Articles | Volume 35, issue 4
https://doi.org/10.5194/ejm-35-479-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-35-479-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detrital garnet petrology challenges Paleoproterozoic ultrahigh-pressure metamorphism in western Greenland
Jan Schönig
CORRESPONDING AUTHOR
Department of Sedimentology and Environmental Geology, Geoscience
Center Göttingen, University of Göttingen, 37077 Göttingen,
Germany
Carsten Benner
Department of Sedimentology and Environmental Geology, Geoscience
Center Göttingen, University of Göttingen, 37077 Göttingen,
Germany
Guido Meinhold
Institute of Geology, TU Bergakademie Freiberg, 09599 Freiberg,
Germany
Hilmar von Eynatten
Department of Sedimentology and Environmental Geology, Geoscience
Center Göttingen, University of Göttingen, 37077 Göttingen,
Germany
N. Keno Lünsdorf
Department of Sedimentology and Environmental Geology, Geoscience
Center Göttingen, University of Göttingen, 37077 Göttingen,
Germany
Related authors
No articles found.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Related subject area
Metamorphic petrology
The composition of metapelitic biotite, white mica, and chlorite: a review with implications for solid-solution models
Comparison between 2D and 3D microstructures and implications for metamorphic constraints using a chloritoid–garnet-bearing mica schist
Sedimentary protolith and high-P metamorphism of oxidized manganiferous quartzite from the Lanterman Range, northern Victoria Land, Antarctica
Metamorphic evolution of sillimanite gneiss in the high-pressure terrane of the Western Gneiss Region (Norway)
Halogen-bearing metasomatizing melt preserved in high-pressure (HP) eclogites of Pfaffenberg, Bohemian Massif
Île Dumet (Armorican Massif, France) and its glaucophane eclogites: the little sister of Île de Groix
Retrogression of ultrahigh-pressure eclogite, Western Gneiss Region, Norway
Electron backscatter diffraction analysis combined with NanoSIMS U–Pb isotope data reveal intra-grain plastic deformation in zircon and its effects on U–Pb age: examples from Himalayan eclogites, Pakistan
H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks
Very-low-grade phyllosilicates in the Aravis massif (Haute-Savoie, France) and the di-trioctahedral substitution in chlorite
Partial melting of amphibole–clinozoisite eclogite at the pressure maximum (eclogite type locality, Eastern Alps, Austria)
Petrological study of an eclogite-facies metagranite from the Champtoceaux Complex (La Picherais, Armorican Massif, France)
Corundum-bearing and spinel-bearing symplectites in ultrahigh-pressure eclogites record high-temperature overprint and partial melting during slab exhumation
Some thoughts about eclogites and related rocks
Metamorphic P–T paths of Archean granulite facies metasedimentary lithologies from the eastern Beartooth Mountains of the northern Wyoming Province, Montana, USA: constraints from quartz-in-garnet (QuiG) Raman elastic barometry, geothermobarometry, and thermodynamic modeling
Equilibrium and kinetic approaches to understand the occurrence of the uncommon chloritoid + biotite assemblage
Geochemistry and paleogeographic implications of Permo-Triassic metasedimentary cover from the Tauern Window (Eastern Alps)
Reaction progress of clay minerals and carbonaceous matter in a contact metamorphic aureole (Torres del Paine intrusion, Chile)
Partial melting of zoisite eclogite from the Sanddal area, North-East Greenland Caledonides
Benoît Dubacq and Jacob B. Forshaw
Eur. J. Mineral., 36, 657–685, https://doi.org/10.5194/ejm-36-657-2024, https://doi.org/10.5194/ejm-36-657-2024, 2024
Short summary
Short summary
This article reviews the crystal chemistry of chlorite, biotite, and white mica in metamorphosed sediments. These minerals have complex compositions because many atom exchanges may take place in their structure. Such exchanges include easily measured cations but also structurally bound H2O, notoriously hard to measure; iron oxidation; and vacancies. Consequently, formula units are often calculated from incomplete measurements and some exchanges may appear solely due to normalization issues.
Fabiola Caso, Alessandro Petroccia, Sara Nerone, Andrea Maffeis, Alberto Corno, and Michele Zucali
Eur. J. Mineral., 36, 381–395, https://doi.org/10.5194/ejm-36-381-2024, https://doi.org/10.5194/ejm-36-381-2024, 2024
Short summary
Short summary
Despite the fact that rock textures depend on the 3D spatial distribution of minerals, our tectono-metamorphic reconstructions are mostly based on a 2D visualisation (i.e. thin sections). For 2D a thin section scan has been combined with chemical X-ray maps, whereas for 3D the X-ray computerised axial microtomography (μCT) has been applied. This study corroborates the reliability of the thin section approach, still emphasising that 3D visualisation can help understand rock textures.
Taehwan Kim, Yoonsup Kim, Simone Tumiati, Daeyeong Kim, Keewook Yi, and Mi Jung Lee
Eur. J. Mineral., 36, 323–343, https://doi.org/10.5194/ejm-36-323-2024, https://doi.org/10.5194/ejm-36-323-2024, 2024
Short summary
Short summary
The manganese-rich siliceous metasediment in the Antarctic Ross orogen most likely originated from Mn-nodule-bearing chert deposited not earlier than ca. 546 Ma. Subduction-related metamorphism resulted in the production of highly oxidized assemblages involving Mn3+ and rare-earth-element-zoned epidote-group mineral and Mn2+-rich garnet. A reduced environment was responsible for the Mn olivine-bearing assemblages from silica-deficient composition.
