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Abstract. Interpreting the ages of supergene mineralogical phases in laterite is complex because they consist of
polycrystalline mixtures of different phases at the microscopic scale that could be crystalized at different epochs.
Among the geochronometers, the (U−Th)/He method on hematite and goethite is more often used, but ages
can be difficult to interpret due to phases mixing. To resolve this issue, this study proposes a methodology for
performing detailed mineralogical analysis of hematite and goethite single grains prior to their dating using the
(U−Th)/He method. Strictly non-destructive mineralogy of single grains is not achievable by classical tools,
such as conventional powder XRD (X-ray diffraction; requiring at least some milligrams of powder) or SEM
(scanning electron microscopy; that can contaminate the grain by coating or fixing). Therefore, we performed
X-ray diffraction patterns of single grains using high-flux X-ray beams from both a rotating anode (XRD_rotat)
laboratory diffractometer and a synchrotron beamline (XRD_synch) and compared the results in order to de-
sign a method based on XRD_rotat only. For this purpose, two samples from the pisolitic facies of a Brazilian
ferruginous duricrust (Alto Paranaíba region, Minas Gerais State, Brazil) were chosen because they presented a
usual heterogeneity. Rietveld refinements of the XRD patterns obtained from both XRD_rotat and XRD_synch
yielded similar results for the weight percentage ratio of the main phases and mean coherent domain sizes and
less similar results for Al substitution rates, thus validating the XRD_rotat approach. No beam damage was
observed when increasing X-ray exposure time, neither on XRD patterns nor on (U−Th)/He ages. Hence, sub-
millimeter, undisturbed grains can be used to analyze the mineralogy of ferruginous duricrusts by XRD_rotat
with a short exposure, and the same grains can subsequently be dated by (U−Th)/He geochronology analysis.
The (U−Th)/He dating of pisolitic core and cortex grains also provided meaningful ages: they revealed two
evolution phases of the ferruginous duricrust, which occurred at or before the Oligocene for the pisolitic core
and middle Miocene for the pisolitic cortex, agreeing with the previous model for the development of pisolites.
The mineralogy of single grains selected for dating is helpful for discussing the crystallization ages, and the
high-flux XRD approach may be applied to other supergene mineral parageneses used for absolute dating.
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1 Introduction

Ferruginous duricrusts, containing hematite and/or goethite
as major components, consist of hard iron-rich horizons
formed at or near the ground surface of laterites that are
widespread in intertropical areas (e.g., Tardy, 1993; Tardy
and Roquin, 1998). Their modes of formation have been ex-
tensively discussed in order to unravel the complexity aris-
ing from their polyphasic nature (e.g., McFarlane, 1976; Na-
hon, 1986, 1991; Tardy, 1993; Tardy and Roquin, 1998; Ol-
lier and Sheth, 2008). In the landscape, they may represent
paleosurfaces that partially resisted erosion and weathering
for long periods, as well as extend as far back as the Meso-
zoic (e.g., Shuster et al., 2012; Beauvais and Chardon, 2013;
Monteiro et al., 2018; Vasconcelos and Carmo, 2018; Vas-
concelos et al., 2019). In order to understand and reconstruct
related continental surface evolution through time as a re-
sult of geodynamic or paleoclimate forcing, it is necessary
to perform absolute dating of appropriate mineral compo-
nents of ferruginous duricrusts, such as goethite and hematite
(Théveniaut and Freyssinet, 1999, 2002; Shuster et al., 2005;
Monteiro et al., 2014; Allard et al., 2018; Vasconcelos et al.,
2019). Through (U−Th)/He geochronology, the knowledge
on their timing of formation is continuously increasing, but
the chronology of ancient landscapes worldwide in relation
to paleoclimatic events is still fragmented and remains a topi-
cal issue (Shuster et al., 2005, 2012; Vasconcelos et al., 2013;
Monteiro et al., 2014; Allard et al., 2018; Monteiro et al.,
2018; Heller et al., 2022; Gautheron et al., 2022).

