Articles | Volume 34, issue 6
https://doi.org/10.5194/ejm-34-549-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-34-549-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relatively oxidized conditions for diamond formation at Udachnaya (Siberia)
Luca Faccincani
CORRESPONDING AUTHOR
Department of Physics and Earth Sciences, University of Ferrara, Via
Saragat 1, 44121 Ferrara, Italy
Valerio Cerantola
Department of Earth and Environmental Sciences, Università degli
Studi di Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
ESRF – the European Synchrotron Radiation Facility, CS40220, 38043 Grenoble CEDEX 9,
France
Fabrizio Nestola
Department of Geosciences, University of Padua, Via Gradenigo 6, 35131
Padua, Italy
Paolo Nimis
Department of Geosciences, University of Padua, Via Gradenigo 6, 35131
Padua, Italy
Luca Ziberna
Department of Mathematics and Geoscience, University of Trieste, Via
Weiss 2, 34128 Trieste, Italy
Bayerisches Geoinstitut, University of Bayreuth,
Universitätsstraße 30, 95440 Bayreuth, Germany
Leonardo Pasqualetto
Department of Geosciences, University of Padua, Via Gradenigo 6, 35131
Padua, Italy
Aleksandr I. Chumakov
ESRF – the European Synchrotron Radiation Facility, CS40220, 38043 Grenoble CEDEX 9,
France
Jeffrey W. Harris
School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12
8QQ, UK
Massimo Coltorti
Department of Physics and Earth Sciences, University of Ferrara, Via
Saragat 1, 44121 Ferrara, Italy
Related authors
No articles found.
Cristian Biagioni, Anatoly V. Kasatkin, Fabrizio Nestola, Radek Škoda, Vladislav V. Gurzhiy, Atali A. Agakhanov, and Natalia N. Koshlyakova
Eur. J. Mineral., 36, 529–540, https://doi.org/10.5194/ejm-36-529-2024, https://doi.org/10.5194/ejm-36-529-2024, 2024
Short summary
Short summary
Zvěstovite-(Fe) is a new, Ag-rich, member of the tetrahedrite group, the most widespread sulfosalts in ore deposits. Its discovery stresses the chemical variability of this mineral group, allowing for a better understanding of the structural plasticity of these compounds, which are able to host a plethora of different elements typical of hydrothermal environments.
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023, https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary
Short summary
We have developed the thermodynamic theory of the properties of inclusions consisting of more than one phase, including inclusions containing solids plus a fluid. We present a software utility that enables for the first time the entrapment conditions of multiphase inclusions to be determined from the measurement of their internal pressure when that is measured in a laboratory.
Yanjuan Wang, Fabrizio Nestola, Huaikun Li, Zengqian Hou, Martha G. Pamato, Davide Novella, Alessandra Lorenzetti, Pia Antonietta Antignani, Paolo Cornale, Jacopo Nava, Guochen Dong, and Kai Qu
Eur. J. Mineral., 35, 361–372, https://doi.org/10.5194/ejm-35-361-2023, https://doi.org/10.5194/ejm-35-361-2023, 2023
Short summary
Short summary
In this work we have applied the elastic geobarometry approach to a Chinese diamond in order to determine the depth of formation of an olivine-bearing diamond. Together with the temperature of residence at which the diamond resided in the mantle, we were able to discover that the diamond was formed at about 190 km depth. Beyond the geological meaning of our results, this work could be a reference paper for future works on Chinese diamonds using elastic geobarometry.
Yanjuan Wang, Fabrizio Nestola, Zengqian Hou, Xiangping Gu, Guochen Dong, Zhusen Yang, Guang Fan, Zhibin Xiao, and Kai Qu
Eur. J. Mineral., 35, 65–74, https://doi.org/10.5194/ejm-35-65-2023, https://doi.org/10.5194/ejm-35-65-2023, 2023
Short summary
Short summary
Bobtraillite is an extremely rare cyclosilicate with a unique composition and complex structure. In this paper, we describe the second occurrence of the extremely rare complex zirconium silicate. The results suggest that the ideal formula of bobtraillite could be written as (Na, □)12(□, Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O.
Claudia Agnini, Martha G. Pamato, Gabriella Salviulo, Kim A. Barchi, and Fabrizio Nestola
Adv. Geosci., 53, 155–167, https://doi.org/10.5194/adgeo-53-155-2020, https://doi.org/10.5194/adgeo-53-155-2020, 2020
Short summary
Short summary
This work provides updated scenario on the underrepresentation of women in the Italian university system in the area of geosciences in the last two decades. Data highlight an increase in the number of female full and associate professors whereas the low number of female non-permanent researchers raises strong concerns. Over different areas of geosciences, Paleontology represents the only field in which the gap is filled whereas all the other disciplines suffer a gender imbalance.
