven, J., and Fisk, M.: Distribution coefficients of Mg2+, Fe2+, Ca2+ and Mn2+ between olivine and melt, J. Petrol., 24, 256–265, 1983.
Frezzotti, M.-L.: Silicate-melt inclusions in magmatic rocks: applications to petrology, Lithos, 55, 273–299, https://doi.org/10.1016/S0024-4937(00)00048-7, 2001.
Frezzotti, M. L., Peccerillo, A., and Panza, G.: Carbonate metasomatism and CO2 lithosphere–asthenosphere degassing beneath the Western Mediterranean: an integrated model arising from petrological and geophysical data, Chem. Geol., 262, 108–120, 2009.
Frondini, F., Chiodini, G., Caliro, S., Cardellini, C., Granieri, D., and Ventura, G.: Diffuse CO2 degassing at Vesuvio, Italy, B. Volcanol., 66, 642–651, 2004.
Fuis, G. S., Ambos, E. L., Mooney, W. D., Christensen, N. I., and Geist, E.: Crustal structure of accreted terranes in southern Alaska, Chugach Mountains and Copper River Basin, from seismic refraction results, J. Geophys. Res.-Sol. Ea., 96, 4187–4227, 1991.
Fulignati, P. and Marianelli, P.: Tracing volatile exsolution within the 472 AD “Pollena” magma chamber of Vesuvius (Italy) from melt inclusion investigation, J. Volcanol. Geoth. Res., 161, 289–302, 2007.
Fulignati, P., Marianelli, P., and Sbrana, A.: Glass-bearing felsic nodules from the crystallizing sidewalls of the 1944 Vesuvius magma chamber, Mineral. Mag., 64, 481–496, 2000a.
Fulignati, P., Marianelli, P., and Sbrana, A.: The feeding system of 1944 eruption of Vesuvius: melt inclusion data from dunitic nodules, Neues Jb. Miner. Monat, 9, 419–432, 2000b.
Fulignati, P., Marianelli, P., Santacroce, R., and Sbrana, A.: The skarn shell of the 1944 Vesuvius magma chamber. Genesis and PTX conditions from melt and fluid inclusion data, Eur. J. Mineral., 12, 1025–1039, 2000c.
Fulignati, P., Kamenetsky, V. S., Marianelli, P., Sbrana, A., and Mernagh, T. P.: Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis at Mount Vesuvius, Geology, 29, 1043–1046, 2001.
Fulignati, P., Marianelli, P., Métrich, N., Santacroce, R., and Sbrana, A.: Towards a reconstruction of the magmatic feeding system of the 1944 eruption of Mt Vesuvius, J. Volcanol. Geoth. Res., 133, 13–22, 2004.
Gavrilenko, M., Krawczynski, M., Ruprecht, P., Li, W., and Catalano, J. G.: The quench control of water estimates in convergent margin magmas, Am. Mineral., 104, 936–948, 2019.
Ghiorso, M. S. and Gualda, G. A.: An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS, Contrib. Mineral. Petr., 169, 1–30, 2015.
Giaccio, B., Isaia, R., Fedele, F. G., Di Canzio, E., Hoffecker, J., Ronchitelli, A., Sinitsyn, A. A., Anikovich, M., Lisitsyn, S. N., and Popov, V. V.: The Campanian Ignimbrite and Codola tephra layers: two temporal/stratigraphic markers for the Early Upper Palaeolithic in southern Italy and eastern Europe, J. Volcanol. Geoth. Res., 177, 208–226, 2008.
Gilg, H., Lima, A., Somma, R., Belkin, H., De Vivo, B., and Ayuso, R.: Isotope geochemistry and fluid inclusion study of skarns from Vesuvius, Mineral. Petr., 73, 145–176, 2001.
Hartley, M. E., Maclennan, J., Edmonds, M., and Thordarson, T.: Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions, Earth Planet. Sc. Lett., 393, 120–131, https://doi.org/10.1016/j.epsl.2014.02.031, 2014.
Iacono-Marziano, G., Gaillard, F., Scaillet, B., Pichavant, M., and Chiodini, G.: Role of non-mantle CO2 in the dynamics of volcano degassing: The Mount Vesuvius example, Geology, 37, 319–322, 2009.
