Articles | Volume 35, issue 6
https://doi.org/10.5194/ejm-35-1091-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-1091-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trace and ultratrace elements in spinel subgroup minerals of ultramafic rocks from the Voltri Massif (NW Italy): the influence of microstructure and texture
Silvia Fornasaro
CORRESPONDING AUTHOR
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, 56126, Pisa, Italy
Paola Comodi
Dipartimento di Fisica e Geologia, Università di Perugia, Piazza dell’Università, 1, 06123, Perugia, Italy
Laura Crispini
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa, 26, 16132, Genoa, Italy
Sandro Zappatore
Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni, Università di Genova, Via alla Opera Pia 11A, 16145, Genoa, Italy
Azzurra Zucchini
Dipartimento di Fisica e Geologia, Università di Perugia, Piazza dell’Università, 1, 06123, Perugia, Italy
Pietro Marescotti
Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa, 26, 16132, Genoa, Italy
Related authors
No articles found.
Valentin Basch, Martyn R. Drury, Oliver Plumper, Eric Hellebrand, Laura Crispini, Fabrice Barou, Marguerite Godard, and Elisabetta Rampone
Eur. J. Mineral., 33, 463–477, https://doi.org/10.5194/ejm-33-463-2021, https://doi.org/10.5194/ejm-33-463-2021, 2021
Short summary
Short summary
This paper investigates the possibility for melts to migrate within extensively deformed crystals and assesses the impact of this intracrystalline melt percolation on the chemical composition of the deformed crystal. We here document that the presence of melt within a crystal greatly enhances chemical diffusive re-equilibration between the percolating melt and the mineral and that such a process occurring at crystal scale can impact the large-scale composition of the oceanic lithosphere.
Susumu Umino, Gregory F. Moore, Brian Boston, Rosalind Coggon, Laura Crispini, Steven D'Hondt, Michael O. Garcia, Takeshi Hanyu, Frieder Klein, Nobukazu Seama, Damon A. H. Teagle, Masako Tominaga, Mikiya Yamashita, Michelle Harris, Benoit Ildefonse, Ikuo Katayama, Yuki Kusano, Yohey Suzuki, Elizabeth Trembath-Reichert, Yasuhiro Yamada, Natsue Abe, Nan Xiao, and Fumio Inagaki
Sci. Dril., 29, 69–82, https://doi.org/10.5194/sd-29-69-2021, https://doi.org/10.5194/sd-29-69-2021, 2021
Related subject area
Crystal chemistry
Evidence of the existence of the As4S6 molecule produced by light exposure of alacranite, As8S9
Incorporation and substitution of ions and H2O in the structure of beryl
Crystal chemistry and molar volume of potassic-chloro-hastingsite
Pilanesbergite: a new rock-forming mineral occurring in nepheline syenite from the Pilanesberg Alkaline Complex, South Africa
Thermodynamics of vivianite-group arsenates M3(AsO4)2 ⋅ 8H2O (M is Ni, Co, Mg, Zn, Cu) and chemical variability in the natural arsenates of this group
Genetic model for the color anomalies at the termination of pegmatitic gem tourmaline crystals from the island of Elba, Italy
Fe-bearing vanadium dioxide–paramontroseite: structural details and high-temperature transformation
Cation and anion ordering in synthetic lepidolites and lithian muscovites: influence of the OH ∕ F and Li ∕ Al ratios on the mica formation studied by NMR (nuclear magnetic resonance) spectroscopy and X-ray diffraction
Tin weathering experiment set by nature for 300 years: natural crystals of the anthropogenic mineral hydroromarchite from Creussen, Bavaria, Germany
New secondary phosphate mineral occurrences and their crystal chemistry, at the Hagendorf Süd pegmatite, Bavaria
Na-feldspar: temperature, pressure and the state of order
Luca Bindi, Paola Bonazzi, Laura Chelazzi, Matteo M. N. Franceschini, Giovanni O. Lepore, Marta Morana, Giovanni Pratesi, Alice Taddei, Matteo Zoppi, and Silvio Menchetti
Eur. J. Mineral., 36, 615–622, https://doi.org/10.5194/ejm-36-615-2024, https://doi.org/10.5194/ejm-36-615-2024, 2024
Short summary
Short summary
The As4S6 molecule was missing in the reported structures of crystalline As chalcogenides. Here we report the first occurrence of the As4S6 molecule together with the other known As4Sn (n = 3, 4, 5) molecules randomly replacing each other in the crystalline structure of a new monoclinic product obtained by the light-induced alteration of the mineral alacranite, As8S9.