Related subject area
Mantle petrology and geochemistry
Review of melt inclusions in lunar rocks: constraints on melt and mantle composition and magmatic processes
First measurements of the Fe oxidation state of spinel inclusions in olivine single crystals from Vulture (Italy) with the in situ synchrotron micro-Mössbauer technique
Effect of oxygen fugacity on the storage of water in wadsleyite and olivine in H and H–C fluids and implications for melting atop the transition zone
Iron oxidation state in serpentines and magnesian chlorites of subduction-related rocks
Ab initio thermal expansion and thermoelastic properties of ringwoodite (γ-Mg2SiO4) at mantle transition zone conditions
Youxue Zhang
Eur. J. Mineral., 36, 123–138, https://doi.org/10.5194/ejm-36-123-2024, https://doi.org/10.5194/ejm-36-123-2024, 2024
Short summary
Short summary
I review investigations of melt inclusions in lunar rocks in the last 53 years. They can be divided into two stages. In the first stage (1970s), melt inclusion studies focused on major oxides and magma evolution, including the discovery of silicate liquid immiscibility. In the second stage (since 2010), melt inclusion studies have provided key constraints on water and other volatiles on the Moon and have been instrumental in the paradigm shift from a “bone-dry” Moon to a fairly wet Moon.
Giulia Marras, Gabriele Carnevale, Antonio Caracausi, Silvio Giuseppe Rotolo, and Vincenzo Stagno
Eur. J. Mineral., 35, 665–678, https://doi.org/10.5194/ejm-35-665-2023, https://doi.org/10.5194/ejm-35-665-2023, 2023
Short summary
Short summary
We present the first determinations of the Fe oxidation state of tiny spinel inclusions (<40 µm) in olivine from a wehrlitic lapillus collected at Mt. Vulture (Italy) via in situ synchrotron Mössbauer spectroscopy. These data, along with the chemistry of olivine and (rare) orthopyroxene, allowed us to calculate the logfO2 of the wehrlitic sample. This study opens the possibility to retrieve the redox state of mantle xenoliths using the Fe3+ / ∑Fe and chemistry of spinel inclusions in olivine.
Nathalie Bolfan-Casanova, Loïs Martinek, Geeth Manthilake, Maximilien Verdier-Paoletti, and Paul Chauvigne
Eur. J. Mineral., 35, 549–568, https://doi.org/10.5194/ejm-35-549-2023, https://doi.org/10.5194/ejm-35-549-2023, 2023
Short summary
Short summary
This work shows that even under the low oxygen fugacities prevailing in the deep upper mantle and transition zone, around 410 km depth, the storage capacity in the nominally anhydrous mineral olivine and its high-pressure polymorph, wadsleyite, is still substantial, with up to 0.8–1 wt % at the iron-wüstite buffer and 1300–1400 °C for wadsleyite, even in the presence of carbon.
Bruno Reynard, Clémentine Fellah, and Catherine McCammon
Eur. J. Mineral., 34, 645–656, https://doi.org/10.5194/ejm-34-645-2022, https://doi.org/10.5194/ejm-34-645-2022, 2022
Short summary
Short summary
Serpentines, magnesian clay-like minerals formed in subduction zones, contain iron in either ferrous or ferric form. The oxidation state of the iron form controls the composition of fluids that form when they are destabilized by heating. Results obtained here with Mössbauer spectroscopy are compared with X-ray spectroscopy and shown to be more reliable for serpentines and magnesium-rich chlorites. Fluids released by serpentines in subduction may be less oxidized than previously thought.
Donato Belmonte, Mattia La Fortezza, and Francesca Menescardi
Eur. J. Mineral., 34, 167–182, https://doi.org/10.5194/ejm-34-167-2022, https://doi.org/10.5194/ejm-34-167-2022, 2022
Short summary
Short summary
We carried out theoretical calculations of the vibrational and thermophysical properties of Mg2SiO4 ringwoodite, a major mineral phase of the Earth's mantle transition zone. We tried to understand why current data on volume thermal expansion are still controversial by performing a detailed analysis of vibrational spectra. We proposed a reliable parametrization for thermal expansivity of ringwoodite in the transition zone which could be useful for numerical simulations of mantle convection.
Cited articles
Angel, R. J. and Nestola, F.: A century of mineral structures: How well do
we know them?, Am. Mineral., 101, 1036–1045,
https://doi.org/10.2138/am-2016-5473, 2016.
Ashchepkov, I. V., Vladykin, N. N., Ntaflos, T., Kostrovitsky, S. I.,
Prokopiev, S. A., Downes, H., Smelov, A. P., Agashev, A. M., Logvinova, A.
M., Kuligin, S. S., Tychkov, N. S., Salikhov, R. F., Stegnitsky, Y. B.,
Alymova, N. V., Vavilov, M. A., Minin, V. A., Babushkina, S. A.,
Ovchinnikov, Y. I., Karpenko, M. A., Tolstov, A. V., and Shmarov, G. P.:
Layering of the lithospheric mantle beneath the Siberian Craton: Modeling
using thermobarometry of mantle xenolith and xenocrysts, Tectonophysics, 634, 55–75,
https://doi.org/10.1016/j.tecto.2014.07.017, 2014.