Iacono-Marziano, G., Morizet, Y., Le Trong, E., and Gaillard, F.: New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts, Geochim. Cosmochim. Ac., 97, 1–23, 2012.
Jolis, E. M., Freda, C., Troll, V. R., Deegan, F. M., Blythe, L. S., McLeod, C. L., and Davidson, J. P.: Experimental simulation of magma–carbonate interaction beneath Mt. Vesuvius, Italy, Contrib. Mineral. Petr., 166, 1335–1353, 2013.
Joron, J., Metrich, N., Rosi, M., Santacroce, R., and Sbrana, A.: Chemistry and petrography, in: Somma-Vesuvius, edited by: Santacroce, R., Quaderni de la ricerca scientifica, CNR, Roma, 8, 105–171, 1987.
Klébesz, R., Esposito, R., De Vivo, B., and Bodnar, R. J.: Constraints on the origin of sub-effusive nodules from the Sarno (Pomici di Base) eruption of Mt. Somma-Vesuvius (Italy) based on compositions of silicate-melt inclusions and clinopyroxene, Am. Mineral., 100, 760–773, https://doi.org/10.2138/am-2015-4958, 2015.
Knuever, M., Sulpizio, R., Mele, D., and Costa, A.: Magma–rock interactions: a review of their influence on magma rising processes with emphasis on short-timescale assimilation of carbonate rocks, Geol. Soc. Lond. Spec. Publ., 520, 101–120, 2023.
Kovács, I. J., Liptai, N., Koptev, A., Cloetingh, S. A., Lange, T. P., Mațenco, L., Szakács, A., Radulian, M., Berkesi, M., and Patkó, L.: The “pargasosphere” hypothesis: Looking at global plate tectonics from a new perspective, Global Planet. Change, 204, 103547, https://doi.org/10.1016/j.gloplacha.2021.103547, 2021.
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., and Zanettin, B. A.: Chemical classification of volcanic rocks based on the total alkali-silica diagram, J. Petrol., 27, 745–750, 1986.
Lima, A., Danyushevsky, L. V., De Vivo, B., and Fedele, L.: A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations, in: Developments in Volcanology, edited by: De Benedetto, V. and Robert, J. B., Elsevier, 227–249, https://doi.org/10.1016/S1871-644X(03)80032-3, 2003.
Lirer, L., Pescatore, T., Booth, B., and Walker, G. P.: Two plinian pumice-fall deposits from Somma-Vesuvius, Italy, Geol. Soc. Am. Bull., 84, 759–772, 1973.
Lloyd, A., Plank, T., Ruprecht, P., Hauri, E., and Rose, W.: Volatile loss from melt inclusions in pyroclasts of differing sizes, Contrib Mineral Petrol, 165, 129-153, 10.1007/s00410-012-0800-2, 2013.
Lowenstern, J. B.: Applications of silicate-melt inclusions to the study of magmatic volatiles, Short Course Handbook, 23, 71–99, 1995.
Marianelli, P., Metrich, N., Santacroce, R., and Sbrana, A.: Mafic magma batches at Vesuvius: a glass inclusion approach to the modalities of feeding stratovolcanoes, Contrib. Mineral. Petr., 120, 159–169, 1995.
Marianelli, P., Métrich, N., and Sbrana, A.: Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius, B. Volcanol., 61, 48–63, 1999.
Marianelli, P., Sbrana, A., Métrich, N., and Cecchetti, A.: The deep feeding system of Vesuvius involved in recent violent strombolian eruptions, Geophys. Res. Lett., 32, L02306, https://doi.org/10.1029/2004gl021667, 2005.
Merlini, S. and Mostardini, F.: Appennino centro-meridionale: sezioni geologiche e proposta di modello strutturale, Geologia dell'Italia centrale, Congresso nazionale, 73, 147–149, 1986.
Métrich, N. and Wallace, P. J.: Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions, Rev. Mineral. Geochem., 69, 363–402, 2008.
Mironov, N., Portnyagin, M., Botcharnikov, R., Gurenko, A., Hoernle, K., and Holtz, F.: Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure, Earth Planet. Sc. Lett., 425, 1–11, 2015.