Carina Silke Hanser, Tobias Häger, and Roman Botcharnikov
Eur. J. Mineral., 36, 449–472, https://doi.org/10.5194/ejm-36-449-2024, https://doi.org/10.5194/ejm-36-449-2024, 2024
Short summary
Short summary
The structure of beryl has been a topic of research for decades but is still not entirely understood. This especially applies to substitutions by Fe ions and the occupation of the channels of beryl by H2O and alkalis. The growing amount of studies makes it difficult to gain an overview on these topics. Therefore, this article reviews the current consensus and debates found in the literature.
Jared P. Matteucci, David M. Jenkins, and M. Darby Dyar
Eur. J. Mineral., 36, 247–266, https://doi.org/10.5194/ejm-36-247-2024, https://doi.org/10.5194/ejm-36-247-2024, 2024
Short summary
Short summary
To explore the compositional constraints on Cl incorporation into amphiboles, which can be used to characterize transient brines, amphiboles were synthesized with a broad range of Cl concentrations. Amphibole Cl was found to be dependent on the Fe2+,3+ content, but not the tetrahedral Al content or K / Na ratio. Cl incorporation was found to contract the unit cell along a and expand it along b and c. Molar volumes were derived for endmember Cl-amphiboles using multivariate regressions.
Fabrice Dal Bo, Henrik Friis, Marlina A. Elburg, Frédéric Hatert, and Tom Andersen
Eur. J. Mineral., 36, 73–85, https://doi.org/10.5194/ejm-36-73-2024, https://doi.org/10.5194/ejm-36-73-2024, 2024
Short summary
Short summary
We report the description and the characterization of a new mineral species, found in a rock sample from the geological formation called the Pilanesberg Complex, South Africa. This is a silicate mineral that contains a significant amount of sodium, calcium, iron, titanium and fluorine. Its atomic structure shows that it is related to other wöhlerite-group minerals. This work provides new insights into the crystallization conditions that ruled the formation of the Pilanesberg complex.
Juraj Majzlan, Anna Reichstein, Patrick Haase, Martin Števko, Jiří Sejkora, and Edgar Dachs
Eur. J. Mineral., 36, 31–54, https://doi.org/10.5194/ejm-36-31-2024, https://doi.org/10.5194/ejm-36-31-2024, 2024
Short summary
Short summary
Minerals formed by weathering of toxic materials, of either natural or human origin, act as storage containers for toxic elements. In this work, we investigated properties of common minerals which store and release arsenic in the environment. The data presented here will allow for improved modeling of the polluted sites and for better remediation strategies that could be applied to minimize the impact of the pollution on the environment.
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Nadia Curetti and Alessandro Pavese
Eur. J. Mineral., 35, 373–382, https://doi.org/10.5194/ejm-35-373-2023, https://doi.org/10.5194/ejm-35-373-2023, 2023
Short summary
Short summary
Paramontroseite is a V dioxide (a = 4.8960(14) Å, b = 9.395(3) Å, c = 2.9163(5) Å, V = 134.14(6) Å3; space group Pbnm). The sample under investigation (Prachovice mine, Czech Republic) bears 20 wt % of Fe2O3, and the Fe atoms occupy tetrahedral sites arranged in the
emptychannel along z. Thermal expansion is anisotropic. At T > 350 °C, paramontroseite decomposes and two new phases form: V2O5 (V-pentoxide) and V4Fe2O13 (Fe-tetrapolyvanadate).
