Articles | Volume 35, issue 3
https://doi.org/10.5194/ejm-35-383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Supergene phases from ferruginous duricrusts: non-destructive microsampling and mineralogy prior to (U–Th) ∕ He geochronological analysis
Karina P. P. Marques
CORRESPONDING AUTHOR
“Luiz de Queiroz” College of Agriculture, University of São
Paulo, 13418-900, Piracicaba, São Paulo, Brazil
Institut de Minéralogie, de Physique des Matériaux et de
Cosmochimie, UMR CNRS 7590, Sorbonne Université, IRD, MNHN, 75252, Paris CEDEX
05, France
Thierry Allard
Institut de Minéralogie, de Physique des Matériaux et de
Cosmochimie, UMR CNRS 7590, Sorbonne Université, IRD, MNHN, 75252, Paris CEDEX
05, France
Cécile Gautheron
Université Paris-Saclay, CNRS, GEOPS, 91405, Orsay, France
Benoît Baptiste
Institut de Minéralogie, de Physique des Matériaux et de
Cosmochimie, UMR CNRS 7590, Sorbonne Université, IRD, MNHN, 75252, Paris CEDEX
05, France
Rosella Pinna-Jamme
Université Paris-Saclay, CNRS, GEOPS, 91405, Orsay, France
Guillaume Morin
Institut de Minéralogie, de Physique des Matériaux et de
Cosmochimie, UMR CNRS 7590, Sorbonne Université, IRD, MNHN, 75252, Paris CEDEX
05, France
Ludovic Delbes
Institut de Minéralogie, de Physique des Matériaux et de
Cosmochimie, UMR CNRS 7590, Sorbonne Université, IRD, MNHN, 75252, Paris CEDEX
05, France
Pablo Vidal-Torrado
“Luiz de Queiroz” College of Agriculture, University of São
Paulo, 13418-900, Piracicaba, São Paulo, Brazil
Related authors
No articles found.
Quentin Bollaert, Mathieu Chassé, Guillaume Morin, Benoît Baptiste, Alexandra Courtin, Laurence Galoisy, Gautier Landrot, Cécile Quantin, and Georges Calas
Eur. J. Mineral., 36, 55–72, https://doi.org/10.5194/ejm-36-55-2024, https://doi.org/10.5194/ejm-36-55-2024, 2024
Short summary
Short summary
X-ray absorption spectroscopy (XAS) was successfully used to investigate the atomic-scale environment of niobium (Nb) in ore minerals and Nb-doped compounds of technological importance. The demonstrated sensitivity of this technique to Nb minerals could help decipher Nb speciation in mining contexts such as hydrothermal and lateritic deposits and rationalize the origin of the enhanced physico-chemical properties of Nb-doped materials.
Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste
Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, https://doi.org/10.5194/ejm-35-831-2023, 2023
Short summary
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Etienne Balan, Lorenzo Paulatto, Qianyu Deng, Keevin Béneut, Maxime Guillaumet, and Benoît Baptiste
Eur. J. Mineral., 34, 627–643, https://doi.org/10.5194/ejm-34-627-2022, https://doi.org/10.5194/ejm-34-627-2022, 2022
Short summary
Short summary
The near-infrared spectra of hydrous minerals involve OH stretching vibrations, but their interpretation is not straightforward due to anharmonicity and vibrational coupling. We analyze the spectra of well-ordered samples of talc, brucite and lizardite to better assess the various factors contributing to the absorption bands. The results clarify the relations between the overtone spectra and their fundamental counterparts and provide a sound interpretation of the two-phonon combination bands.
Marianna Corre, Arnaud Agranier, Martine Lanson, Cécile Gautheron, Fabrice Brunet, and Stéphane Schwartz
Geochronology, 4, 665–681, https://doi.org/10.5194/gchron-4-665-2022, https://doi.org/10.5194/gchron-4-665-2022, 2022
Short summary
Short summary
This study is focused on the accurate measurement of U and Th by wet chemistry and laser ablation methods to improve (U–Th)/He dating of magnetite and spinel. The low U–Th content and the lack of specific U–Th standards significantly limit the accuracy of (U–Th)/He dating. Obtained U–Th results on natural and synthetic magnetite and aluminous spinel samples analyzed by wet chemistry methods and LA-ICP-MS sampling have important implications for the (U–Th)/He method and dates interpretation.