In the (U−Th)/He dating methodology, sample mineral-
ogy is analyzed using conventional X-ray diffraction (XRD)
and scanning electron microscopy (SEM) on facies recog-
nized at the millimeter (color and texture) to micrometer
scale. However, the small size of iron oxides and oxyhydrox-
ide crystallites (typically less than 1 µm) implies that sub-
millimeter grains used for dating (typically less than 500 µm
large) can be polycrystalline. Thus, they may exhibit a min-
eralogical composition that is different from that of the sam-
ple otherwise analyzed with conventional XRD or SEM. This
may induce some bias when interpreting and discussing the
(U−Th)/He results, especially when goethite and hematite
exhibit contrasting ages according to the sub-millimeter sam-
pled facies (Anand and Gilkes, 1987). In addition, He reten-
tion is slightly different in hematite and goethite, leading to
correction of the (U−Th)/He age (e.g., Shuster et al., 2005).
For hematite, values of a few percentage points (∼ 1 % to
5 %) have been proposed to correct the (U−Th)/He ages
from He loss by diffusion, depending on crystallite sizes
and He diffusion coefficient (Lippolt et al., 1994; Farley and
Flowers, 2012; Evenson et al., 2014; Balout et al., 2017; Far-
ley, 2018). By contrast, for goethite, He loss correction fac-
tors ranging from some percentage points (Hofmann et al.,
2017) to 10 %–30 % (Deng et al., 2017; Heim et al., 2006;
Shuster et al., 2005) that correlate with the radioactive dam-
age dose and Al content (Bassal et al., 2022) have been pro-

posed. In addition, having access to the mineralogy of the
dated grains will allow one to get a better He loss charac-
terization and to identify possible hematite–goethite phase
mixing leading to dispersed (U−Th)/He ages (Monteiro et
al., 2014; Heller et al., 2022).

Classical mineralogical investigations cannot be per-
formed easily on the same sample as the one used for
(U−Th)/He dating: environmental SEM may avoid con-
tamination of the grains, but one gets a 2D slice, making
volume fractions of phases difficult to estimate. In addi-
tion, the different oxides are not easily distinguished, either
by backscatter electrons or by energy-dispersive spectrom-
eter (EDS). Micro-Raman provides contrasting spectra for
hematite or goethite, but it would certainly require appropri-
ate references to allow for quantitative mineralogy. Conven-
tional XRD requires sample mass (at least several milligrams
of powder) much higher than that of a single grain extracted
for (U−Th)/He dating. Consequently, in order to support in-
terpretation and discussion of (U−Th)/He ages of iron oxide
and oxyhydroxide generations from ferruginous duricrusts
with mineralogy, it appears critical to analyze the same single
grain that will be subsequently used for (U−Th)/He dating.
Aliquot-specific mineralogical data are of prime importance
because in the case of mixtures, the hematite and goethite
may have different ages, so the mineralogical composition
may help in discussing the average ages of the samples. Sub-
sequently, this should have implications on the conditions
of formation of the duricrust and then on climatic forcing.
Undisturbed single grain analysis can be potentially achieved
using a powerful source of X-rays that is far beyond clas-
sical setups, such as those available from a rotating anode
(XRD_rotat) in a laboratory or a synchrotron (XRD_synch).

Consequently, the present study’s objectives are twofold.
First, we propose to refine the mineralogical characterization
of Fe-oxides and oxyhydroxides from ferruginous duricrusts
on sub-millimeter (ca. 500 µm), undisturbed grains prior to
dating the same grains by (U−Th)/He method. On two con-
trasting natural samples from a Brazilian pisolitic duricrust
(Alto Paranaíba region, Minas Gerais State), the XRD_rotat
patterns are compared to the better-resolved XRD_synch pat-
terns. Related data allowed us to determine parameters that
are useful to recognize distinct generations of iron phases
(i.e., mean coherent domain (MCD) sizes and Al substi-
tution rate) and the weight percentage (wt %) ratio of the
main phases using Rietveld refinement analysis (Bish and
Post, 1993). Indeed, Al is a typical substitutional impurity
in hematite (up to 15 mol %) and goethite (up to 33 mol %)
and thus is due to specific conditions of formation, for exam-
ple related to the dissolution of kaolinite while the iron ox-
ide crystallizes (Schwertmann et al., 1979; Schulze, 1984).
Consequently, the Al substitution rate can define different
populations of Fe-oxides that can be subsequently dated by
the (U−Th)/He method and potentially be assimilated as
distinct generations. The MCD size is fully related to the
diffraction process and should be regarded as the minimum
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grain size, as a crystallite may potentially contain several
MCDs separated by extended defects. In addition, Al con-
tent in goethite influences the He retention and the correc-
tion factor (Bassal et al., 2022). Second, using this method-
ology, the (U−Th)/He ages of the cortex and core of the
pisolitic samples were determined and discussed as an exam-
ple. Pisolites are frequently observed in lateritic ferruginous
duricrusts, may exhibit contrasting mineralogy between the
core and cortex, and are thus relevant for the two objectives
of this study. This methodology is shown to be appropriate to
identify and quantify different Fe-oxides and oxyhydroxides
in dated grains and also potentially to reveal mineral contam-
inants.