Ane K. Engvik and Johannes Jakob
Eur. J. Mineral., 36, 345–360, https://doi.org/10.5194/ejm-36-345-2024, https://doi.org/10.5194/ejm-36-345-2024, 2024
Short summary
Short summary
The paper documents sillimanite gneiss in the Western Gneiss Region (WGR) and its presence, composition, formation and metamorphic evolution. Peak metamorphism is modelled to T = 750 °C and P around 0.6 GPa. Subsequent retrogression consumes garnet and shows mineral replacement and melt crystallization involving sillimanite, white mica, K-feldspar and quartz. The petrological evolution is in accordance with the investigated eclogites and HP granulites in the northwestern part of WGR.
Alessia Borghini, Silvio Ferrero, Patrick J. O'Brien, Bernd Wunder, Peter Tollan, Jarosław Majka, Rico Fuchs, and Kerstin Gresky
Eur. J. Mineral., 36, 279–300, https://doi.org/10.5194/ejm-36-279-2024, https://doi.org/10.5194/ejm-36-279-2024, 2024
Short summary
Short summary
We studied primary granitic and halogen-rich melt inclusions trapped in mantle rocks in the Bohemian Massif (Germany) in order to retrieve important information about the nature of the melt and the source rock. The melt was produced by the partial melting of metasediments during the deepest stages of subduction and interacted with the mantle. This work is an excellent example of transfer of crustal material, volatiles in particular, in the mantle during the subduction of the continental crust.
Gaston Godard, David C. Smith, Damien Jaujard, and Sidali Doukkari
Eur. J. Mineral., 36, 99–122, https://doi.org/10.5194/ejm-36-99-2024, https://doi.org/10.5194/ejm-36-99-2024, 2024
Short summary
Short summary
Petrological and mineralogical studies of mica schists, orthogneisses and glaucophane eclogites from Dumet Island (Armorican Massif, NW France) indicate that this occurrence, which has undergone high-pressure metamorphism up to 16 kbar and 620 °C, is similar to that of Groix Island. There are about 10 similar occurrences within the Ibero-Armorican Arc, forming a discontinuous high-pressure belt, but most of them have remained unnoticed due to a high degree of retrogression.
Dirk Spengler, Adam Włodek, Xin Zhong, Anselm Loges, and Simon J. Cuthbert
Eur. J. Mineral., 35, 1125–1147, https://doi.org/10.5194/ejm-35-1125-2023, https://doi.org/10.5194/ejm-35-1125-2023, 2023
Short summary
Short summary
Rock lenses from the diamond stability field (>120 km depth) within ordinary gneiss are enigmatic. Even more when these lenses form an alternating exposure pattern with ordinary lenses. We studied 10 lenses from W Norway and found that many of them have a hidden history. Tiny needles of quartz enclosed in old pyroxene cores are evidence for a rock origin at great depth. These needles survived the rocks' passage to the surface that variably obscured the mineral chemistry – the rocks' memory.
Hafiz U. Rehman, Takanori Kagoshima, Naoto Takahata, Yuji Sano, Fabrice Barou, David Mainprice, and Hiroshi Yamamoto
Eur. J. Mineral., 35, 1079–1090, https://doi.org/10.5194/ejm-35-1079-2023, https://doi.org/10.5194/ejm-35-1079-2023, 2023
Short summary
Short summary
Zircon preserves geologic rock history. Electron backscatter diffraction (EBSD) analysis is useful to visualize deformed domains in zircons. Zircons from the Himalayan high-pressure eclogites were analzyed for EBSD to identify intra-grain plastic deformation. The U–Pb isotope age dating, using Nano-SIMS, showed that plastic deformation likely affects the geochronological records. For geologically meaningful results, it is necessary to identify undisturbed domains in zircon via EBSD.
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste
Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, https://doi.org/10.5194/ejm-35-831-2023, 2023
Short summary
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Simon Schorn, Anna Rogowitz, and Christoph A. Hauzenberger
Eur. J. Mineral., 35, 715–735, https://doi.org/10.5194/ejm-35-715-2023, https://doi.org/10.5194/ejm-35-715-2023, 2023
Short summary
Short summary
We investigate rocks called eclogite, which are related to subduction and the collision of continents. Our samples show evidence of limited melting at high pressure corresponding to about 70 km depth, which may play an important role in the exhumation of these rocks and the differentiation of the crust. However, due to their composition and metamorphic evolution, melt production is limited, suggesting that similar rocks are unlikely to contribute strongly to subduction-related magmatism.
Thomas Gyomlai, Philippe Yamato, and Gaston Godard
Eur. J. Mineral., 35, 589–611, https://doi.org/10.5194/ejm-35-589-2023, https://doi.org/10.5194/ejm-35-589-2023, 2023
Short summary
Short summary
The La Picherais metagranite is a key example of undeformed high-pressure quartzofeldspathic rock from the Armorican Massif. Through petrological observations and thermodynamic modelling, this study determines that the metagranite was pressured above 1.7 GPa and the associated mafic lenses at ~ 2.1 GPa. This metagranite provides an opportunity to study the degree of transformation of quartzofeldspathic rocks at high pressure, which may have a significant impact on the dynamics of subduction.