Lara Sulcek, Bernd Marler, and Michael Fechtelkord
Eur. J. Mineral., 35, 199–217, https://doi.org/10.5194/ejm-35-199-2023, https://doi.org/10.5194/ejm-35-199-2023, 2023
Short summary
Short summary
Synthetic lepidolites and Li-muscovites were characterised by nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. Both Li and F / OH content influence the occurrence of the impurity phases. A solid solution series exists for lepidolites with polylithionite and trilithionite as endmembers but does not between trilithionite and muscovite. NMR investigations indicate there is a preference for incorporating fluorine and OH groups near Li-rich and Al-rich environments, respectively.
Natalia Dubrovinskaia, Maria Messingschlager, and Leonid Dubrovinsky
Eur. J. Mineral., 34, 563–572, https://doi.org/10.5194/ejm-34-563-2022, https://doi.org/10.5194/ejm-34-563-2022, 2022
Short summary
Short summary
In this work we report a new locality for the rare mineral hydroromarchite, Sn3O2(OH)2. It was found not in a submarine environment but in soil at the Saint James Church archaeological site in Creussen, Germany. A tin artefact (a tin button) was exposed to weathering in soil for about 300 years. We solved and refined its structure based on single-crystal X-ray diffraction analysis.
Erich Keck, Ian E. Grey, Colin M. MacRae, Stephanie Boer, Rupert Hochleitner, Christian Rewitzer, William G. Mumme, A. Matt Glenn, and Cameron Davidson
Eur. J. Mineral., 34, 439–450, https://doi.org/10.5194/ejm-34-439-2022, https://doi.org/10.5194/ejm-34-439-2022, 2022
Short summary
Short summary
First occurrences of the secondary phosphate minerals kenngottite, Mn32+Fe43+(PO4)4(OH)6(H2O)2; allanpringite, Fe33+(PO4)2(OH)3·5H2O; iangreyite, Ca2Al7(PO4)2(PO3OH)2(OH,F)15·8H2O; and nizamoffite, MnZn2(PO4)2(H2O)4, from the Hagendorf Süd pegmatite are reported, with characterisation of their crystal chemistry and phase associations.
Herbert Kroll, Hans Ulrich Bambauer, and Horst Pentinghaus
Eur. J. Mineral., 32, 427–441, https://doi.org/10.5194/ejm-32-427-2020, https://doi.org/10.5194/ejm-32-427-2020, 2020
Short summary
Short summary
Feldspars constitute about 60 % of the earth's crust. Na-feldspar, Na[AlSi3O8], is central to this mineral group. Its structural response to changing conditions of temperature and pressure is complicated. In particular, this applies to the distribution of Al and Si on the atomic sites of its crystal structure. We clarify how this distribution varies in thermodynamic equilibrium with external conditions and provide procedures that allow easy determination of the atomic distribution.
Cited articles
Abre, P., Cingolani, C., Zimmermann, U., and Cairncross, B.: Detrital chromian spinels from Upper Ordovician deposits in the Precordillera terrane, Argentina: a mafic crust input, J. S. Am. Earth Sci., 28, 407–418, https://doi.org/10.1016/j.jsames.2009.04.005, 2009
Barnes, S. J.: Chromite in komatiites, I. Magmatic controls on crystallization and composition, J. Petrol., 39, 1689–1720, https://doi.org/10.1093/petroj/39.10.1689, 1998.
Barnes, S. J.: Chromite in komatiites, II modification during Greenschist to mid-amphibolite facies metamorphism, J. Petrol., 41, 387–409, https://doi.org/10.1093/petrology/41.3.387, 2000.
Barnes, S. J. and Roeder, P. L.: The range of spinel compositions in terrestrial mafic and ultramafic rocks, J. Petrol., 42, 2279–2302, https://doi.org/10.1093/petrology/42.12.2279, 2001.