2 Material and methods

2.1 Sampling site

A lateritic ferruginous duricrust profile (∼ 1100 m elevation)
developed on relict low-relief uplands in the tropical Brazil-
ian continental interior, Alto Paranaíba region (Minas Gerais
State, Brazil), was chosen for sampling (Fig. 1). It is formed
at the expense of pyroclastic and epiclastic rocks from the
Mata da Corda group (upper Cretaceous) (CPRM, 2014).
Despite being an important tropical Brazilian area of oc-
currence of thick lateritic profiles including duricrusts (Mar-
ques et al., 2021), no weathering geochronological data are
available yet. The climate of the study area is Aw (Köppen–
Geiger’s classification), characterized by warm and dry win-
ters and moist and warm summers. The average annual rain-
fall is 1600 mm, and the mean annual temperature is 22 ◦C
(Oliveira et al., 2020).

The morphological description of the profile was car-
ried out based on McFarlane (1976), Tardy (1993), and Al-
eva (1994), and then non-disturbed samples were taken from
all the described layers. Based on the morphological de-
scription at the fieldwork and laboratory, the pisolitic facies,
which is often encountered in lateritic ferruginous duricrusts
(Nahon, 1991; Tardy, 1993), was chosen due to being struc-
turally suitable for dating, and also because it presented a
usual complexity or heterogeneity allowing us to carry out
our methodological approach.

2.2 Selection and preparation of samples

The morphological characteristics of a hand specimen from
the pisolitic facies were observed and described using a
binocular microscope. The populations of Fe-oxides were
identified based on texture, color, and morphology (Tardy,
1993), and then the pisolites were isolated. The semi-
quantitative composition of a complete pisolite was ana-
lyzed by a Zeiss Ultra55 SEM with a FEG-Schottky elec-
tronic source coupled with an EDS. The working distance
was 19.6 mm, and the acceleration voltage was 15 kV.

Another pisolite with similar morphological characteris-
tics and belonging to the same identified population was sam-
pled using a diamond micro-drill to divide the cortex and
core. Grains (ca. 500 µm large) were carefully selected from
the cortex and core using an optical microscope. Some of the
grains were prepared by hand grinding using a mortar and
pestle and then homogenized and sieved at 100 µm in order
to obtain powder samples (∼ 0.50 mg). In the other selected
grains (∼ 0.10 mg), no preparation was carried out.

2.3 X-ray diffraction data collection and analysis

Both powder samples and single polycrystalline grain sam-
ples from the pisolitic cortex and core were analyzed for
their mineralogical composition using XRD. Samples were
loaded in borosilicate capillaries either as powder fillings or
as inserted grains. Laboratory X-ray experiments were per-
formed at the X-ray diffraction platform of the Institut de
Minéralogie, de Physique des Matériaux et de Cosmochimie
(IMPMC), Sorbonne Université (Paris, France). The single
polycrystalline grain samples from the pisolitic core were
first analyzed using a Panalytical XpertPro MPD two-circle
diffractometer (Co sealed tube in Debye–Scherrer transmis-
sion geometry – λKα1= 1.789010 Å, λKα2= 1.792900 Å
– at 45 keV and 40 mA, with a range scan of 3–90◦ 2θ and a
step size of 0.03◦ 2θ s−1). The signal collected from the grain
was too low, even after several hours of exposure, and even
the powder in the capillary exhibited noise after 15 h count-
ing (Fig. S1 in the Supplement). Therefore, more intense and
collimated sources were required to analyze small grains in
transmission geometry.

A Rigaku MM007HF diffractometer equipped with Vari-
max focusing optics, a RAXIS4++ image plate detector
placed at a distance of 200 mm from the sample, and a Mo ro-
tating anode (λKα1= 0.709319 Å and λKα2= 0.713609 Å)
at 50 keV and 24 mA were used, with a range scan of 3 to
45◦ 2θ and the acquisition time of 60 min. The Fit2D pro-
gram (Hammersley, 2016) was used for the integration of 2D
images into 1D patterns after a calibration with LaB6 stan-
dard. Rotating anode generators are one of the most powerful
X-ray sources available in the laboratory. In these experimen-
tal settings operating under a high vacuum, a cooled rotat-
ing surface is continuously irradiated by an intense electron
beam (Fig. 2), resulting in an improved signal-to-noise ratio
and in the possibility to analyze small samples.