Pan Tang and Shun Guo
Eur. J. Mineral., 35, 569–588, https://doi.org/10.5194/ejm-35-569-2023, https://doi.org/10.5194/ejm-35-569-2023, 2023
Short summary
Short summary
In this study, unusual corundum- and spinel-bearing symplectites after muscovite were found in ultrahigh-pressure eclogites from the Dabie terrane, China. The results indicate that these symplectites formed by the low-pressure partial melting of muscovite during slab exhumation. We stress that the occurrence of corundum- and spinel-bearing symplectites after muscovite in eclogites provides important implications for fluid and melt actions in exhumed slabs.
Michael Brown
Eur. J. Mineral., 35, 523–547, https://doi.org/10.5194/ejm-35-523-2023, https://doi.org/10.5194/ejm-35-523-2023, 2023
Short summary
Short summary
The past 40 years have been a golden age for eclogite studies, supported by an ever wider range of instrumentation and enhanced computational capabilities, linked with ongoing developments in the determination of the temperatures and pressures of metamorphism and the age of these rocks. These data have been used to investigate the spatiotemporal distribution of metamorphism and secular change but not without controversy in relation to the emergence of plate tectonics on Earth.
Larry Tuttle and Darrell J. Henry
Eur. J. Mineral., 35, 499–522, https://doi.org/10.5194/ejm-35-499-2023, https://doi.org/10.5194/ejm-35-499-2023, 2023
Short summary
Short summary
Quartz inclusions in garnet are used to constrain the metamorphic pressure–temperature history of multiple ~2.8 Ga metasedimentary rocks from Montana, USA. Inclusion studies along with mineral and whole rock chemistry suggests that the rocks of interest experienced a clockwise metamorphic P–T history that included isobaric heating to peak metamorphic temperatures once inclusions were entrapped. These findings place fundamental constraints on the P–T evolution of this important geologic setting.
Sara Nerone, Chiara Groppo, and Franco Rolfo
Eur. J. Mineral., 35, 305–320, https://doi.org/10.5194/ejm-35-305-2023, https://doi.org/10.5194/ejm-35-305-2023, 2023
Short summary
Short summary
The coexistence of chloritoid and biotite in medium-pressure Barrovian terranes is uncommon, with chloritoid usually occurring at lower temperatures than biotite. A petrologic approach using equilibrium thermodynamic modelling points out how metapelites can attain H2O-undersaturated conditions even at medium pressure and amphibolite-facies conditions and consequently can be affected by kinetic barriers, which need to be taken into account.
Gerhard Franz, Martin Kutzschbach, Eleanor J. Berryman, Anette Meixner, Anselm Loges, and Dina Schultze
Eur. J. Mineral., 33, 401–423, https://doi.org/10.5194/ejm-33-401-2021, https://doi.org/10.5194/ejm-33-401-2021, 2021
Short summary
Short summary
Metamorphic rocks contain information about their original rocks and thus provide insight into the earlier stages of a region of interest. Here, we used the whole-rock chemical composition and stable boron isotopes of a suite of rocks from the Alps (Italy–Austria), which were deposited in a restricted intramontane basin before the Alpine orogeny. It is possible to reconstruct the depositional conditions for these sediments, which are now common metamorphic rocks such as schists and gneisses.
Annette Süssenberger, Susanne Theodora Schmidt, Florian H. Schmidt, and Manuel F. G. Weinkauf
Eur. J. Mineral., 32, 653–671, https://doi.org/10.5194/ejm-32-653-2020, https://doi.org/10.5194/ejm-32-653-2020, 2020
Wentao Cao, Jane A. Gilotti, and Hans-Joachim Massonne
Eur. J. Mineral., 32, 405–425, https://doi.org/10.5194/ejm-32-405-2020, https://doi.org/10.5194/ejm-32-405-2020, 2020
Short summary
Short summary
Zoisite eclogites from the Sanddal area, North-East Greenland, contain numerous textures, such as cusps and neoblasts, which are interpreted as melt-related textures. Mineral chemistry and thermodynamic modeling demonstrate that they were partially melted through the breakdown of hydrous minerals, phengite, paragonite and zoisite. Pressure–temperature phase diagrams show that the eclogites reached a maximum depth of ∼70 km and were partially melted near that depth and during exhumation.
Cited articles
Ackerson, M. R., Watson, E. B., Tailby, N. D., and Spear, F. S.:
Experimental investigation into the substitution mechanisms and solubility
of Ti in garnet, Am. Mineral., 102, 158–172, https://doi.org/10.2138/am-2017-5632,
2017.
Atherton, M. P.: The garnet isograd in pelitic rocks and its relationship to
metamorphic facies, Am. Mineral., 49, 1331–1349, 1964.
Axler, J. A. and Ague, J. J.: Oriented multiphase needles in garnet from
ultrahigh-temperature granulites, Connecticut, USA, Am. Mineral., 100,
2254–2271, https://doi.org/10.2138/am-2015-5018, 2015.