Karina Patricia Prazeres Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-9, https://doi.org/10.5194/gchron-2022-9, 2022
Preprint withdrawn
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on inframilimetric grains that allows to quantify the hematite and goethite content and hematite/goethite ratio of grains prior to (U-Th)/He geochronological analysis. (U-Th)/He data performed on different aliquots with different acquisition time shows no remarkable differences in age, opening a new way to investigate the (U-Th)/He data evolution in supergene lateritic duricrusts.
Cécile Gautheron, Rosella Pinna-Jamme, Alexis Derycke, Floriane Ahadi, Caroline Sanchez, Frédéric Haurine, Gael Monvoisin, Damien Barbosa, Guillaume Delpech, Joseph Maltese, Philippe Sarda, and Laurent Tassan-Got
Geochronology, 3, 351–370, https://doi.org/10.5194/gchron-3-351-2021, https://doi.org/10.5194/gchron-3-351-2021, 2021
Short summary
Short summary
Apatite and zircon (U–Th) / He thermochronology is now a mainstream tool to reconstruct Earth's evolution through the history of cooling and exhumation over the first dozen kilometers. The geological implications of these data rely on the precision of measurements of He, U, Th, and Sm contents in crystals. This technical note documents the methods for He thermochronology developed at the GEOPS laboratory, Paris-Saclay University, that allow (U–Th) / He data to be obtained with precision.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Related subject area
Geochronology
Provenance, protolith and metamorphic ages of jadeite-bearing orthogneiss and host paragneiss at Tavagnasco, the Sesia Zone, Lower Aosta Valley, Italy
Jane A. Gilotti, William C. McClelland, Simon Schorn, Roberto Compagnoni, and Matthew A. Coble
Eur. J. Mineral., 35, 645–658, https://doi.org/10.5194/ejm-35-645-2023, https://doi.org/10.5194/ejm-35-645-2023, 2023
Short summary
Short summary
We show that metamorphosed sedimentary rocks in the Western Alps have a detrital zircon signature that connects them to the Adrian plate along the Gondwana margin. We used zircon to learn that a jadeite-bearing orthogneiss intruded into these strata in the Ordovician (at ~460 Ma) and was metamorphosed at high pressure during early Alpine subduction of Adria beneath Europe at ~78 Ma. Our results are consistent with the complex subduction of Adria before full-on collision with the European plate.
Cited articles
Aleva, G. J. J. (Ed.): Laterites: Concepts, Geology, Morphology and Chemistry,
International Soil Reference and Information Centre, Wageningen,
the Netherlands, 1994.
Allard, T., Gautheron, C., Riffel, S. B., Balan, E., Soares, B. F.,
Pinna-Jamme, R., Derycke, A., Morin G., Bueno, G. T., and Nascimento, N.:
Combined dating of goethites and kaolinites from ferruginous duricrusts.
Deciphering the Late Neogene erosion history of Central Amazonia, Chem.
Geol., 479, 136–150, https://doi.org/10.1016/j.chemgeo.2018.01.004, 2018.
Ambrosi, J. P., Nahon, D., and Herbilon, A. J.: The epigenetic replacement of
kaolinite by hematite in laterite. Petrographic evidence and the mechanisms
involved, Geoderma, 37, 283–294,
https://doi.org/10.1016/0016-7061(86)90030-3, 1986.
Amouric, M., Baronneta, A., Nahon, D., and Didier, P.: Electron microscopic
investigations of iron oxyhydroxides and accompanying phases in lateritic
iron-crust pisolites, Clay. Clay Miner., 34, 45–52, 1986.
Anand, R. R. and Gilkes, R. J.: Variations in the properties of iron oxides
within individual specimens of lateritic duricrust, Aust. J. Soil Res., 25,
287–302, https://doi.org/10.1071/SR9870287, 1987.