Higher X-ray fluxes require the use of a synchrotron
beamline. Therefore, XRD_synch patterns were collected on
the same grains at the CRISTAL beamline of the SOLEIL
Synchrotron (Saint-Aubin, France). We used the two-circle
diffractometer of the CRISTAL beamline equipped with a
MYTHEN2 X 9K detector (DECTRIS). The measurements
were performed in continuous mode at 17 keV (0.72896 or
0.727913 Å) using 5 min exposure time, with a scan range of
3–65◦ 2θ and a scan speed of 0.04◦ 2θ s−1.
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Figure 1. Ferruginous duricrust profile and pisolitic facies. (a) Location of the Fe duricrust profile in a Brazilian landscape, (b) distinct
horizons of the profile, (c) pisolitic facies, (d) SEM (backscattered electrons) picture of the internal structure of a pisolite, and (e) contrasting
compositional variation from the core to cortex. The white line in the SEM image in (d) indicates the transect analyzed and shown in (e).

Rietveld refinements of the multiphase XRD patterns
were performed with the FullProf software (Rodriguez-
Carvajal, 1993) and included hematite, goethite, kaolinite,
and anatase as mineral phases. Starting crystal structure data
were taken from Finger and Hazen (1980), Gualtieri and
Venturelli (1999), Bish and Von Dreele (1989), and Howard
et al. (1991), respectively. Scale factors, cell parameters,

isotropic pseudo-Voigt line-profile functions (Thompson–
Cox–Hastings), and overall B factors were first refined for
the four phases. The peak widths were significantly larger
than the instrument resolution (∼ 0.1◦ 2θ ). The instrumental
resolution function (IRF) was determined over the 2θ range
measured from the LaB6 crystallographic standard Rietveld
refinement. Assuming that the Lorentzian part of the peak
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Figure 2. Diagram (not to scale) of the rotating anode X-ray diffraction device. Samples are inserted in a borosilicate glass capillary and
rotated during the X-ray data collection by an image plate detector at a distance of 200 mm from the sample. A microfocused beam is
provided by the multilayer mirror (78 µm) and the in-house-made collimator.

broadening is preferentially due to size effect and the Gaus-
sian part to the microstrain, Lorentzian isotropic size (Y ) and
Gaussian isotropic strain (U ) parameters were refined taking
into account the IRF. Then, to improve the fits, anisotropic
refinements of size parameters were carried out for hematite,
goethite, and kaolinite. Regarding hematite, the anisotropic
peak broadening has been modeled as a linear combination of
spherical harmonics, and every coefficient was refined. This
is used to calculate the average apparent sizes in the recip-
rocal lattice directions corresponding to every fitted Bragg
reflection by applying Scherrer’s formula (Klug and Alexan-
der, 1974). In order to reduce the number of parameters to
refine, we used a needle shape model elongated along the
b axis for the goethite and a simplified model of platelet
shape perpendicular to the c axis for the kaolinite. Regard-
ing needle-like coherent domain, the obtained value is Lor-
Siz=SZ× sin(8), where SZ is the refined parameter and 8
is the acute angle between the scattering vector (h,k, l) and
the vector defining the needle shape of domains. For platelet
coherent domains, LorSiz is assumed to be of the form Lor-
Siz=SZ× cos(8), where SZ is the refined parameter and8
is the acute angle between the scattering vector (h,k, l) and
the vector defining the platelet shape of domains.

The weight percentage (wt %) ratio of the main phases
was determined from Rietveld analysis of XRD_rotat and
XRD_synch patterns of the powders (only XRD_rotat) and
grains, following classical quantitative mineralogy proce-
dures assuming a sum of mineral weight fractions equal to
1 (Snyder and Bish, 1989). When possible, Al3+ for Fe3+

substitution rates in goethite and hematite of powder and
grain samples were determined by applying the empirical

formula of Schulze (1984) and Schwertmann et al. (1979)
using c and a unit-cell parameter values for goethite and
hematite, respectively. Occupancy factors for Al and Fe were
also refined to improve the fit quality but not used for esti-
mating Al substitution rate since occupancy factors can be
significantly affected by non-stoichiometry in soil iron oxy-
hydroxides that typically form at low temperature (Stanjek
and Schwertmann, 1992; Wolska and Schwertmann, 1993).
Therefore, we have been able to compare XRD_rotat and
XRD_synch data and evaluate the possibility of character-
izing the mineralogy of grains prior to dating.