Bak, J., Korstgård, J., and Sørensen, K.: A major shear zone within
the Nagssugtoqidian of West Greenland, Tectonophysics, 27, 191–209, https://doi.org/10.1016/0040-1951(75)90016-5, 1975.
Baldwin, S. L., Schönig, J., Gonzalez, J. P., Davies, H., and von
Eynatten, H.: Garnet sand reveals rock recycling processes in the youngest
exhumed high- and ultrahigh-pressure terrane on Earth, P. Natl. Acad.
Sci. USA, 118, e2017231118, https://doi.org/10.1073/pnas.2017231118, 2021.
Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J. N.: Raman spectra of
carbonaceous material in metasediments: a new geothermometer, J. Metamorph.
Geol., 20, 859–871, https://doi.org/10.1046/j.1525-1314.2002.00408.x, 859–871, 2002.
Beyssac, O., Goffé, B., Petitet, J. P., Froigneux, E., Moreau, M., and
Rouzaud, J. N.: On the characterization of disordered and heterogeneous
carbonaceous materials by Raman spectroscopy, Spectrochim. Acta A, 59, 2267–2276, https://doi.org/10.1016/S1386-1425(03)00070-2,
2003.
Breitenfeld, L. B., Dyar, M. D., Carey, C. J., Tague Jr, T. J., Wang, P.,
Mullen, T., and Parente, M.: Predicting olivine composition using Raman
spectroscopy through band shift and multivariate analyses, Am. Mineral.,
103, 1827–1836, https://doi.org/10.2138/am-2018-6291, 2018.
Brown, E. H.: A Petrogenetic Grid for Reactions Producing Biotite and other
Al–Fe–Mg Silicates in the Greenschist Facies, J. Petrol., 16, 258–271,
https://doi.org/10.1093/petrology/16.2.258, 1975.
Brown, M.: Duality of thermal regimes is the distinctive characteristic of
plate tectonics since the Neoarchean, Geology, 34, 961–964, https://doi.org/10.1130/G22853A.1, 2006.
Brown, M.: Metamorphic conditions in orogenic belts: a record of secular
change, Int. Geol. Rev., 49, 193–234, https://doi.org/10.2747/0020-6814.49.3.193,
2007.
Brown, M. and Johnson, T.: Secular change in metamorphism and the onset of
global plate tectonics, Am. Mineral., 103, 181–196, https://doi.org/10.2138/am-2018-6166, 2018.
Brown, M. and Johnson, T.: Metamorphism and the evolution of subduction on
Earth, Am. Mineral., 104, 1065–1082, https://doi.org/10.2138/am-2019-6956, 2019.
Brown, M., Johnson, T., and Gardiner, N. J.: Plate tectonics and the Archean
Earth, Annu. Rev. Earth Planet. Sci., 48, 291–320, https://doi.org/10.1146/annurev-earth-081619-052705, 2020.
Bucher, K. and Frey, M.: Petrogenesis of Metamorphic Rocks, Springer-Verlag,
Berlin-Heidelberg, ISBN 978-3-662-04916-7, 2002.
Cancado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H.,
Speziali, N. L., Jorio, A., and Pimenta, M. A.: Measuring the degree of
stacking order in graphite by Raman spectroscopy, Carbon, 46, 272–275, https://doi.org/10.1016/j.carbon.2007.11.015, 2008.
Carvalho, B. B., Bartoli, O., Cesare, B., Tacchetto, T., Gianola, O., Ferri,
F., Aradi, L. E., and Szabó, C.: Primary CO2-bearing fluid
inclusions in granulitic garnet usually do not survive, Earth Planet. Sc.
Lett., 536, 116170, https://doi.org/10.1016/j.epsl.2020.116170, 2020.
Cawood, P. A., Hawkesworth, C. J., and Dhuime, B.: The continental record
and the generation of continental crust, Geol. Soc. Am. Bull., 125, 14–32,
https://doi.org/10.1130/B30722.1, 2013.
Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., and Cavallo, A.:
“Nanogranite” and glassy inclusions: The anatectic melt in migmatites and
granulites, Geology, 37, 627–630, https://doi.org/10.1130/G25759A.1, 2009.
Cesare, B., Acosta-Vigil, A., Bartoli, O., and Ferrero, S.: What can we
learn from melt inclusions in migmatites and granulites?, Lithos, 239,
186–216, https://doi.org/10.1016/j.lithos.2015.09.028, 2015.
Cesare, B., Parisatto, M., Mancini, L., Peruzzo, L., Franceschi, M.,
Tacchetto, T., Reddy, S., Spiess, R., Nestola, F., and Marone, F.: Mineral
inclusions are not immutable: Evidence of post-entrapment thermally-induced
shape change of quartz in garnet, Earth Planet. Sc. Lett., 555, 116708,
https://doi.org/10.1016/j.epsl.2020.116708, 2021.
Cleveland, W. S., Grosse, E., and Shyu, W. M.: Local regression models, in:
Statistical Models in S, edited by: Chambers, J. M. and Hastie, T. J.,
Wadsworth and Brooks/Cole, Springer-Verlag, New York, https://doi.org/10.1201/9780203738535, 1992.
Connelly J. N. and Mengel F. C.: Evolution of Archean components in the
Paleoproterozoic Nagssugtoqidian orogen, West Greenland, Geol. Soc. Am.