Ashchepkov, I. V., Kuligin, S. S., Vladykin, N. V., Downes, H., Vavilov, M.
A., Nigmatulina, E. N., Babushkina, S. A., Tychkov, N. S., and Khmelnikova,
O. S.: Comparison of mantle lithosphere beneath early Triassic kimberlite
fields in Siberian craton reconstructed from deep-seated xenocrysts, Geosci.
Front., 7, 639–662, https://doi.org/10.1016/j.gsf.2015.06.004, 2016.
Aulbach, S. and Stachel, T.: Evidence for oxygen-conserving diamond
formation in redox-buffered subducted oceanic crust sampled as eclogite,
Nat. Commun., 13, 1924, https://doi.org/10.1038/s41467-022-29567-z, 2022.
Aulbach, S. and Stagno, V.: Evidence for a reducing Archean ambient mantle
and its effects on the carbon cycle, Geology, 44, 751–754,
https://doi.org/10.1130/G38070.1, 2016.
Ballhaus, C.: Redox states of lithospheric and asthenospheric upper mantle, Contrib. Mineral. Petr., 114, 331–348, https://doi.org/10.1007/BF01046536, 1993.
Ballhaus, C., Berry, R. F., and Green, D. H.: High pressure experimental
calibration of the olivine-orthopyroxene-spinel oxygen geobarometer:
implications for the oxidation state of the upper mantle, Contrib.
Mineral. Petr., 107, 27–40, https://doi.org/10.1007/BF00311183, 1991.
Barnes, S. J. and Roeder, P. L.: The Range of Spinel Compositions in
Terrestrial Mafic and Ultramafic Rocks, J. Petrol., 42, 2279–2302,
https://doi.org/10.1093/petrology/42.12.2279, 2001.
Brey, G. P. and Kohler, T.: Geothermobarometry in Four-phase Lherzolites II.
New Thermobarometers, and Practical Assessment of Existing Thermobarometers,
J. Petrol., 31, 1353–1378, https://doi.org/10.1093/petrology/31.6.1353,
1990.
Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S.,
Blundy, J., and Gobbo, L.: Mineral inclusions in sublithospheric diamonds
from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths,
carbonated melts and primary kimberlite magmatism, Contrib. Mineral.
Petr., 160, 489–510, https://doi.org/10.1007/s00410-010-0490-6, 2010.
Bureau, H., Frost, D. J., Bolfan-Casanova, N., Leroy, C., Esteve, I., and
Cordier, P.: Diamond growth in mantle fluids, Lithos, 265, 4–15,
https://doi.org/10.1016/j.lithos.2016.10.004, 2016.
Canil, D.: Vanadium in peridotites, mantle redox and tectonic environments:
Archean to present, Earth Planet. Sc. Lett., 195, 75–90,
https://doi.org/10.1016/S0012-821X(01)00582-9, 2002.
Canil, D. and O'Neill, H. S. C.: Distribution of Ferric Iron in some
Upper-Mantle Assemblages, J. Petrol., 37, 609–635,
https://doi.org/10.1093/petrology/37.3.609, 1996.
Creighton, S., Stachel, T., Matveev, S., Höfer, H., McCammon, C., and
Luth, R. W.: Oxidation of the Kaapvaal lithospheric mantle driven by
metasomatism, Contrib. Mineral. Petr., 157, 491–504,
https://doi.org/10.1007/s00410-008-0348-3, 2009.
Creighton, S., Stachel, T., Eichenberg, D., and Luth, R. W.: Oxidation state
of the lithospheric mantle beneath Diavik diamond mine, central Slave
craton, NWT, Canada, Contrib. Mineral. Petr., 159, 645–657,
https://doi.org/10.1007/s00410-009-0446-x, 2010.
Day, H. W.: A revised diamond-graphite transition curve, Am. Mineral., 97,
52–62, https://doi.org/10.2138/am.2011.3763, 2012.
de Wit, M. J. and Hart, R. A.: Earth's earliest continental lithosphere,
hydrothermal flux and crustal recycling, Lithos, 30, 309–335,
https://doi.org/10.1016/0024-4937(93)90043-C, 1993.
Doucet, L. S., Ionov, D. A., and Golovin, A. V.: The origin of coarse garnet
peridotites in cratonic lithosphere: new data on xenoliths from the
Udachnaya kimberlite, central Siberia, Contrib. Mineral. Petr., 165,
1225–1242, https://doi.org/10.1007/s00410-013-0855-8, 2013.
Dyar, M. D., Agresti, D. G., Schaefer, M. W., Grant, C. A., and Sklute, E.
C.: MÖSSBAUER SPECTROSCOPY OF EARTH AND PLANETARY MATERIALS, Annu. Rev.