The undisturbed grains from the pisolitic core and cortex
were subject to different exposure times (30, 60, 90 min) dur-
ing XRD_rotat recording to find the best conditions for X-ray
analysis and verify that (U−Th)/He dating was not biased by
He diffusion.

2.4 (U−Th)/He geochronology analysis

The grains previously analyzed at different acquisition times
by XRD_rotat were weighed, their size was measured, and
they were encapsulated into a Nb tube. Four grains from
each population without exposure to irradiation were also an-
alyzed in order to verify the reliability of our results. Grains
of ca. 500 µm size sampled from a larger hematite or goethite
environment were selected implying no significant natural
He losses by alpha ejection (Farley et al., 1996). We consid-
ered then that the He lost by alpha ejection is compensated
by alpha implantation from neighboring hematite or goethite
mass. The aliquots were dated by the (U−Th)/He method at
the GEOPS, Paris-Saclay University, France, following the
protocols described in Allard et al. (2018) and Gautheron et
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al. (2021). The Nb tubes were heated using a diode laser,
and color image analysis of visible light emission was con-
trolled with a camera in order to have a heating temperature
below 1000 ◦C to avoid any U loss by volatilization (Vas-
concelos et al., 2013; Hofmann et al., 2020). The 4He con-
tent of the encapsulated grains was analyzed using a Pfeiffer
Prisma Quadrupole mass spectrometer. More details can be
founded in Gautheron et al. (2021). Afterward, grains inside
Nb tubes were dissolved by adding 50 µL of 5 N HNO3 con-
taining 235U, 230Th, and 149Sm; 50 µL of 5N HNO3; 400 µL
of 40 % concentrated HCl; and 100 µL of 38 % HF into 5 mL
PFA capped vials (Savillex). The tightly closed vials were
heated at about 100 ◦C overnight. The opened-cap vials were
then placed on a hot plate at 100 ◦C for 2 h for complete
evaporation. Then, a 1.9 mL volume of 1 N HNO3 was added
into the vial, and the solution was heated at 100 ◦C to reflux
for 2 h. After cooling, 1.5 mL of the solution was taken and
diluted with 1 N HNO3 to reach a total volume of 3.4 mL,
and a volume of 3 mL was sampled for analysis. Finally,
238U, 232Th, and 147Sm contents were obtained by using a
high-resolution inductively coupled plasma mass spectrome-
ter (HR-ICP-MS; ELEMENT XR – Thermofisher Scientific).
An analytical error of 5 % at 1σ is expected for the two-step
analysis based on Durango apatite dating uncertainties asso-
ciated with the analysis made in parallel to the goethite.

For goethite and hematite grains, a correction related to
He loss, which is associated with the polycrystalline nature
of goethite and hematite samples, was applied. For goethite,
we used the recommendation of Bassal et al. (2022), where
the He loss correction is dependent on the alpha recoil dam-
age dose, calculated with the U–Th–Sm content and the
(U−Th)/He age or the Al content. In this case, we used a
correction of 15± 10 % as the goethite grains are character-
ized by an alpha damage dose of ∼ 4× 1014 α g−1, and the
Al content is< 10 % (Table 1). By contrast, for the mixing of
hematite and goethite, we applied a correction factor of 10 %
with an associated error of 10 %, which means the correction
factor for pure hematite and goethite (Heller et al., 2022).

3 Results and discussion

3.1 Morphological description

The ferruginous duricrust profile of the studied site (see
Fig. 1a for location) comprises a ferruginous duricrust stricto
sensu (∼ 4 m) transitioning upwards to a pisolite-rich (∼ 1 m)
and nodular indurated zone (∼ 0.3 m) (Fig. 1b). The pisolites
are well-formed, irregular in size and shape, and range from
5 to 10 mm in diameter (Fig. 1c). They are linked together
by a matrix composed of goethite, kaolinite, and quartz (Na-
hon, 1976; Tardy and Nahon, 1985; Tardy, 1993). The piso-
lites present a concentric yellow-brown cortex that devel-
ops at the boundary of the purple-red core with a ferrug-
inized zone (i.e., transition zone) between them. The well-

developed concentric cortex presents an alternation of light
and dark banded zones (Fig. 1d), where the light rings con-
tain a higher Al and Si than Fe content (Fig. 1e), as often
observed for pisolites from duricrusts (Nahon, 1976; McFar-
lane, 1983; Amouric et al., 1986; Anand and Gilkes, 1987).