Bull., 112, 747–763, https://doi.org/10.1130/0016-7606(2000)112<747:EOACIT>2.0.CO;2, 2000.
Connelly J. N., van Gool J. A. M., and Mengel F. C.: Temporal evolution of a
deeply eroded orogen: the Nagssugtoqidian Orogen, West Greenland, Can. J.
Earth Sci., 37, 1121–1142, https://doi.org/10.1139/e00-032, 2000.
Davidson, L. M.: Nagssugtoqidian granulite facies metamorphism in the
Holsteinsborg region, West Greenland, Rapport Grønlands Geologiske
Undersøgelse, 89, 97–108, https://doi.org/10.34194/rapggu.v89.7570, 1979.
de Oliveira Chaves, A. and Porcher, C. C.: Petrology, geochemistry and Sm-Nd
systematics of the Paleoproterozoic Itaguara retroeclogite from São
Francisco/Congo Craton: one of the oldest records of the modern-style plate
tectonics, Gondwana Res., 87, 224–237, https://doi.org/10.1016/j.gr.2020.06.014, 2020.
Dhuime, B., Hawkesworth, C. J., Cawood, P. A., and Storey, C. D.: A change
in the geodynamics of continental growth 3 billion years ago, Science, 335,
1334–1336, https://doi.org/10.1126/science.1216066, 2012.
Escher, J. C. and Pulvertaft, T. C. R.: 1995. Geological map of Greenland,
, Geological Survey of Greenland, Copenhagen, https://collections.lib.uwm.edu/digital/collection/agdm/id/8475/ (last access: 11 July 2023), 1995.
Ferrero, S., Godard, G., Palmeri, R., Wunder, B., and Cesare, B.: Partial
melting of ultramafic granulites from Dronning Maud Land, Antarctica:
Constraints from melt inclusions and thermodynamic modelling, Am. Mineral.,
103, 610–622, https://doi.org/10.2138/am-2018-6214, 2018.
Fleet, W. F.: Petrological notes on the Old Red Sandstone of the West
Midlands, Geol. Mag., 63, 505–516, https://doi.org/10.1017/S0016756800085484, 1926.
Forsyth, D. and Uyeda, S.: On the relative importance of the driving forces
of plate motion, Geophys. J. Int., 43, 163–200, https://doi.org/10.1111/j.1365-246X.1975.tb00631.x, 1975.
François, C., Debaille, V., Paquette, J. L., Baudet, D., and Javaux, E.
J.: The earliest evidence for modern-style plate tectonics recorded by
HP–LT metamorphism in the Paleoproterozoic of the Democratic Republic of
the Congo, Sci. Rep., 8, 15452, https://doi.org/10.1038/s41598-018-33823-y, 2018.
Fryling, M., Frank, C. J., and McCreery, R. L.: Intensity calibration and
sensitivity comparisons for CCD/Raman spectrometers, Appl. Spectrosc., 47,
1965–1974, 1993.
Ganade, C. E., Rubatto, D., Lanari, P., Hermann, J., Tesser, L. R., and
Caby, R.: Fast exhumation of Earth's earliest ultrahigh-pressure rocks in
the West Gondwana orogen, Mali, Geology, 51, 647–651, https://doi.org/10.1130/G50998.1, 2023.
Ganne, J., De Andrade, V., Weinberg, R. F., Vidal, O., Dubacq, B.,
Kagambega, N., Naba, S., Baratoux, L., Jessell, M., and Allibon, J.:
Modern-style plate subduction preserved in the Palaeoproterozoic West
African craton, Nat. Geosci., 5, 60–65, https://doi.org/10.1038/ngeo1321, 2012.
Glassley, W. E.: Deep crustal carbonates as CO2 fluid sources: evidence
from metasomatic reaction zones, Contrib. Mineral. Petrol., 84, 15–24, https://doi.org/10.1007/BF01132326, 1983.
Glassley, W. E. and Sørensen, K.: Constant PS-T amphibolite to
granulite facies transition in Agto (West Greenland) metadolerites:
implications and applications, J. Petrol., 21, 69–105, https://doi.org/10.1093/petrology/21.1.69, 1980.
Glassley W. E., Korstgård J. A., and Sørensen K.: Two tectonically
significant enclaves in the Nordre Strømfjord shear zone at Ataneq,
central West Greenland, Geol. Surv. Denmark Greenland Bull., 13, 49–52,
https://doi.org/10.34194/geusb.v13.4974, 2007.
Glassley W. E., Korstgård J. A., and Sørensen K.: K-rich brine and
chemical modification of the crust during continent–continent collision,
Nagssugtoqidian Orogen, West Greenland, Precambrian Res., 180, 47–62, https://doi.org/10.1016/j.precamres.2010.02.020, 2010.
Glassley, W. E., Korstgård, J. A., Sørensen, K., and Platou, S. W.: A
new UHP metamorphic complex in the ∼ 1.8 Ga Nagssugtoqidian
Orogen of West Greenland, Am. Mineral., 99, 1315–1334, https://doi.org/10.2138/am.2014.4726, 2014.
Glassley, W. E., Korstgård, J. A., and Sørensen, K.: Further
observations related to a possible occurrence of terrestrial ahrensite, Am.