Beckett-Brown, C. E. and McDonald, A. M.: The Crystal-chemistry of Ni-bearing Spinel-group Minerals: Chemical, Geological, and Exploration Implications, Can. Mineral., 56, 77–94, https://doi.org/10.3749/canmin.1700054, 2018.
Bliss, N. W. and MacLean, W. H.: The paragenesis of zoned chromite from central Manitoba, in: Chromium: its Physicochemical Behavior and Petrologic Significance, 973–990, ISBN 0-08-019954-2, 1975.
Bonaccorso, G.: Machine Learning Algorithms: Popular algorithms for data science and machine learning, Second Edition, Packt Publishing, ISBN: 9781789347999, 2022.
Borghini, G., Rampone, E., Crispini, L., De Ferrari, R., and Godard, M.: Origin and emplacement of ultramafic–mafic intrusions in the Erro-Tobbio mantle peridotite (Ligurian Alps, Italy), Lithos, 94, 210–229, https://doi.org/10.1016/j.lithos.2006.06.014, 2007.
Bosi, F., Biagioni, C., and Pasero, M.: Nomenclature and classification of the spinel supergrop, Europ. J. Mineral., 31, 183–192, 2019.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001
Cannaò, E., Scambelluri, M., Agostini, S., Tonarini, S., and Godard, M.: Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy), Geochim. Cosmochim. Ac., 190, 115–133, https://doi.org/10.1016/j.gca.2016.06.034, 2016.
Capponi G., Crispini L., Federico L., and Malatesta C.: Geology of the Eastern Ligurian Alps: a review of the tectonic units, Ital. J. Geosci., 135, 157–169, https://doi.org/10.3301/IJG.2015.06, 2016.
Capponi, G. and Crispini, L.: Structural and metamorphic signature of alpine tectonics in the Voltri Massif (Ligurian Alps, northwestern Italy), Eclogae. Geol. Helv., 95, 31–32, 2002.
Capponi, G., Crispini, L., Federico, L., Cabella, R., Faccini, F., Ferraris, F., Firpo, M., Marescotti, P., Piazza, M., Scambelluri, M., Vetuschi Zuccolini, M., and Roccati, A.: Note illustrative al Foglio 212 “Spigno Monferrato” della Carta Geologica Regionale della Liguria, Regione Liguria, Dipartimento Ambiente, Genova, Italy, 144 pp., 2013.
Chen, F., Deng, J., Wang, Q., Huizenga, J. M., Li, G., and Gu, Y.: LA-ICP-MS trace element analysis of magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes, Ore. Geol. Rev., 117, 103309, https://doi.org/10.1016/j.oregeorev.2020.103309, 2020.
Christofides, G., Thimiatis, G., Koroneos, A., Sklavounos, S. N. S., and Eleftheriadis, G.: Mineralogy and chemistry of Cr-chlorites associated with chromites from Vavdos and Vasilika ophiolite complexes (Chalikidiki, Macedonia, N. Greece), Chem. Erde, 54, 151–166, 1994.
Colás, V., González-Jiménez, J. M., Griffin, W. L., Fanlo, I., Gervilla, F., O'Reilly, S. Y., and Proenza, J. A.: Fingerprints of metamorphism in chromite: new insights from minor and trace elements, Chem. Geol., 389, 137–152, https://doi.org/10.1016/j.chemgeo.2014.10.001, 2014.
Comodi, P., Boffa Ballaran, T., Zanazzi, P. F., Capalbo, C., Zanetti, A., and Nazzareni, S.: The effect of oxo-component on the high-pressure behavior of amphiboles, Am. Mineral., 95, 1042–1051, https://doi.org/10.2138/am.2010.3429, 2010.