3.2 XRD analysis of the core and cortex from the
pisolitic facies

3.2.1 Rotating anode XRD patterns

Various assays of the XRD_rotat acquisition of grain samples
from both pisolitic core and cortex were carried out using 30,
60, and 90 min exposure times in order to evaluate the qual-
ity of signal to noise in XRD patterns and to question the
influence on He loss by diffusion and (U−Th)/He age. The
XRD_rotat patterns of all samples were similar with a signifi-
cantly high signal-to-noise ratio (Fig. S2). In addition, the ex-
cellent quality of the XRD_rotat patterns is clearly evidenced
by comparing standard XRD on capillaries for the grain and
the powder samples (Fig. S1). In particular, a 15 h collec-
tion pattern on a grain does not exhibit significant diffraction
peaks. A 60 min exposure time was chosen for XRD_rotat
as it provided good quality patterns for Rietveld refinement
analysis.

The XRD_rotat patterns for grain and powder samples
from the pisolitic core and cortex are shown in Fig. 3, with
assigned mineral contributions. The grain and powder XRD
patterns were predominantly similar, indicating that both
types of sample preparation could be used to analyze the min-
eralogical composition for small amounts of sample (Fig. 3).
However, the intensity of some peaks appears different for
powder and grain samples, suggesting that their mineralogi-
cal content may not be fully equivalent. Indeed, the core sam-
ple shows a relative intensity of hematite (Hm) peaks slightly
greater in the grain pattern than in the powder preparation
(Fig. 3). This indicates a heterogeneous Hm content in the
selected core facies at micron scale and strongly justifies the
benefit of analyzing the mineralogy of an individual grain be-
fore (U−Th)/He geochronological analysis. Finally, we at-
test that XRD_rotat provides quality patterns on isolated ca.
500 µm grains without perturbation. In these conditions, the
grain can then be exposed to a next-step analysis with no risk
of data bias.

The XRD_rotat patterns indicate that hematite and
goethite are present in the pisolitic core, whereas goethite
and kaolinite are present in the cortex (Fig. 3). Although with
a weak concentration, kaolinite is revealed by the peaks at
5.69 and 11.37◦ 2θ (Dixon and Weeds, 1989), which are not
observed in the pisolitic core pattern. The absence of kaoli-
nite in the pisolitic core is often related to its epigenetic re-
placement by hematite, which becomes more aluminous with
the progressive dissolution of kaolinite (Nahon, 1976; Didier,
1983; Didier et al., 1983; Tardy and Nahon, 1985; Ambrosi
et al., 1986). The reflection peak at 22.2◦ 2θ related to (204)
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Figure 3. Rotating anode XRD patterns (60 min exposure time) for grain and powder samples from the pisolitic core and cortex of the
ferruginous duricrust. Gt: goethite; Hm: hematite; Kt: kaolinite; and An: anatase. Note that the quality of the grain pattern is similar to that
of the powder pattern. The red line represents the Rietveld fit, and the dashed black line is the experimental pattern. Grey areas correspond
to isolated Hm peaks that vary between grain and powder patterns.

hematite was not observed in the XRD_rotat patterns of the
pisolitic cortex, regardless of the sample preparation method,
indicating a low amount or absence of hematite, as confirmed
by the Rietveld refinement (Table 1). The mineralogical com-
position of the pisolitic core and cortex is consistent with
previous studies (Didier et al., 1985; Amouric et al., 1986;
Tardy, 1993).

In the grains, the weight percentage ratio of the main
phases indicates that the pisolitic core contains 41 % of
hematite, while the pisolitic cortex is predominantly com-
posed of goethite (i.e., 95 %) (Table 1). The mean coherent
domain (MCD) size from XRD_rotat is ca. 15 nm for core
goethite, ca. 12 nm for the core hematite, and ca. 23 nm for
the cortex goethite of grain samples (Table 1). The MCD
sizes for goethite and hematite crystals are in agreement with
those reported for other studies, with ranges within 10–40 nm
for goethite and from 4–10 nm for hematite (e.g., Tardy
and Nahon, 1985; Amouric et al., 1986; Anand and Gilkes,
1987). Al3+ for Fe3+ substitution rate, determined according
to Schulze (1984) for goethite and Schwertmann et al. (1979)
for hematite, is 9 % in core goethite, 1 % in core hematite,
and 4 % in cortex goethite of grain samples (Table 1), sug-
gesting a decrease in Al3+ for Fe3+ substitution rate in
goethite from the pisolitic core to cortex.