Mineral., 101, 2347–2350, https://doi.org/10.2138/am-2016-5899, 2016.
Griffiths, T. A., Habler, G., and Abart, R.: Determining the origin of
inclusions in garnet: challenges and new diagnostic criteria, Am. J. Sci.,
320, 753–789, https://doi.org/10.2475/11.2020.01, 2020.
Haggerty, S. E. and Sautter, V.: Ultradeep (greater than 300 kilometers),
ultramafic upper mantle xenoliths, Science, 248, 993–996, https://doi.org/10.1126/science.248.4958.993, 1990.
Hansen, B. F.: Some charnockitic rocks in the Nagssugtoqidian of West
Greenland, Rapport Grønlands Geologiske Undersøgelse, 89, 85–96, https://doi.org/10.34194/rapggu.v89.7569, 1979.
Hawkesworth, C. J., Cawood, P. A., and Dhuime, B.: Tectonics and crustal
evolution, GSA Today, 26, 4–11, https://doi.org/10.1130/GSATG272A.1, 2016.
Holder, R. M., Viete, D. R., Brown, M., and Johnson, T. E.: Metamorphism and
the evolution of plate tectonics, Nature, 572, 378–381, https://doi.org/10.1038/s41586-019-1462-2, 2019.
Holland, T. J.: The reaction albite = jadeite + quartz determined
experimentally in the range 600–1200 ∘C, Am. Mineral., 65,
129–134, 1980.
Jahn, B. M., Caby, R., and Monie, P.: The oldest UHP eclogites of the World:
age of UHP metamorphism, nature of protoliths and tectonic implications,
Chem. Geol., 178, 143–158, https://doi.org/10.1016/S0009-2541(01)00264-9, 2001.
Kalsbeek, F. and Nutman, A. P.: Anatomy of the Early Proterozoic
Nagssugtoqidian orogen, West Greenland, explored by reconnaissance SHRIMP
U-Pb zircon dating, Geology, 24, 515–518, https://doi.org/10.1130/0091-7613(1996)024<0515:AOTEPN>2.3.CO;2, 1996.
Kalsbeek, F., Pidgeon, R. T., and Taylor, P. N.: Nagssugtoqidian mobile belt
of West Greenland: a cryptic 1850 Ma suture between two Archaean
continents – chemical and isotopic evidence, Earth Planet. Sc. Lett., 85,
365–385, https://doi.org/10.1016/0012-821X(87)90134-8, 1987.
Katayama, I. and Maruyama, S.: Inclusion study in zircon from
ultrahigh-pressure metamorphic rocks in the Kokchetav massif: an excellent
tracer of metamorphic history, J. Geol. Soc. Lond., 166, 783–796, https://doi.org/10.1144/0016-76492008-019, 2009.
Keller, D. S. and Ague, J. J.: Quartz, mica, and amphibole exsolution from
majoritic garnet reveals ultra-deep sediment subduction, Appalachian orogen,
Sci. Adv., 6, eaay5178, https://doi.org/10.1126/sciadv.aay51, 2020.
Keller, D. S. and Ague, J. J.: Predicting and explaining crystallographic
orientation relationships of exsolved precipitates in garnet using the
edge-to-edge matching model, J. Metamorph. Geol., 40, 1189–1218, https://doi.org/10.1111/jmg.12662, 2022.
Krishnan, R. S.: Raman spectrum of diamond, Nature, 155, 171–171, https://doi.org/10.1038/155171a0, 1945.
Kuebler, K. E., Jolliff, B. L., Wang, A., and Haskin, L. A.: Extracting
olivine (Fo–Fa) compositions from Raman spectral peak positions, Geochim.
Cosmochim. Ac., 70, 6201–6222, https://doi.org/10.1016/j.gca.2006.07.035, 2006.
Lafuente, B., Downs, R. T., Yang, H., Stone, N.: The power of databases: The
RRUFF project, in: Highlights in Mineralogical Crystallography, edited by:
Armbruster, T. and Danisi, R. M., De Gruyter, Berlin, 1–30, ISBN 978-3-11-041704-3, 2015.
Lespade, P., Marchand, A., Couzi, M., and Cruege, F.: Caracterisation de
materiaux carbones par microspectrometrie Raman, Carbon, 22, 375–385, https://doi.org/10.1016/0008-6223(84)90009-5, 1984.
Lünsdorf, N. K. and Lünsdorf, J. O., 2016: Evaluating Raman spectra
of carbonaceous matter by automated, iterative curve-fitting, Int. J. Coal
Geol., 160, 51–62, https://doi.org/10.1016/j.coal.2016.04.008, 2016.
Lünsdorf, N. K., Kalies, J., Ahlers, P., Dunkl, I., and von Eynatten,
H.: Semi-automated heavy-mineral analysis by Raman spectroscopy, Minerals,
9, 385, https://doi.org/10.3390/min9070385, 2019.
Marker, M., Mengel, F., and Van Gool, J.: Evolution of the Palaeoproterozoic
Nagssugtoqidian orogen: DLC investigations in West Greenland, Rapport
Grønlands Geologiske Undersøgelse, 165, 100–105, https://doi.org/10.34194/rapggu.v165.8288, 1995.