Balout, H., Roques, J., Gautheron, C., Tassan-Got, L., and Mbongo-Djimbi, D.:
Helium diffusion in pure hematite (a-Fe2O3) for thermochronometric
applications: A theoretical multi-scale study, Comput. Theor. Chem., 1099,
21–28, https://doi.org/10.1016/j.comptc.2016.11.001, 2017.
Bassal, F., Heller, B., Roques, J., Balout, H., Tassan-Got, L., Allard, T.,
and Gautheron, C.: Revealing the radiation damage and Al-content impacts on
He diffusion in goethite, Chem. Geol., 611, 121118,
https://doi.org/10.1016/j.chemgeo.2022.121118, 2022.
Beauvais, A. and Chardon, D.: Modes, tempo, and spatial variability of
Cenozoic cratonic denudation: The West African example, Geochem.
Geophy. Geosy., 14, 1590–1608, https://doi.org/10.1002/ggge.20093,
2013.
Bish, D. L. and Post, J. E.: Quantitative mineralogical analysis using the
Rietveld full-pattern fitting method, Am. Mineral., 78, 932–940, 1993.
Bish, D. L. and Von Dreele, R. B.: Rietveld refinement of non-hydrogen atomic
positions in kaolinite, Clay. Clay Miner., 37, 289–296,
https://doi.org/10.1346/CCMN.1989.0370401, 1989.
Cooperdock, E. H. G., Ketcham, R. A., and Stockli, D. F.: Resolving the effects of 2-D versus 3-D grain measurements on apatite age data and reproducibility, Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, 2019.
CPRM – SERVIÇO GEOLÓGICO DO BRASIL: Mapa geológico do Estado de
Minas Gerais – 1 : 1.000.000, CPRM, Belo Horizonte, 2014.
Deng, X. D., Li, J. W., and Shuster, D. L.: Late Mio-Pliocene chemical
weathering of the Yulong porphyry Cu deposit in the eastern Tibetan Plateau
constrained by goethite dating: Implication for Asian summer
monsoon, Earth Planet. Sc. Lett., 472, 289–298,
https://doi.org/10.1016/j.epsl.2017.04.043, 2017.
Didier, P.: Paragenèses à oxydes et hydroxydes de fer dans les
bauxites et les cuirasses ferrugineuses, Thèse 3e cycle, Univ. Poitiers,
France, 150 pp., 1983.
Didier, P., Nahon, D., Fritz, B., and Tardy, Y.: Activity of water as a
geochemical controlling factor in ferricretes. A thermodynamic model in the
system: kaolinite Fe-Al-oxihydroxides, Sei. Géol. Mérn., 71, 35–44, 1983.
Didier, P., Perret, D., Tardy, Y., and Nahon, D.: Equilibres entre kaolinites
ferrifères, goethites alumineuses et hématites alumineuses dans les
systèmes cuirasses rôle de l'activité de l'eau et de la taille
des pores, Sci. Géol. Bull., 38, 383–397, 1985.
Dixon, J. B. and Weeds, S. B. (Eds.): Minerals in Soil Environments, Soil
Science Society of America, Madison, WI, https://doi.org/10.2136/sssabookser1.2ed, 1989.
Evenson, N. S., Reiners, P. W., Spencer, J. E., and Shuster, D.: Hematite and Mn
oxide dates from the Buckskin-Rawhide detachement system, western
Arizona: gaining insights into hematite systematics, Am. J. Sci.,
314, 1373–1435, https://doi.org/10.2475/10.2014.01, 2014.
Farley, K. A.: Helium diffusion parameters of hematite from a
single-diffusion-domain crystal, Geochim. Cosmochim. Ac., 231, 117–129,
https://doi.org/10.1016/j.gca.2018.04.005, 2018.
Farley, K. A. and Flowers, R.: and multidomain systematics of a hydrothermal hematite from Eastern Grand Canyon, Earth
Planet. Sc. Lett., 359–360, 131–140,
https://doi.org/10.1016/j.epsl.2012.10.010, 2012.
Farley, K. A., Wolf, R. A., and Silver, L. T.: The effects of long
alpha-stopping distances on ages, Geochim. Cosmochim. Ac.,
60, 4223–4229, https://doi.org/10.1016/S0016-7037(96)00193-7, 1996.