Earth Pl. Sc., 34, 83–125,
https://doi.org/10.1146/annurev.earth.34.031405.125049, 2006.
Farrugia, L. J.: WinGX and ORTEP for Windows: an update, J. Appl.
Crystallogr., 45, 849–854, https://doi.org/10.1107/S0021889812029111, 2012.
Foley, S. F.: A Reappraisal of Redox Melting in the Earth's Mantle as a
Function of Tectonic Setting and Time, J. Petrol., 52, 1363–1391,
https://doi.org/10.1093/petrology/egq061, 2011.
Foley, S. F. and Fischer, T. P.: An essential role for continental rifts and
lithosphere in the deep carbon cycle, Nat. Geosci., 10, 897–902,
https://doi.org/10.1038/s41561-017-0002-7, 2017.
Frost, D. J. and McCammon, C. A.: The Redox State of Earth's Mantle, Annu.
Rev. Earth Pl. Sc., 36, 389–420,
https://doi.org/10.1146/annurev.earth.36.031207.124322, 2008.
Gao, L., Liu, S., Cawood, P. A., Hu, F., Wang, J., Sun, G., and Hu, Y.:
Oxidation of Archean upper mantle caused by crustal recycling, Nat. Commun.,
13, 3283, https://doi.org/10.1038/s41467-022-30886-4, 2022.
Goncharov, A. G., Ionov, D. A., Doucet, L. S., and Pokhilenko, L. N.:
Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic
lithospheric mantle: New data on peridotite xenoliths from the Udachnaya
kimberlite, Siberia, Earth Planet. Sc. Lett., 357–358, 99–110,
https://doi.org/10.1016/j.epsl.2012.09.016, 2012.
Gress, M. U., Howell, D., Chinn, I. L., Speich, L., Kohn, S. C., van den
Heuvel, Q., Schulten, E., Pals, A. S. M., and Davies, G. R.: Episodic
diamond growth beneath the Kaapvaal Craton at Jwaneng Mine, Botswana,
Mineral. Petrol., 112, 219–229, https://doi.org/10.1007/s00710-018-0582-y,
2018.
Griffin, W. L., Kaminsky, F. V., Ryan, C. G., O'Reilly, S. Y., Win, T. T.,
and Ilupin, I. P.: Thermal state and composition of the lithospheric mantle
beneath the Daldyn kimberlite field, Yakutia, Tectonophysics, 262, 19–33,
https://doi.org/10.1016/0040-1951(96)00008-X, 1996.
Grütter, H. S.: Pyroxene xenocryst geotherms: Techniques and
application, Lithos, 112, 1167–1178, https://doi.org/10.1016/j.lithos.2009.03.023,
2009.
Hasterok, D. and Chapman, D. S.: Heat production and geotherms for the
continental lithosphere, Earth Planet. Sc. Lett., 307, 59–70,
https://doi.org/10.1016/j.epsl.2011.04.034, 2011.
Holland, T. J. B. and Powell, R.: An improved and extended internally
consistent thermodynamic dataset for phases of petrological interest,
involving a new equation of state for solids, J. Metamorph. Geol., 29,
333–383, https://doi.org/10.1111/j.1525-1314.2010.00923.x, 2011.
Howell, D., Stachel, T., Stern, R. A., Pearson, D. G., Nestola, F., Hardman,
M. F., Harris, J. W., Jaques, A. L., Shirey, S. B., Cartigny, P., Smit, K.
V., Aulbach, S., Brenker, F. E., Jacob, D. E., Thomassot, E., Walter, M. J.,
and Navon, O.: Deep carbon through time: Earth's diamond record and its
implications for carbon cycling and fluid speciation in the mantle, Geochim.
Cosmochim. Ac., 275, 99–122, https://doi.org/10.1016/j.gca.2020.02.011,
2020.
Ionov, D. A., Doucet, L. S., and Ashchepkov, I. V.: Composition of the
Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh
Peridotites in the Udachnaya-East Kimberlite, J. Petrol., 51, 2177–2210,
https://doi.org/10.1093/petrology/egq053, 2010.
Jean, M. M., Taylor, L. A., Howarth, G. H., Peslier, A. H., Fedele, L.,
Bodnar, R. J., Guan, Y., Doucet, L. S., Ionov, D. A., Logvinova, A. M.,
Golovin, A. V., and Sobolev, N. V.: Olivine inclusions in Siberian diamonds
and mantle xenoliths: Contrasting water and trace-element contents, Lithos, 265,
31–41, https://doi.org/10.1016/j.lithos.2016.07.023, 2016.
Kaminsky, F., Zakharchenko, O., Davies, R., Griffin, W.,
Khachatryan-Blinova, G., and Shiryaev, A.: Superdeep diamonds from the Juina
area, Mato Grosso State, Brazil, Contrib. Mineral. Petr., 140,
734–753, https://doi.org/10.1007/s004100000221, 2001.