Maruyama, S., Liou, J. G., and Terabayashi, M.: Blueschists and eclogites of
the world and their exhumation, Int. Geol. Rev., 38, 485–594, https://doi.org/10.1080/00206819709465347, 1996.
Mazur, S., Anczkiewicz, R., Szczepański, J., van Gool, J. A. M., and
Thirlwall M.: Palaeoproterozoic metamorphism and cooling of the northern
Nagssugtoqidian orogen, West Greenland, Precambrian Res., 196, 171–192,
https://doi.org/10.1016/j.precamres.2011.12.005, 2012.
McKenzie, D. and Parker, R.: The North Pacific: An Example of Tectonics on a
Sphere, Nature, 216, 1276–1280, https://doi.org/10.1038/2161276a0, 1967.
Müller, S., Dziggel, A., Kolb, J., and Sindern, S.: Mineral textural
evolution and PT-path of relict eclogite-facies rocks in the
Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland, Lithos, 296,
212–232, https://doi.org/10.1016/j.lithos.2017.11.008, 2018.
Olesen, N. Ø.: Geological map of Greenland, , sheet Agto 67 V.1
Nord, Geological Survey of Greenland, Copenhagen, 1984.
Palin, R. M., Santosh, M., Cao, W., Li, S. S., Hernández-Uribe, D., and
Parsons, A.: Secular change and the onset of plate tectonics on Earth,
Earth-Sci. Rev., 207, 103172, https://doi.org/10.1016/j.earscirev.2020.103172, 2020.
Perchuk, A. L. and Morgunova, A. A.: Variable P–T paths and HP-UHP
metamorphism in a Precambrian terrane, Gridino, Russia: Petrological
evidence and geodynamic implications, Gondwana Res., 25, 614–629, https://doi.org/10.1016/j.gr.2012.09.009, 2014.
Ramberg, H.: On the petrogenesis of the gneiss complexes between
Sukkertoppen and Christianshaab, West Greenland, Meddelinger Dansk Geologisk
Forening, 11, 312–327, 1948.
Rantitsch, G., Lämmerer, W., Fisslthaler, E., Mitsche, S., and
Kaltenböck, H.: On the discrimination of semi-graphite and graphite by
Raman spectroscopy, Int. J. Coal Geol., 159, 48–56, https://doi.org/10.1016/j.coal.2016.04.001, 2016.
R Core Team: R: a language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 12 July 2021), 2021.
Rodriguez, J. D., Westenberger, B. J., Buhse, L. F., and Kauffman, J. F.:
Quantitative evaluation of the sensitivity of library-based Raman spectral
correlation methods, Anal. Chem., 83, 4061–4067, https://doi.org/10.1021/ac200040b,
2011.
Salminen, J., Elming, S. Å., and Layer, P.: Timing the break-up of the
Baltica and Laurentia connection in Nuna – Rapid plate motion oscillation
and plate tectonics in the Mesoproterozoic, Precambrian Res., 384, 106923,
https://doi.org/10.1016/j.precamres.2022.106923, 2023.
Schönig, J., Meinhold, G., von Eynatten, H., and Lünsdorf, N. K.:
Tracing ultrahigh-pressure metamorphism at the catchment scale, Sci. Rep.,
8, 2931, https://doi.org/10.1038/s41598-018-21262-8, 2018a.
Schönig, J., Meinhold, G., von Eynatten, H., and Lünsdorf, N. K.:
Provenance information recorded by mineral inclusions in detrital garnet,
Sed. Geol., 376, 32–49, https://doi.org/10.1016/j.sedgeo.2018.07.009, 2018b.
Schönig, J., von Eynatten, H., Meinhold, G., and Lünsdorf, N. K.:
Diamond and coesite inclusions in detrital garnet of the Saxonian
Erzgebirge, Germany, Geology, 47, 715–718, https://doi.org/10.1130/G46253.1, 2019.
Schönig, J., von Eynatten, H., Meinhold, G., Lünsdorf, N. K.,
Willner, A. P., and Schulz, B.: Deep subduction of felsic rocks hosting UHP
lenses in the central Saxonian Erzgebirge: Implications for UHP terrane
exhumation, Gondwana Res., 87, 320–329, https://doi.org/10.1016/j.gr.2020.06.020,
2020.
Schönig, J., von Eynatten, H., Meinhold, G., and Lünsdorf, N. K.:
Life-cycle analysis of coesite-bearing garnet, Geol. Mag., 158, 1421–1440,
https://doi.org/10.1017/S0016756821000017, 2021a.
Schönig, J., von Eynatten, H., Tolosana-Delgado, R., and Meinhold, G.:
Garnet major-element composition as an indicator of host-rock type: a
machine learning approach using the random forest classifier, Contrib.
Mineral. Petrol., 176, 98, https://doi.org/10.1007/s00410-021-01854-w, 2021b.
Schönig, J., von Eynatten, H., Meinhold, G., and Lünsdorf, N. K.:
The sedimentary record of ultrahigh-pressure metamorphism: a perspective
review, Earth-Sci. Rev., 227, 103985, https://doi.org/10.1016/j.earscirev.2022.103985,
2022.
Silverman, B. W.: Density Estimation for Statistics and Data Analysis,
Chapman & Hall, London, https://doi.org/10.1007/978-1-4899-3324-9, 1986.