Finger, L. W. and Hazen, R. M.: Crystal Structure and Isothermal Compression
of Fe2O3, Cr2O3, and V2O3 to 50 Kbars, J. Appl. Phys., 51,
5362–5367, https://doi.org/10.1063/1.327451, 1980.
Gastil, R. G., Delisle, M., and Morgan, J. R.: Some effects of progressive
metamorphism on zircons, Geol. Soc. Am. Bull., 78, 879–906,
https://doi.org/10.1130/0016-7606(1967)78[879:SEOPMO]2.0.CO;2 , 1967.
Gautheron, C., Pinna-Jamme, R., Derycke, A., Ahadi, F., Sanchez, C., Haurine, F., Monvoisin, G., Barbosa, D., Delpech, G., Maltese, J., Sarda, P., and Tassan-Got, L.: Technical note: Analytical protocols and performance for apatite and zircon analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020, Geochronology, 3, 351–370, https://doi.org/10.5194/gchron-3-351-2021, 2021.
Gautheron, C., Hueck, M., Ternois, S., Heller, B., Schwartz, S., Sarda, P.,
and Tassan-Got, L.: Investigating the Shallow to Mid-Depth (> 100–300 ∘C) Continental Crust Evolution with
Thermochronology: A Review, Minerals, 12, 563,
https://doi.org/10.3390/min12050563, 2022.
Gualtieri, A. and Venturelli, P.: In situ study of the goethite-hematite
phase transformation by real time synchrotron powder diffraction, Am.
Mineral., 84, 895–904, https://doi.org/10.2138/am-1999-5-624, 1999.
Hammersley, A. P.: FIT2D: a multi-purpose data reduction, analysis and
visualization program, J. Appl. Cryst., 49, 646–652,
https://doi.org/10.1107/S1600576716000455, 2016.
Heim, J. A., Vasconcelos, P. M., Shuster, D. L., Farley, K. A., and Broadbent, G.:
Dating paleochannel iron ore by analysis of supergene goethite,
Hamersley province, Australia, Geology, 34, 173–176,
https://doi.org/10.1130/G22003.1, 2016.
Heller, B. H., Riffel, S. B., Allard, T., Morin, G., Roig, J., Couëffe,
R., Aertsgeerts, G., Derycke, A., Ansart, C., Pinna-Jamme, R., and Gautheron, C.:
Reading the climate signals hidden in bauxite, Geochim. Cosmochim.
Ac., 323, 40–73, https://doi.org/10.1016/j.gca.2022.02.017, 2022.
Hofmann, F., Reichenbacher B., and Farley, K. A.: Evidence for >5 Ma
paleo-exposure of an Eocene-Miocene paleosol of the Bohnerz Formation,
Switzerland, Earth Planet. Sc. Lett., 465, 168–175,
https://doi.org/10.1016/j.epsl.2017.02.042, 2017.
Hofmann, F., Treffkorn, J., and Farley, K. A.: U-loss
associated with laser-heating of hematite and goethite in vacuum during (U-Th) He dating and prevention
using high O2 partial pressure, Chem. Geol., 532, 119350,
https://doi.org/10.1016/j.chemgeo.2019.119350, 2020.
Howard, C. J., Sabine, T. M., and Dickson, F.: Structural and thermal
parameters for rutile and anatase, Acta Crystallogr. B, 47,
462–468, https://doi.org/10.1107/S010876819100335X, 1991.
Klug, H. P. and Alexander, L. E. (Eds.): X-ray Diffraction Procedures for
Polycrystalline and Amorphous Materials, 2nd Edn., John Wiley & Sons, New
York, 1974.
Lippolt, H. J., Leitz, M., Wernicke, R. S., and Hagedorn, B.: (Uranium + thorium) helium dating of apatite: Experience with samples from different
geochemical environments, Chem. Geol., 112, 179–191,
https://doi.org/10.1016/0009-2541(94)90113-9, 1994.
Lombi, E. and Susini, J.: Synchrotron-based techniques for plant and soil
science: opportunities, challenges and future perspectives, Plant Soil, 320,
1–35, 2009.