3.2.2 Synchrotron XRD patterns

The synchrotron X-ray diffraction (XRD_synch) patterns for
the grain samples from the pisolitic core and cortex were
similar to those obtained by XRD_rotat data concerning the
signal-to-noise ratio and identified mineral phases (Fig. 4).
As expected, the synchrotron XRD patterns show a better
resolution of diffraction peaks than XRD_rotat (Figs. 3 and
4). This can be related to the monochromatic wavelength
of the incident synchrotron radiation and higher brilliance,
which is useful for identifying minor constituents in a sample
and particles of small size (Lombi and Susini, 2009; Tsao et
al., 2013). Rietveld refinement provided a good fit for all the
peaks, except for those corresponding to kaolinite because
stacking disorder is not accounted for by the code (Fig. 4).

The weight percentage (wt %) ratio of the main phases
from XRD_synch data is consistent with that determined
with the XRD_rotat pattern (Table 1): a difference of 9 %
is observed in the core grain and ≤ 1 % for the cortex grain.
In addition, the MCD sizes were quite similar for both XRD
data sources (Table 1). Al3+ for Fe3+ substitution rates in
goethite for core and cortex samples were 12 % and 11 %,
respectively. For the hematite core it was 7 %. These values
are higher than those observed from XRD_rotat (Table 1).

Despite the different settings between XRD_rotat and
XRD_synch, both methods are suitable for investigating
the mineralogical composition of supergene phases in small
sample mass (ca. 500 µm size). The XRD_rotat, available
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Table 1. Mineralogical parameters determined for the core and cortex samples by Rietveld refinement of XRD_rotat (60 min exposure time)
and XRD_synch patterns: weight percentage (wt %) ratio of the main phases (numbers between parentheses are absolute errors), mean
coherent domain sizes of the hematite and goethite, and Al3+ for Fe3+ substitution rate in goethite and hematite.

Sample Hm Gt Kt An MCDa Alb

wt % wt % wt % wt % Gt Hm Gt Hm

nm % mol

XRD_rotat

Core grain 41 (3.8) 59 (4.9) 0 0 15 12 9 1
Core powder 29 (4.7) 71 (7.1) 0 0 15 12 9 1
Cortex grain 0.3 (0.2) 95 (3.5) 2.7 (0.3) 2.5 (0.4) 23 c 4 c

Cortex powder 0.6 (0.5) 92 (4.6) 5.9 (1.3) 1.9 (0.5) 27 c 4 c

XRD_synch

Core grain 32 (0.4) 68 (1.0) 0 nd 16 18 12 7
Cortex grain 0.7 (0.1) 94 (1.0) 5.3 (0.3) nd 30 c 11 c

a Mean coherent domain sizes according to Scherrer’s formula; b isomorphic substitution of Fe3+ by Al3+
according to Schulze (1984) for goethite and Schwertmann et al. (1979) for hematite. Hm: hematite; Gt: goethite; Kt:
kaolinite; An: anatase; nd: not determined; c absent.

Figure 4. Synchrotron XRD patterns for grain samples from the pisolitic core and cortex. Gt: goethite; Hm: hematite; Kt: kaolinite; and An:
anatase. The red line represents the Rietveld fit, and the dashed black line is the experimental pattern.

in laboratories, is powerful enough to analyze undisturbed
grains that can be subsequently used for dating and thus ap-
pears much more appropriate than conventional XRD analy-
sis that fails to analyze single grains (Fig. S1).

3.2.3 (U−Th)/He analysis

The effect of exposure time of XRD_rotat recording on ap-
parent age for pisolitic core and cortex is shown in Fig. 5, and

(U−Th)/He data are reported in Table 2. For each sample,
there is no representative shift in age related to the acquisi-
tion time of mineralogical data: the results show a good re-
producibility within the analytical uncertainty, i.e., 5 %. Fig-
ure 5 clearly shows that all the samples exhibit apparent age
clusters including the 0 exposure point, supporting the idea
that performing XRD_rotat mineralogical analysis prior to
(U−Th)/He geochronological analysis is possible without
impacting He content and age.
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Figure 5. (U−Th)/He data. (a) Ternary diagram indicating the He–
Th–U concentrations and the uncorrected (U−Th)/He ages (Ma)
for pisolitic core and cortex obtained in the R environment using
the Helioplot function (Vermeesch, 2010); and (b) evolution of the
corrected (U−Th)/He age as a function of the effective uranium
content (eU=U+ 0.238×Th+ 0.0012×Sm: Gastil et al., 1967;
Cooperdock et al., 2019).