Song, S., Zhang, L., and Niu, Y.: Ultra-deep origin of garnet peridotite
from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW
China, Am. Mineral., 89, 1330–1336, https://doi.org/10.2138/am-2004-8-922, 2004.
Stern, R. J.: The Orosirian (1800–2050 Ma) plate tectonic episode: Key for
reconstructing the Proterozoic tectonic record, Geosci. Front., 14, 101553,
https://doi.org/10.1016/j.gsf.2023.101553, 2023.
St-Onge, M. R., van Gool, J. A., Garde, A. A., and Scott, D. J.: Correlation
of Archaean and Palaeoproterozoic units between northeastern Canada and
western Greenland: constraining the pre-collisional upper plate accretionary
history of the Trans-Hudson orogen, in: Earth Accretionary Systems in Space
and Time, edited by: Cawood P. A. and Kröner A., Geol. Soc. Spec. Publ.,
318, 193–235, https://doi.org/10.1144/SP318, 2009.
Taylor, P. N. and Kalsbeek, F.: Dating the metamorphism of Precambrian
marbles: Examples from Proterozoic mobile belts in Greenland, Chem. Geol.,
86, 21–28, https://doi.org/10.1016/0168-9622(90)90003-U, 1990.
Tolosana-Delgado, R., von Eynatten, H., Krippner, A., and Meinhold, G.: A
multivariate discrimination scheme of detrital garnet chemistry for use in
sedimentary provenance analysis, Sed. Geol., 375, 14–26, https://doi.org/10.1016/j.sedgeo.2017.11.003, 2018.
van Gool, J. A. M. and Marker, M.: Explanatory notes to the Geological map
of Greenland, , Ussuit 67 V.2 Nord, Geological Survey of Denmark
and Greenland, Copenhagen, https://doi.org/10.34194/geusm.v3.4596, 2007.
van Gool, J. A. M., Connelly, J. N., Marker, M., and Mengel, F. C.: The
Nagssugtoqidian Orogen of West Greenland: tectonic evolution and regional
correlations from a West Greenland perspective, Can. J. Earth Sci., 39,
665–686, https://doi.org/10.1139/e02-027, 2002.
van Gool J. A. M., Kriegsman L. M., Marker M., and Nichols G. T.: Thrust
stacking in the inner Nordre Strømfjord area, West Greenland:
Significance for the tectonic evolution of the Palaeoproterozoic
Nagssugtoqidian orogen, Precambrian Res., 93, 71–86, https://doi.org/10.1016/S0301-9268(98)00098-9, 1999.
van Roermund, H. L. M. and Drury, M. R.: Ultra-high pressure (P> 6 GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from
> 185 km depth, Terra Nova, 10, 295–301,
https://doi.org/10.1046/j.1365-3121.1998.00213.x, 1998.
van Roermund, H. L. M., Drury, M. R., Barnhoorn, A., and de Ronde, A. A.:
Super-silicic garnet microstructures from an orogenic garnet peridotite,
evidence for an ultra-deep (> 6 GPa) origin, J. Metamorph. Geol.,
18, 135–147, https://doi.org/10.1046/j.1525-1314.2000.00251.x, 2000.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S,
Springer-Verlag, New York, https://doi.org/10.1007/978-0-387-21706-2, 2002.
Wang, A., Jolliff, B. L., Haskin, L. A., Kuebler, K. E., and Viskupic, K.
M.: Characterization and comparison of structural and compositional features
of planetary quadrilateral pyroxenes by Raman spectroscopy, Am. Mineral.,
86, 790–806, https://doi.org/10.2138/am-2001-0703, 2001.
Weller, O. M. and St-Onge, M. R.: Record of modern-style plate tectonics in
the Palaeoproterozoic Trans-Hudson orogen, Nat. Geosci., 10, 305–311, https://doi.org/10.1038/ngeo2904, 2017.
White, R. W., Powell, R., and Johnson, T. E.: The effect of Mn on mineral
stability in metapelites revisited: New a–x relations for manganese-bearing
minerals, J. Metamorph. Geol., 32, 809–828, https://doi.org/10.1111/jmg.12095, 2014.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag,
New York, ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org (last access: 19 June 2020), 2016.
Xu, C., Kynický, J., Song, W., Tao, R., Lü, Z., Li, Y., Yang, Y.,
Pohanka, M., Galiova, M. V., Zhang, L., and Fei, Y.: Cold deep subduction
recorded by remnants of a Paleoproterozoic carbonated slab, Nat. Commun., 9,
2790, https://doi.org/10.1038/s41467-018-05140-5, 2018.
Ye, K., Cong, B., and Ye, D.: The possible subduction of continental
material to depths greater than 200 km, Nature, 407, 734–736, https://doi.org/10.1038/35037566, 2000.
Short summary
When and how modern-style plate tectonics initiated is a matter of debate. Although the earliest unequivocal evidence for ultrahigh-pressure metamorphism is Neoproterozoic, similar processes have been proposed for Paleoproterozoic rocks of western Greenland. We intensely screened the area by studying detrital heavy minerals, garnet chemistry, and mineral inclusion assemblages in garnet. Our results raise considerable doubts on the existence of Paleoproterozoic ultrahigh-pressure rocks.
When and how modern-style plate tectonics initiated is a matter of debate. Although the earliest...