Marques, K. P. P., Santos, M., Peifer, D., Silva, C. L., and Vidal-Torrado, P.:
Transient and relict landforms in a lithologically heterogeneous
post-orogenic landscape in the intertropical belt (Alto Paranaíba
region, Brazil), Geomorphology, 391, 107892,
https://doi.org/10.1016/j.geomorph.2021.107892, 2021.
McFarlane, M. J.: Laterite and Landscape, Academic Press, London, 1976.
McFarlane, M. J.: Laterites, in: Chemical sediments and geomorphology, edited
by: Goudie, A. S. and Pye, K., Academic Press, New York, 7–58, 1983.
Monteiro, H. S., Vasconcelos, P. M. P., Farley, K. A., Spier, C. A., and Mello,
C. L.: geochronology of goethite and the origin and evolution of
cangas, Geochim. Cosmochim. Ac., 131, 267–289,
https://doi.org/10.1016/j.gca.2014.01.036, 2014.
Monteiro, H. S., Vasconcelos, P. M. P., and Farley, K. A.: A combined and cosmogenic 3He record of landscape armoring by biogeochemical iron
cycling, J. Geophys. Res.-Earth, 123, 298–323,
https://doi.org/10.1002/2017JF004282, 2018.
Nahon, D.: Cuirasses ferrugineuses et encroûtements calcaires au
Sénégal occidental et en Mauritanie, Mém. Sci. Géol.
Strassbourg, 44, 232 pp., 1976.
Nahon, D.: Evolution of iron crusts in tropical landscapes, in: Rates of
Chemical Weathering of Rocks and Minerals, edited by: Colman, S. M. and
Dethier, D. P., Academic Press, New York, 169–191, 1986.
Nahon, D. and Tardy, Y.: The ferruginous laterites, in: Regolith exploration
geochemistry in tropical and subtropical terrains, Handbook of exploration
geochemistry, edited by: Butt, C. R. M. and Zeegerds, H., Elsevier, Amsterdam,
41–55, https://doi.org/10.1016/B978-0-444-89095-5.50010-9, 1992.
Nahon, D. B.: Introduction to the Petrology of Soils and Chemical weathering,
John Wiley & Sons, New York, 1991.
Oliveira, P. E., Raczka, M., McMichael, C. N. H., Pinaya, J. L. D., and Bush,
M. B.: Climate change and biogeographic connectivity across the Brazilian
cerrado, J. Biogeogr., 47, 396–407,
https://doi.org/10.1111/jbi.13732, 2020.
Ollier, C. D. and Sheth, H. C.: The High Deccan duricrusts of India and their
significance for the “laterite” issue, J. Earth Syst. Sci.,
117, 537–551, https://doi.org/10.1007/s12040-008-0051-9, 2008.
Riffel, S. B., Vasconcelos, P. M., Carmo, I. O., and Farley, K. A.: Goethite
geochronology and precipitation mechanisms during weathering of
basalts, Chem. Geol., 446, 18–32,
https://doi.org/10.1016/j.chemgeo.2016.03.033, 2016.
Rodriguez-Carvajal, J.: FullProf Program, Physica B, 192, 55–69, 1993.
Schulze, D. G.: The influence of aluminium on iron oxides. VIII – unit-cell
dimensions of Al-substituted goethites and estimation of Al from them, Clay. Clay Miner., 32, 36–44, https://doi.org/10.1346/CCMN.1984.0320105, 1984.
Schwertmann, U., Fitzpatrick, R. W., Taylor, R. M., and Lewis, D. G.: The
influence of aluminum on iron oxides. Part II. Preparation and properties of
Al-substituted hematites, Clay. Clay Miner., 27, 105–112,
https://doi.org/10.1346/CCMN.1979.0270205, 1979.
Shuster, D. L., Vasconcelos, P. M. P., Heim, J. A., and Farley, K. A.: Weathering
geochronology by dating of goethite, Geochim. Cosmochim.
Ac., 69, 659–673, https://doi.org/10.1016/j.gca.2004.07.028, 2005.