U and Th concentrations clearly differ between the
pisolitic core and cortex, with higher values of both ele-
ments occurring in the pisolitic cortex. This suggests a rel-
ative U enrichment during the weathering of the Fe-oxides
and oxyhydroxides from the core (Fig. 5). A grain from the
pisolitic cortex (with 30 min exposure) contains lower U and
Th concentrations than other grains (Fig. 5b), which can be
explained by small differences between grains, as often oc-
curs for grains of supergene minerals belonging to the same
population (e.g., Vasconcelos et al., 2013; Monteiro et al.,
2014; Riffel et al., 2016; Heller et al., 2022). Nevertheless,
such a difference does not influence the age when compared
to the other grains of the same facies at the millimeter scale
(Fig. 5b).

Corrected (U−Th)/He ages for the pisolitic core range
from 30± 2.8 to 22± 2.0 Ma and pisolitic cortex from
15± 1.3 to 11± 1.0 Ma (Table 2). The apparent age reveals
that the pisolitic core is older than the pisolitic cortex, which

is in full agreement with the model that takes into account
the development of pisolites coming from different locali-
ties (e.g., Didier et al., 1983, 1985; Tardy and Nahon, 1985;
Nahon and Tardy, 1992). It must be pointed out that the
core age may be considered an average age of the hematite
and goethite, which raises the question of the relative age
of hematite and goethite in the core. This remains undeter-
mined. Indeed, although MCD sizes and Al3+ for Fe3+ sub-
stitution rate in goethite from the core and cortex indicate
that they formed in different conditions (Table 1), we have
no constraint on the age of the core goethite. According to
the (U−Th)/He age of the pisolitic core, a first formation
episode of ferruginous duricrusts at the Alto Paranaíba re-
gion (Minas Gerais State, Brazil) occurred at, or before, the
Oligocene, which indicates a period of optimal climate con-
ditions in the study area, as already reported in a surround-
ing area (Monteiro et al., 2014, 2018). Our results indicate,
in addition, that a secondary weathering process took place
from the middle Miocene (∼ 15 to 11 Ma) (Table 2). More
specifically, the Monteiro et al. (2014, 2018) studies provide
age histograms covering a large period within the Cenozoic
and exhibit a continuous occurrence of data in the short time
interval revealed in our study. Other studies also identified
distinct weathering episodes in Brazilian territory (e.g., Rif-
fel et al., 2016; Allard et al., 2018; Vasconcelos et al., 2019).
However, additional data are needed to further discuss the
evolution of the studied duricrust and to relate its evolution
to paleoclimates.

4 Conclusions

Mineralogy of supergene phases from core and cortex of a
pisolitic facies can be explored on submillimetric (≤ 500 µm)
single grains by XRD_rotat, which is a non-destructive
method, yielding high-quality patterns, while standard XRD
is not relevant. Rietveld refinement outputs such as phase
concentrations and mean coherent domain sizes showed re-
sults consistent with XRD_synch. The grains analyzed by
XRD_rotat do not exhibit X-ray exposure effects, and they
are then suitable for further analysis such as (U−Th)/He
dating. This approach could potentially be applied to other
mineral parageneses (e.g., Mn-oxides, jarosites) prior to dat-
ing.

Although investigated over a small series of grains, cor-
rected (U−Th)/He ages of pisolitic core ranging from ∼ 30
to 22 Ma revealed that a first formation episode of ferrugi-
nous duricrusts at the Alto Paranaíba region (Minas Gerais
State, Brazil) occurred at or before the Oligocene. A subse-
quent phase associated with a secondary weathering forma-
tion process took place from the middle Miocene, which is
highlighted by the formation of the goethitic pisolitic cor-
tex. Therefore, the apparent (U−Th)/He age reveals that the
pisolitic core is older than the pisolitic cortex, agreeing with
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the model previously proposed for the development of piso-
lites in duricrusts.
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