Kinny, P. D., Griffin, B., Heaman, L. M., Brakhfogel, F. F., and Spetsius,
Z. V.: SHRIMP U-Pb ages of perovskite from Yakutian kimberlites, Geol. I
Geofiz., 38, 91–99, 1997.
Korolev, N. M., Kopylova, M., Bussweiler, Y., Pearson, D. G., Gurney, J.,
and Davidson, J.: The uniquely high-temperature character of Cullinan
diamonds: A signature of the Bushveld mantle plume?, 304–307, 362–373,
https://doi.org/10.1016/j.lithos.2018.02.011, 2018.
Lazarov, M., Woodland, A. B., and Brey, G. P.: Thermal state and redox
conditions of the Kaapvaal mantle: A study of xenoliths from the Finsch
mine, South Africa, 112, 913–923,
https://doi.org/10.1016/j.lithos.2009.03.035, 2009.
Li, Z., Ping, J. Y., Jin, M. Z., and Liu, M. L.: Distribution of Fe2+ and
Fe3+ and next-nearest neighbour effects in natural chromites: comparison
between results of QSD and Lorentzian doublet analysis, Phys. Chem. Miner.,
29, 485–494, https://doi.org/10.1007/s00269-002-0258-2, 2002.
Li, Z.-X. A. and Lee, C.-T. A.: The constancy of upper mantle fO2 through
time inferred from ratios in basalts, Earth Planet. Sc. Lett., 228,
483–493, https://doi.org/10.1016/j.epsl.2004.10.006, 2004.
Liu, Z., Ionov, D. A., Nimis, P., Xu, Y., He, P., and Golovin, A. V.:
Thermal and compositional anomalies in a detailed xenolith-based
lithospheric mantle profile of the Siberian craton and the origin of seismic
midlithosphere discontinuities, Geology, 50, 891–896,
https://doi.org/10.1130/G49947.1, 2022.
Luth, R. W. and Stachel, T.: The buffering capacity of lithospheric mantle:
implications for diamond formation, Contrib. Mineral. Petr., 168, 1083,
https://doi.org/10.1007/s00410-014-1083-6, 2014.
McCammon, C. and Kopylova, M. G.: A redox profile of the Slave mantle and
oxygen fugacity control in the cratonic mantle, Contrib. Mineral.
Petr., 148, 55–68, https://doi.org/10.1007/s00410-004-0583-1, 2004.
Meyer, H. O. A.: Inclusions in diamond, in: Mantle Xenoliths, edited by: Nixon, P. H., John Wiley & Sons, Chichester, United Kingdom, 501–523, 1987.
Michaut, C., Jaupart, C., and Mareschal, J.-C.: Thermal evolution of
cratonic roots, Lithos, 109, 47–60, https://doi.org/10.1016/j.lithos.2008.05.008,
2009.
Miller, W. G. R., Holland, T. J. B., and Gibson, S. A.: Garnet and Spinel
Oxybarometers: New Internally Consistent Multi-equilibria Models with
Applications to the Oxidation State of the Lithospheric Mantle, J. Petrol.,
57, 1199–1222, https://doi.org/10.1093/petrology/egw037, 2016.
Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J. W.,
Manghnani, M. H., and Fedortchouk, Y.: First crystal-structure determination
of olivine in diamond: Composition and implications for provenance in the
Earth's mantle, Earth Planet. Sc. Lett., 305, 249–255,
https://doi.org/10.1016/j.epsl.2011.03.007, 2011.
Nestola, F., Nimis, P., Angel, R. J., Milani, S., Bruno, M., Prencipe, M.,
and Harris, J. W.: Olivine with diamond-imposed morphology included in
diamonds. Syngenesis or protogenesis?, Int. Geol. Rev., 56, 1658–1667,
https://doi.org/10.1080/00206814.2014.956153, 2014.
Nestola, F., Cerantola, V., Milani, S., Anzolini, C., McCammon, C., Novella,
D., Kupenko, I., Chumakov, A., Rüffer, R., and Harris, J. W.:
Synchrotron Mössbauer Source technique for in situ measurement of
iron-bearing inclusions in natural diamonds, Lithos, 265, 328–333,
https://doi.org/10.1016/j.lithos.2016.06.016, 2016.
Nestola, F., Korolev, N., Kopylova, M., Rotiroti, N., Pearson, D. G.,
Pamato, M. G., Alvaro, M., Peruzzo, L., Gurney, J. J., Moore, A. E., and
Davidson, J.: CaSiO3 perovskite in diamond indicates the recycling of
oceanic crust into the lower mantle, Nature, 555, 237–241,
https://doi.org/10.1038/nature25972, 2018.
Nestola, F., Zaffiro, G., Mazzucchelli, M. L., Nimis, P., Andreozzi, G. B.,
Periotto, B., Princivalle, F., Lenaz, D., Secco, L., Pasqualetto, L.,
Logvinova, A. M., Sobolev, N. V., Lorenzetti, A., and Harris, J. W.:
Diamond-inclusion system recording old deep lithosphere conditions at
Udachnaya (Siberia), Sci. Rep.-UK, 9, 12586,
https://doi.org/10.1038/s41598-019-48778-x, 2019.