Moore, L., Gazel, E., Tuohy, R., Lloyd, A., Esposito R., Steele-MacInnis, M. J., Hauri, E. H., Wallace, P., Plank, T., and Bodnar, R. J.: Bubbles matter: An assessment of the contribution of vapor bubbles to melt inclusion volatile budgets, Am. Mineral., 100, 806–823, 2015.
Newman, S. and Lowenstern, J. B.: VolatileCalc; a silicate melt-H2O-CO2 solution model written in Visual Basic for Excel, Comput. Geosci., 28, 597–604, 2002.
Nunziata, C., Natale, M., Luongo, G., and Panza, G. F.: Magma reservoir at Mt. Vesuvius: Size of the hot, partially molten, crust material detected deeper than 8 km, Earth Planet. Sc. Lett., 242, 51–57, 2006.
Nunziata, C., Costanzo, M. R., and Panza, G. F.: Lithosphere structural model of the Campania Plain, in: Vesuvius, Campi Flegrei, and Campanian Volcanism, edited by: De Vivo, B., Belkin, H. E., and Rolandi, G., Elsevier, 57–78, https://doi.org/10.1016/B978-0-12-816454-9.00004-3, 2020.
Papale, P., Moretti, R., and Barbato, D.: The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts, Chem. Geol., 229, 78–95, 2006.
Pappalardo, L. and Mastrolorenzo, G.: Short residence times for alkaline Vesuvius magmas in a multi-depth supply system: Evidence from geochemical and textural studies, Earth Planet. Sc. Lett., 296, 133–143, 2010.
Patacca, E. and Scandone, P.: Geology of the southern Apennines, B. Soc. Geol. Ital., 7, 75–119, 2007.
Peccerillo, A.: Campania volcanoes: petrology, geochemistry, and geodynamic significance, in: Vesuvius, Campi Flegrei, and Campanian Volcanism, edited by: De Vivo, B., Belkin, H. E., and Rolandi, G., Elsevier, 79–120, https://doi.org/10.1016/B978-0-12-816454-9.00005-5, 2020.
Piana Agostinetti, N. and Amato, A.: Moho depth and Vp Vs ratio in peninsular Italy from teleseismic receiver functions, J. Geophys. Res.-Sol. Ea., 114, B06303, https://doi.org/10.1029/2008JB005899, 2009.
Piochi, M., Ayuso, R. A., De Vivo, B., and Somma, R.: Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma–Vesuvius volcano, Italy: Geochemical and Sr isotope evidence, Lithos, 86, 303–329, 2006.
Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F.: Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma, Earth Planet. Sc. Lett., 272, 541–552, 2008.
Portnyagin, M., Mironov, N., Botcharnikov, R., Gurenko, A., Almeev, R. R., Luft, C., and Holtz, F.: Dehydration of melt inclusions in olivine and implications for the origin of silica-undersaturated island-arc melts, Earth Planet. Sc. Lett., 517, 95–105, 2019.
Qin, Z., Lu, F., and Anderson, A. T.: Diffusive reequilibration of melt and fluid inclusions, Am. Mineral., 77, 565–576, 1992.
Raia, F., Webster, J. D., and De Vivo, B.: Pre-eruptive volatile contents of Vesuvius magmas: constraints on eruptive history and behavior. I-The medieval and modern interplinian activities, Eur. J. Mineral., 12, 179–193, https://doi.org/10.1127/0935-1221/2000/0012-0179, 2000.
Rasmussen, D. J., Plank, T. A., Wallace, P. J., Newcombe, M. E., and Lowenstern, J. B.: Vapor-bubble growth in olivine-hosted melt inclusions, Am. Mineral., 105, 1898–1919, 2020.
Redi, D., Cannatelli, C., Esposito, R., Lima, A., Petrosino, P., and De Vivo, B.: Somma-Vesuvius' activity: a mineral chemistry database, Miner. Petrol., 111, 43–67, 2017.
Remigi, S., Mancini, T., Ferrando, S., and Frezzotti, M. L.: Interlaboratory Application of Raman CO2 Densimeter Equations: Experimental Procedure and Statistical Analysis Using Bootstrapped Confidence Intervals, Appl. Spectrosc., 75, 867–881, 2021.