Dare, S. A., Barnes, S. J., Beaudoin, G., Méric, J., Boutroy, E., and Potvin-Doucet, C.: Trace elements in magnetite as petrogenetic indicators, Miner. Deposita, 49, 785–796, https://doi.org/10.1007/s00126-014-0529-0, 2014.
Deditius, A. P., Reich, M., Simon, A. C., Suvorova, A., Knipping, J., Roberts, M. P., and Saunders, M.: Nanogeochemistry of hydrothermal magnetite, Contrib. Mineral. Petrol., 173, 1–20, https://doi.org/10.1007/s00410-018-1474-1, 2018.
Descamps, E. C. T., Abbé, J.-B., Pignol, D., and Lefèvre, C. T.: Controlled biomineralization of magnetite in bacteria, in: Iron oxides. From nature to applications, edited by: Faivre, D., Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany, 99–116, ISBN 978-3-527-33882-5, 2016.
Diella, V., Ferrario, A., and Rossetti, P.: The magnetite ore deposits of the southern Aosta valley: chromitite transformed during an Alpine metamorphic event, Ofioliti, 19, 247–256, 1994.
Droop, G. T. R.: A general equation for estimating Fe concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 51, 431–435, 1987.
Duivenvoorden, L. J., Roberts, D. T., and Tucker, G. M.: Serpentine geology links to water quality and heavy metals in sediments of a stream system in central Queensland, Austr. Environ. Earth. Sci., 76, 1–14, https://doi.org/10.1007/s12665-017-6615-8, 2017.
Dupuis, C. and Beaudoin, G.: Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types, Miner. Deposita, 46, 319–335, https://doi.org/10.1007/s00126-011-0334-y, 2011.
Evans, B. and Frost, R. B.: Chrome spinel in progressive metamorphism: a preliminary analysis, Geochim. Cosmochim. Ac., 39, 959–972, 1975.
Federico, L., Crispini, L., Malatesta, C., Torchio, S., and Capponi, G.: Geology of the Pontinvrea area (Ligurian Alps, Italy): structural setting of the contact between Montenotte and Voltri units, J. Maps, 11, 101–113, https://doi.org/10.1080/17445647.2014.945749, 2015.
Fontana, E., Panseri, M., and Tartarotti, P.: Oceanic relict textures in the Mount Avic serpentinites, Western Alps, Ofioliti, 33, 105–118, 2008.
Fornasaro, S., Comodi, P., Crispini, L., Malatesta, C., Zucchini, A., and Marescotti, P.: Potentially toxic elements distribution in the serpentinized and deformed ultramafic rocks from the Voltri Massif (NW, Italy), Period. Mineral., 88, 259–276, https://doi.org/10.2451/2019PM874, 2019.
Frank, E., Hall, M. A., and Witten, I. H.: The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, Morgan Kaufmann, 4th Edn., ISBN 1-55860-552-5, 2016.
Gahlan, H. A. and Arai, S.: Genesis of peculiarly zoned Co, Zn and Mn-rich chromian spinel in serpentinite of Bou-Azzer ophiolite, Anti-Atlas, Morocco, J. Miner. Petrol. Sci., 102, 69–85, https://doi.org/10.2465/jmps.060212, 2007.
Gargiulo, M. F., Bjerg, E. A., and Mogessie, A.: Spinel group minerals in metamorphosed ultramafic rocks from Río de Las Tunas belt, Central Andes, Argentina, Geol. Acta, 11, 133–148, https://doi.org/10.1344/105.000001836, 2013.
Garuti, G., Proenza, J. A., and Zaccarini, F.: Distribution and mineralogy of platinum-group elements in altered chromitites of the Campo Formoso layered intrusion (Bahia State, Brazil): Control by magmatic and hydrothermal processes, Miner. Petrol., 89, 159–188, https://doi.org/10.1007/s00710-006-0141-9, 2007.
Gervilla, F., Padrón-Navarta, J. A., Kerestedjian, T., Sergeeva, I., González-Jiménez, J. M., and Fanlo, I.: Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process, Contrib. Mineral. Petrol., 164, 643–657, https://doi.org/10.1007/s00410-012-0763-3, 2012.