Nicklas, R. W., Puchtel, I. S., Ash, R. D., Piccoli, P. M., Hanski, E.,
Nisbet, E. G., Waterton, P., Pearson, D. G., and Anbar, A. D.: Secular
mantle oxidation across the Archean-Proterozoic boundary: Evidence from V
partitioning in komatiites and picrites, Geochim. Cosmochim. Ac., 250,
49–75, https://doi.org/10.1016/j.gca.2019.01.037, 2019.
Nikolaev, G. S., Ariskin, A. A., Barmina, G. S., Nazarov, M. A., and Almeev, R. R.: Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel, Geochem. Int., 54, 301–320, https://doi.org/10.1134/S0016702916040078, 2016.
Nimis, P.: The pressures and temperatures of formation of diamond based on
thermobarometry of chromian diopside inclusions, Can. Mineral., 40,
871–884, 2002.
Nimis, P. and Grütter, H.: Internally consistent geothermometers for
garnet peridotites and pyroxenites, Contrib. Mineral. Petr., 159,
411–427, https://doi.org/10.1007/s00410-009-0455-9, 2010.
Nimis, P., Alvaro, M., Nestola, F., Angel, R. J., Marquardt, K., Rustioni,
G., Harris, J. W., and Marone, F.: First evidence of hydrous silicic fluid
films around solid inclusions in gem-quality diamonds, Lithos, 260, 384–389,
https://doi.org/10.1016/j.lithos.2016.05.019, 2016.
Nimis, P., Angel, R. J., Alvaro, M., Nestola, F., Harris, J. W., Casati, N.,
and Marone, F.: Crystallographic orientations of magnesiochromite inclusions
in diamonds: what do they tell us?, Contrib. Mineral. Petr., 174, 29,
https://doi.org/10.1007/s00410-019-1559-5, 2019.
Nimis, P., Preston, R., Perritt, S. H., and Chinn, I. L.: Diamond's depth
distribution systematics, Lithos, 376–377, 105729,
https://doi.org/10.1016/j.lithos.2020.105729, 2020.
O'Neill, C. and Aulbach, S.: Destabilization of deep oxidized mantle drove
the Great Oxidation Event, Sci. Adv., 8, 1–6,
https://doi.org/10.1126/sciadv.abg1626, 2022.
O'Neill, H. S. C. and Wall, V. J.: The Olivine–Orthopyroxene–Spinel Oxygen
Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the
Earth's Upper Mantle, J. Petrol., 28, 1169–1191,
https://doi.org/10.1093/petrology/28.6.1169, 1987.
Pearson, D. G. and Wittig, N.: The Formation and Evolution of Cratonic Mantle Lithosphere – Evidence from Mantle Xenoliths, in: Treatise on Geochemistry (2nd Edn.), Vol. 3, edited by: Turekian, K. K. and Holland, H. D., Elsevier, New York, 255–292, https://doi.org/10.1016/B978-0-08-095975-7.00205-9, 2014.
Pearson, D., Shirey, S., Bulanova, G., Carlson, R., and Milledge, H.: Re-Os isotope measurements of single sulfide inclusions in a Siberian
diamond and its nitrogen aggregation systematics, Geochim. Cosmochim. Ac.,
63, 703–711, https://doi.org/10.1016/S0016-7037(99)00042-3, 1999a.
Pearson, D. G., Shirey, S. B., Bulanova, G. P., Carlson, R. W., and Milledge, H. J.: Dating and paragenetic distinction of diamonds using the Re-Os isotope system; application to some Siberian diamonds, in: Proceedings of the 7th International Kimberlite Conference, Vol. 2, edited by: Nixon, P. H., Red Roof Design, 11–17 April 1998, Cape Town, South Africa, 637–643, 1999b.
Pearson, D. G., Canil, D., and Shirey, S. B.: Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds, in: Treatise on Geochemistry, Vol. 2, edited by: Carlson, R. W., Elsevier, New York, 171–275, https://doi.org/10.1107/S2053273315020926, 2003.
Phillips, D., Harris, J. W., and Viljoen, K. S.: Mineral chemistry and
thermobarometry of inclusions from De Beers Pool diamonds, Kimberley, South
Africa, Lithos, 77, 155–179, https://doi.org/10.1016/j.lithos.2004.04.005, 2004.
Pokhilenko, N. P., Pearson, D. G., Boyd, F. R., and Sobolev, N. V.:
Megacrystalline dunites and peridotites: hosts for Siberian diamonds,
Carnegie I. Wash., 90, 11–18, 1991.