Riker, J.: The 1859 Eruption of Mauna Loa Volcano, Hawai'i: Controls on the Development of Long Lava Channels, PhD thesis, University of Oregon, https://earthsciences.uoregon.edu/dissertations-and-theses#R (last access: 5 November 2023), 2005.
Roedder, E.: Origin and significance of magmatic inclusions, B. Mineral., 102, 487–510, 1979.
Rose-Koga, E., Bouvier, A.-S., Gaetani, G., Wallace, P., Allison, C., Andrys, J., de la Torre, C. A., Barth, A., Bodnar, R., and Gartner, A. B.: Silicate melt inclusions in the new millennium: A review of recommended practices for preparation, analysis, and data presentation, Chem. Geol., 570, 120145, https://doi.org/10.1016/j.chemgeo.2021.120145, 2021.
Ruscitto, D. M., Wallace, P. J., Cooper, L. B., and Plank, T.: Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes, Geochem. Geophy. Geosy., 13, Q03025, https://doi.org/10.1029/2011GC003887, 2012.
Santacroce, R., Bertagnini, A., Civetta, L., Landi, P., and Sbrana, A.: Eruptive Dynamics and Petrogenetic Processes in a very Shallow Magma Reservoir: the 1906 Eruption of Vesuvius, J. Petrol., 34, 383–425, https://doi.org/10.1093/petrology/34.2.383, 1993.
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D. J., and Joron, J. L.: Age and whole rock–glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy, J. Volcanol. Geoth. Res., 177, 1–18, 2008.
Scaillet, B., Pichavant, M., and Cioni, R.: Upward migration of Vesuvius magma chamber over the past 20,000 years, Nature, 455, 216–219, 2008.
Scandone, R., Giacomelli, L., and Gasparini, P.: Mount Vesuvius: 2000 years of volcanological observations, J. Volcanol. Geoth. Res., 58, 5–25, 1993.
Schiano, P., Provost, A., Clocchiatti, R., and Faure, F.: Transcrystalline melt migration and Earth's mantle, Science, 314, 970–974, 2006.
Schiavi, F., Bolfan-Casanova, N., Buso, R., Laumonier, M., Laporte, D., Medjoubi, K., Venugopal, S., Gómez-Ulla, A., Cluzel, N., and Hardiagon, M.: Quantifying magmatic volatiles by Raman microtomography of glass inclusion-hosted bubbles, Geochemical Perspectives Letters, 16, 17–24, 2020.
Severs, M., Azbej, T., Thomas, J., Mandeville, C., and Bodnar, R.: Experimental determination of H2O loss from melt inclusions during laboratory heating: evidence from Raman spectroscopy, Chem. Geol., 237, 358–371, 2007.
Shishkina, T. A., Botcharnikov, R. E., Holtz, F., Almeev, R. R., Jazwa, A. M., and Jakubiak, A. A.: Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts, Chem. Geol., 388, 112–129, 2014.
Signorelli, S., Vaggelli, G., and Romano, C.: Pre-eruptive volatile (H2O, F, Cl and S) contents of phonolitic magmas feeding the 3550-year old Avellino eruption from Vesuvius, southern Italy, J. Volcanol. Geoth. Res., 93, 237–256, 1999.
Sigurdsson, H., Cashdollar, S., and Sparks, S. R.: The eruption of Vesuvius in AD 79: reconstruction from historical and volcanological evidence, Am. J. Archaeol., 86, 39–51, 1982.
Sobolev, A. V. and Danyushevsky, L. V.: Petrology and geochemistry of boninites from the north termination of the Tonga Trench: constraints on the generation conditions of primary high-Ca boninite magmas, J. Petrol., 35, 1183–1211, 1994.
Sobolev, A. V., Dmitriev, L. V., Barsukov, V. L., Nevsorov, V. N., and Slutsky, A. B.: The formation conditions of the high magnesium olivines from the monomineralic fraction of Luna 24 regolith, P. Lunar Planet. Sci. C., 11, 105–116, 1980.