Gonzalez-Jiménez, J. M., Kerestedjian, T., Fernández, J. A. P., and Linares, F. G.: Metamorphism on chromite ores from the Dobromirtsi ultramafic massif, Rhodope mountains (SE Bulgaria), Geol. Acta, 7, 413–429, https://doi.org/10.1344/104.000001447, 2009.
Grieco, G. and Merlini, A.: Chromite alteration processes within Vourinos ophiolite, Int. J. Earth Sci., 101, 1523–1533, https://doi.org/10.1007/s00531-011-0693-8, 2012.
Hodel, F., Macouin, M., Triantafyllou, A., Carlut, J., Berger, J., Rousse, S., and Trindade, R. I. F.: Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Cl-rich acidic hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, Anti-Atlas, Morocco), Precambrian Res., 300, 151–167, https://doi.org/10.1016/j.precamres.2017.08.005, 2017.
Irvine, T. N.: Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications, Can. J. Earth Sci., 4, 71–103, 1967.
Kimball, K. L.: Effects of hydrothermal alteration on the composition of chromian spinels, Contrib. Mineral. Petrol., 105, 337–346, 1990.
King, R. J.: Minerals explained 40, The spinels, Geol. Today, 20, 194–200, 2004.
Marescotti, P., Comodi, P., Crispini, L., Gigli, L., Zucchini, A., and Fornasaro, S.: Potentially Toxic Elements in Ultramafic Soils: A Study from Metamorphic Ophiolites of the Voltri Massif (Western Alps, Italy), Minerals, 9, 502, https://doi.org/10.3390/min9080502, 2019.
Mellini, M., Rumori, C., and Viti, C.: Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of “ferritchromit” rims and chlorite aureoles, Contrib. Mineral. Petrol., 149, 266–275, https://doi.org/10.1007/s00410-005-0654-y, 2005.
Merlini, A., Tartarotti, P., Grieco, G., Sansone, M., Rizzo, G., and Prosser, G.: Coupled ferritchromite and chromian-chlorite in mantle rocks: a comparison from circum-mediterranean ophiolites, Rend. Online Soc. Geol. It., 21, 305–307, 2012.
Messiga, B., Piccardo, G. B., and Ernst, W. G.: High pressure Eo-Alpine parageneses developed in magnesian metagabbros, Gruppo di Voltri, Western Liguria, Italy, Contrib. Mineral. Petrol., 83, 1–15, https://doi.org/10.1007/BF00373074, 1983.
Nadoll, P., Angerer, T., Mauk, J. L., French, D., and Walshe, J.: The chemistry of hydrothermal magnetite: A review, Ore Geol. Rev., 61, 1–32, https://doi.org/10.1016/j.oregeorev.2013.12.013, 2014.
Padovano, M., Piccardo, G. B., and Vissers, R. L.: Tectonic and magmatic evolution of the mantle lithosphere during the rifting stages of a fossil slow–ultraslow spreading basin: insights from the Erro–Tobbio peridotite (Voltri Massif, NW Italy), Geol. Soc. Lond. Spec. Publ., 413, 205–238, https://doi.org/10.1144/SP413.7, 2015.
Pagè, P. and Barnes, S. J.: Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada, Econ. Geol., 104, 997–1018, https://doi.org/10.2113/econgeo.104.7.997, 2009.
Palme, H. and O'Neill, H.: Cosmochemical estimates of mantle composition, Treat. Geochem., 2nd Edn., Elsevier, https://doi.org/10.1016/B978-0-08-095975-7.00201-1, 2014.