Pokhilenko, N. P., Sobolev, N. V, Boyd, F. R., Pearson, D. G., and Shimizu,
N.: Megacrystalline pyrope peridotites in the lithosphere of the Siberian
platform: mineralogy, geochemical peculiarities and the problem of their
origin, Russ. Geol. Geophys., 34, 56–67, 1993.
Potapkin, V., Chumakov, A., Smirnov, G., Celse, J., Rüffer, R.,
McCammon, C. A., and Dubrovinsky, L.: The 57Fe Synchrotron Mössbauer
Source at the ESRF, J. Synchrotron. Radiat., 19, 559–569,
https://doi.org/10.1107/S0909049512015579, 2012.
Prescher, C., McCammon, C. A., and Dubrovinsky, L.: MossA: a program for
analyzing energy-domain Mössbauer spectra from conventional and
synchrotron sources, J. Appl. Crystallogr., 45, 329–331,
https://doi.org/10.1107/s0021889812004979, 2012.
Richardson, S. H. and Harris, J. W.: Antiquity of peridotitic diamonds from
the Siberian craton, Earth Planet. Sc. Lett., 151, 271–277,
https://doi.org/10.1016/S0012-821X(97)81853-5, 1997.
Rüffer, R. and Chumakov, A. I.: Nuclear-resonance beamline at ESRF,
Hyperfine Interact., 97–98, 586–604, 1996.
Ryan, C. G., Griffin, W. L., and Pearson, N. J.: Garnet geotherms:
Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic
rocks, J. Geophys. Res.-Sol. Ea., 101, 5611–5625,
https://doi.org/10.1029/95JB03207, 1996.
Schrauder, M. and Navon, O.: Solid carbon dioxide in a natural diamond,
Nature, 365, 42–44, https://doi.org/10.1038/365042a0, 1993.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta
Crystallogr. C, 71, 3–8,
https://doi.org/10.1107/s2053229614024218, 2015.
Shirey, S. B., Cartigny, P., Frost, D. J., Keshav, S., Nestola, F., Nimis, P., Pearson, D. G., Sobolev, N., and Walter, M. J.: Diamonds and the Geology of Mantle Carbon, in: Carbon in Earth, Reviews in Mineralogy and Geochemistry, Vol. 75, edited by: Hazen, R. M., Jones, A. P., and Baross, J. A., Mineralogical Society of America, 355–421, https://doi.org/10.2138/rmg.2013.75.12, 2013
Smit, K. V., Shirey, S. B., Stern, R. A., Steele, A., and Wang, W.: Diamond
growth from C–H–N–O recycled fluids in the lithosphere: Evidence from CH
4 micro-inclusions and δ13C–δ15N–N content in Marange
mixed-habit diamonds, Lithos, 265, 68–81,
https://doi.org/10.1016/j.lithos.2016.03.015, 2016.
Sobolev, N. V.: Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle, American Geophysical Union, Special Publications Series Vol. 11, edited by: Sobolev, N. V. and Boyd, F. R., translated by: Brown, D. A., Wiley, Washington, 279 pp., https://doi.org/10.1029/SP011, 1977.
Sobolev, N. V., Logvinova, A. M., Zedgenizov, D. A., Seryotkin, Y. V.,
Yefimova, E. S., Floss, C., and Taylor, L. A.: Mineral inclusions in
microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative
study, Lithos, 77, 225–242, https://doi.org/10.1016/j.lithos.2004.04.001, 2004.
Sobolev, N. V., Logvinova, A. M., Zedgenizov, D. A., Pokhilenko, N. P.,
Malygina, E. V., Kuzmin, D. V., and Sobolev, A. V.: Petrogenetic
significance of minor elements in olivines from diamonds and peridotite
xenoliths from kimberlites of Yakutia, Lithos, 112, 701–713,
https://doi.org/10.1016/j.lithos.2009.06.038, 2009.
Sokol, A. G. and Pal'yanov, Y. N.: Diamond formation in the system
MgO–SiO2–H2O–C at 7.5 GPa and 1,600 ∘C, Contrib. Mineral.
Petr., 155, 33–43, https://doi.org/10.1007/s00410-007-0221-9, 2008.
Sokol, A. G., Palyanova, G. A., Palyanov, Y. N., Tomilenko, A. A., and
Melenevsky, V. N.: Fluid regime and diamond formation in the reduced mantle:
Experimental constraints, Geochim. Cosmochim. Ac., 73, 5820–5834,
https://doi.org/10.1016/j.gca.2009.06.010, 2009.
Stachel, T. and Harris, J. W.: The origin of cratonic diamonds –
Constraints from mineral inclusions, Ore Geol. Rev., 34, 5–32,
https://doi.org/10.1016/j.oregeorev.2007.05.002, 2008.
Stachel, T. and Luth, R. W.: Diamond formation – Where, when and how?, Lithos,
220–223, 200–220, https://doi.org/10.1016/j.lithos.2015.01.028, 2015.