Sobolev, V., Bazarova, T. Y., and Bakumenko, I.: Crystallization temperature and gas phase composition of alkaline effusives as indicated by primary melt inclusions in the phenocrysts, Bulletin Volcanologique, 35, 479–496, 1971.
Sokol, A. G., Kupriyanov, I. N., and Palyanov, Y. N.: Partitioning of H2O between olivine and carbonate–silicate melts at 6.3 GPa and 1400 ∘C: Implications for kimberlite formation, Earth Planet. Sc. Lett., 383, 58–67, 2013.
Steele-MacInnis, M.: Seeking the most hydrous, primitive arc melts: The glass is half full, Am. Mineral., 104, 1217–1218, 2019.
Steele-MacInnis, M., Esposito, R., Moore, L. R., and Hartley, M. E.: Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents, Contrib. Mineral. Petr., 172, 18, https://doi.org/10.1007/s00410-017-1343-3, 2017.
Steele-MacInnis, M. J., Esposito, R., and Bodnar, R. J.: Thermodynamic model for the effect of post-entrapment crystallization on the H2O-CO2 systematics of volatile saturated silicate melt inclusions, J. Petrol., 52, 2461–2482, 2011.
Stothers, R. B. and Rampino, M. R.: Volcanic eruptions in the Mediterranean before AD 630 from written and archaeological sources, J. Geophys. Res.-Sol. Ea., 88, 6357–6371, 1983.
Student, J. J. and Bodnar, R. J.: Synthetic Fluid Inclusions XIV: Coexisting Silicate Melt and Aqueous Fluid Inclusions in the Haplogranite–H2O–NaCl–KCl System, J. Petrol., 40, 1509–1525, https://doi.org/10.1093/petroj/40.10.1509, 1999.
Tucker, J. M., Hauri, E. H., Pietruszka, A. J., Garcia, M. O., Marske, J. P., and Trusdell, F. A.: A high carbon content of the Hawaiian mantle from olivine-hosted melt inclusions, Geochim. Cosmochim. Ac., 254, 156–172, 2019.
Vaggelli, G., De Vivo, B., and Trigila, R.: Silicate-melt inclusions in recent Vesuvius lavas (1631–1944): II. Analytical chemistry, J. Volcanol. Geoth. Res., 58, 367–376, 1993.
Vitale, S. and Ciarcia, S.: Tectono-stratigraphic setting of the Campania region (southern Italy), J. Maps, 14, 9–21, 2018.
Wadge, G.: Output rate of magma from active central volcanoes, Nature, 288, 253–255, 1980.
Wallace, P. J.: Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geoth. Res., 140, 217–240, 2005.
Wallace, P. J., Kamenetsky, V. S., and Cervantes, P.: Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles, Am. Mineral., 100, 787–794, 2015.
Wallace, P. J., Plank, T., Bodnar, R. J., Gaetani, G. A., and Shea, T.: Olivine-hosted melt inclusions: A microscopic perspective on a complex magmatic world, Annu. Rev. Earth Pl. Sc., 49, 465–494, 2021.
Webster, J., Raia, F., De Vivo, B., and Rolandi, G.: The behavior of chlorine and sulfur during differentiation of the Mt. Somma-Vesuvius magmatic system, Miner. Petrol., 73, 177–200, 2001.
Wieser, P. E., Iacovino, K., Matthews, S., Moore, G., and Allison, C.: VESIcal: 2. A Critical Approach to Volatile Solubility Modeling Using an Open-Source Python3 Engine, Earth Space Sci., 9, e2021EA001932, https://doi.org/10.1029/2021EA001932, 2022.
Zhang, Y. and Cherniak, D. J.: Diffusion in minerals and melts: introduction, Reviews in Mineralogy and Geochemistry, 72, 1–4, 2010.
Short summary
Despite many articles published about eruptions at Mt. Somma–Vesuvius (SV), the volatile contents of magmas associated with mafic (quasi-primitive) melts were not directly analyzed for many eruptions based on melt inclusions (MIs). We suggest that several high-Fo olivines formed at depths greater than those of the carbonate platform based on MI chemical composition. We also estimated that 347 to 686 t d-1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries of volcanic activity.
Despite many articles published about eruptions at Mt. Somma–Vesuvius (SV), the volatile...