Shuster, D. L., Farley, K. A., Vasconcelos, P. M. P., Balco, G., Monteiro, H. S.,
Waltenberg, K., and Stone, J. O.: Cosmogenic 3He in hematite and goethite from
Brazilian “canga” duricrust demonstrates the extreme stability of these
surfaces, Earth Planet. Sc. Lett., 329–330, 41–50,
https://doi.org/10.1016/j.epsl.2012.02.017, 2012.
Snyder, R. L. and Bish, D. L.: Quantitative analysis, in: Modern Powder
Diffraction, Rev. Miner., 20, edited by: Bish, D. L. and Post,
J. E., Mineralogical Society of America, Washington, 101–144, 1989.
Stanjek, H. and Schwertmann, U.: The influence of aluminium on iron oxides.
XVI: Hydroxyl and aluminum substitution in synthetic hematites, Clay.
Clay Miner., 40/3, 347–354, https://doi.org/10.1346/CCMN.1992.0400316,
1992.
Tardy, Y. (Ed.): Pétrologie des latérites et des sols tropicaux,
Masson, Paris, 1993.
Tardy, Y. and Nahon, D.: Geochemistry of laterites, stability of
Al-goethite, Al-hematite and Fe3+-kaolinite in bauxites and ferricretes:
an approach of the mechanism of concretion formation, Am. J. Sci. 285,
865–903, https://doi.org/10.2475/ajs.285.10.865, 1985.
Tardy, Y. and Roquin, C. (Eds.): Dérive des continents. Paléoclimats
et altérations tropicales, Éditions BGM, Orléans, 1998.
Théveniaut, H. and Freyssinet, P.: Paleomagnetism applied to lateritic
profiles to assess saprolite and duricrust formation processes: the example
of Mont Baduel profile (French Guiana), Palaeogeogr. Palaeocl., 148, 209–231, https://doi.org/10.1016/S0031-0182(98)00183-7,
1999.
Théveniaut, H. and Freyssinet, P.: Timing of lateritization on the
Guiana shield: synthesis of paleomagnetic results from French Guiana and
Suriname, Palaeogeogr. Palaeocl., 178, 91–117,
https://doi.org/10.1016/S0031-0182(01)00404-7, 2002.
Tsao, T., Chen, Y., Sheu, H., Tzou, Y., Chou, Y., and Wang, M.: Separation
and identification of soil nanoparticles by conventional and synchrotron
X-ray diffraction, Appl. Clay Sci., 85, 1–7,
https://doi.org/10.1016/j.clay.2013.09.005, 2013.
Vasconcelos, P. M. and Carmo, I. D. O.: Calibrating denudation chronology
through weathering geochronology, Earth-Sci. Rev., 179, 411–435,
https://doi.org/10.1016/j.earscirev.2018.01.003, 2018.
Vasconcelos, P. M., Heim, J. A., Farley, K. A., Monteiro, H., and Waltenberg,
K.: and – geochronology of landscape evolution
and channel iron deposit genesis at Lynn Peak, Western Australia, Geochim.
Cosmochim. Ac., 117, 283–312,
https://doi.org/10.1016/j.gca.2013.03.037, 2013.
Vasconcelos, P. M., Farley, K. A., Stone, J., Piacentini, T., and Fifield, L. K.:
Stranded landscapes in the humid tropics: Earth's oldest land surfaces,
Earth Planet. Sc. Lett., 519, 152–164,
https://doi.org/10.1016/j.epsl.2019.04.014, 2019.
Vermeesch, P.: HelioPlot, and the treatment of overdispersed
data, Chem. Geol., 271, 108–111,
https://doi.org/10.1016/j.chemgeo.2010.01.002, 2010.
Wolska, E. and Schwertmann, U.: The mecanism of solid solution formation
between goethite and diaspore, Neues Jb. Miner.
Monat., 5, 213–223, 1993.
Short summary
We proposed a new non-destructive mineralogical methodology on sub-millimeter grains that allows us to quantify the hematite and goethite content and hematite / goethite ratio of grains prior to (U–Th) / He geochronological analysis. (U–Th) / He data performed on different aliquots with different acquisition times show no remarkable differences in age, opening a new way to investigate the (U–Th) / He data evolution in supergene lateritic duricrusts.
We proposed a new non-destructive mineralogical methodology on sub-millimeter grains that allows...