Stachel, T., Chacko, T., and Luth, R. W.: Carbon isotope fractionation
during diamond growth in depleted peridotite: Counterintuitive insights from
modelling water-maximum CHO fluids as multi-component systems, Earth Planet.
Sc. Lett., 473, 44–51, https://doi.org/10.1016/j.epsl.2017.05.037, 2017.
Stachel, T., Aulbach, S., and Harris, J. W.: Mineral Inclusions in
Lithospheric Diamonds, Rev. Mineral. Geochem., 88, 307–391,
https://doi.org/10.2138/rmg.2022.88.06, 2022.
Stagno, V., Ojwang, D. O., McCammon, C. A., and Frost, D. J.: The oxidation
state of the mantle and the extraction of carbon from Earth's interior,
Nature, 493, 84–88, https://doi.org/10.1038/nature11679, 2013.
Taylor, W. R.: An experimental test of some geothermometer and geobaro-meter
formulations for upper mantle peridotites with application to the
ther-mobarometry of fertile lherzolite and garnet websterite, Neues Jb.
Miner. Abh., 172, 381–408,
https://doi.org/10.1127/njma/172/1998/381, 1998.
Thomassot, E., Cartigny, P., Harris, J. W., and Fanusviljoen, K.:
Methane-related diamond crystallization in the Earth's mantle: Stable
isotope evidences from a single diamond-bearing xenolith, Earth Planet. Sc.
Lett., 257, 362–371, https://doi.org/10.1016/j.epsl.2007.02.020, 2007.
Viljoen, K. S., Perritt, S. H., and Chinn, I. L.: An unusual suite of
eclogitic, websteritic and transitional websteritic-lherzolitic diamonds
from the Voorspoed kimberlite in South Africa: Mineral inclusions and
infrared characteristics, Lithos, 320–321, 416–434,
https://doi.org/10.1016/j.lithos.2018.09.034, 2018.
Wang, A., Pasteris, J. D., Meyer, H. O. A., and Dele-Duboi, M. L.:
Magnesite-bearing inclusion assemblage in natural diamond, Earth Planet.
Sc. Lett., 141, 293–306, https://doi.org/10.1016/0012-821X(96)00053-2,
1996.
Wiggers de Vries, D. F., Pearson, D. G., Bulanova, G. P., Smelov, A. P.,
Pavlushin, A. D., and Davies, G. R.: Re–Os dating of sulphide inclusions
zonally distributed in single Yakutian diamonds: Evidence for multiple
episodes of Proterozoic formation and protracted timescales of diamond
growth, Geochim. Cosmochim. Ac., 120, 363–394,
https://doi.org/10.1016/j.gca.2013.06.035, 2013.
Wilson, A. J. C. (Ed.): International Tables for Crystallography, Vol. C, Mathematical, Physical and Chemical Tables, Kluwer Academic Publishers, Dordrecht, https://doi.org/10.1002/crat.2170280117, 1995.
Woodland, A. and Koch, M.: Variation in oxygen fugacity with depth in the
upper mantle beneath the Kaapvaal craton, Southern Africa, Earth Planet.
Sc. Lett., 214, 295–310, https://doi.org/10.1016/S0012-821X(03)00379-0,
2003.
Yaxley, G. M., Berry, A. J., Kamenetsky, V. S., Woodland, A. B., and
Golovin, A. V.: An oxygen fugacity profile through the Siberian Craton – Fe
K-edge XANES determinations of in garnets in peridotite xenoliths
from the Udachnaya East kimberlite, Lithos, 140–141, 142–151,
https://doi.org/10.1016/j.lithos.2012.01.016, 2012.
Yaxley, G. M., Berry, A. J., Rosenthal, A., Woodland, A. B., and Paterson,
D.: Redox preconditioning deep cratonic lithosphere for kimberlite genesis
– evidence from the central Slave Craton, Sci. Rep.-UK, 7, 30,
https://doi.org/10.1038/s41598-017-00049-3, 2017.
Zhang, C. and Duan, Z.: GFluid: An Excel spreadsheet for investigating
C–O–H fluid composition under high temperatures and pressures, Comput.
Geosci., 36, 569–572, https://doi.org/10.1016/j.cageo.2009.05.008, 2010.
Ziberna, L., Klemme, S., and Nimis, P.: Garnet and spinel in fertile and
depleted mantle: insights from thermodynamic modelling, Contrib. Mineral.
Petr., 166, 411–421, https://doi.org/10.1007/s00410-013-0882-5, 2013.
Short summary
We determined the physical conditions at the time of its entrapment for an inclusion pair hosted in a Siberian diamond (Udachnaya kimberlite) and found that it equilibrated under relatively oxidized conditions, near the enstatite–magnesite–olivine–diamond (EMOD) buffer, similarly to Udachnaya xenoliths originating from comparable depths. These results can be reconciled with models suggesting relatively oxidized, water-rich CHO fluids as the most likely parents for lithospheric diamonds.
We determined the physical conditions at the time of its entrapment for an inclusion pair hosted...