Peters, D., Pettke, T., John, T., and Scambelluri, M.: The role of brucite in water and element cycling during serpentinite subduction – Insights from Erro Tobbio (Liguria, Italy), Lithos, 360/361, 105431, https://doi.org/10.1016/j.lithos.2020.105431, 2020
Petrelli, M., Morgavi, D., Vetere, F., and Perugini, D.: Elemental imaging and petro-volcanological applications of an improved laser ablation inductively coupled quadrupole plasma mass spectrometry, Period. Mineral., 85, 25–39, https://doi.org/10.2451/2015PM0465, 2016.
Piccardo, G. B. and Vissers, R. L. M.: The pre-oceanic evolution of the Erro-Tobbio peridotite (Voltri Massif, Ligurian Alps, Italy), J. Geodyn., 43, 417–449, https://doi.org/10.1016/j.jog.2006.11.001, 2007.
Piccardo, G. B., Rampone, E., Romairone, A., Scambelluri, M., Tribuzio, R., and Beretta, C.: Evolution of the Ligurian Tethys: inference from petrology and geochemistry of the Ligurian Ophiolites, Period. Mineral., 70, 147–192, 2001.
Rampone, E., Romairone, A., Abouchami, W., Piccardo, G. B., and Hofmann, A. W.: Chronology, Petrology and Isotope Geochemistry of the Erro-Tobbio Peridotites (Ligurian Alps, Italy): Records of Late Palaeozoic Lithospheric Extension, J. Petrol., 46, 799–827, https://doi.org/10.1093/petrology/egi001, 2005.
Rollinson, H.: The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions, Contrib. Mineral. Petr., 156, 273–288, https://doi.org/10.1007/s00410-008-0284-2, 2008.
Romero-Freire, A., Olmedo-Cobo, J., and Gómez-Zotano, J.: Elemental concentration in serpentinitic soils over ultramafic bedrock in Sierra Bermeja (Southern Spain), Minerals, 8, 447, https://doi.org/10.3390/min8100447, 2018.
Saumur, B. M. and Hattori, K.: Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio San Juan Complex, Dominican Republic, Mineral. Mag., 77, 117–136, https://doi.org/10.1180/minmag.2013.077.1.11, 2013.
Scambelluri, M., Strating, E. H., Piccardo, G. B., Vissers, R. L. M., and Rampone, E.: Alpine olivine‐and titanian clinohumite‐bearing assemblages in the Erro‐Tobbio peridotite (Voltri Massif, NW Italy), J. Metamor. Geol., 9, 79–91, https://doi.org/10.1111/j.1525-1314.1991.tb00505.x, 1991.
Scarsi, M., Malatesta, C., and Fornasaro, S.: Lawsonite-bearing eclogite from a tectonic mélange in the Ligurian Alps: new constraints for the subduction plate-interface evolution, Geol. Mag., 155, 280–297, https://doi.org/10.1017/S0016756817000395, 2018.
Singh, A. K. and Singh, R. B.: Genetic implications of Zn-and Mn-rich Cr-spinels in serpentinites of the Tidding Suture Zone, eastern Himalaya, NE India. Geol. J., 48, 22–38, https://doi.org/10.1002/gj.2428, 2013.
Teixeira, R. J., Neiva, A. M., and Gomes, M. E.: Chromian spinels and magnetite of serpentinites, steatitic rocks, tremolite asbestos and chloritites from Bragança massif, northeastern Portugal, Period. Mineral., 81, https://doi.org/10.2451/2012PM0014, 2012.
Warr, L. N.: IMA-CNMNC approved minerals symbols, Mineral. Mag., 85, 291–320, http://https://doi.org/10.1180/mgm.2021.43, 2021.
Short summary
Using an innovative multi-analytical approach, we investigated the trace elements composition of spinel-group minerals in different ultramafic rocks from the Voltri Massif (Central Liguria, NW Italy). The knowledge of the trace elements within these minerals has an interesting implication both in petrological, mineralogical, and geochemical studies as well as environmental fields, since these elements can be potentially toxic and released into the environment during weathering processes.
Using an innovative multi-analytical approach, we investigated the trace elements composition of...