Articles | Volume 34, issue 6
https://doi.org/10.5194/ejm-34-549-2022
https://doi.org/10.5194/ejm-34-549-2022
Research article
 | Highlight paper
 | 
15 Nov 2022
Research article | Highlight paper |  | 15 Nov 2022

Relatively oxidized conditions for diamond formation at Udachnaya (Siberia)

Luca Faccincani, Valerio Cerantola, Fabrizio Nestola, Paolo Nimis, Luca Ziberna, Leonardo Pasqualetto, Aleksandr I. Chumakov, Jeffrey W. Harris, and Massimo Coltorti

Viewed

Total article views: 1,362 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,032 290 40 1,362 78 27 32
  • HTML: 1,032
  • PDF: 290
  • XML: 40
  • Total: 1,362
  • Supplement: 78
  • BibTeX: 27
  • EndNote: 32
Views and downloads (calculated since 15 Nov 2022)
Cumulative views and downloads (calculated since 15 Nov 2022)

Viewed (geographical distribution)

Total article views: 1,355 (including HTML, PDF, and XML) Thereof 1,355 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 13 Dec 2024
Download
Short summary
We determined the physical conditions at the time of its entrapment for an inclusion pair hosted in a Siberian diamond (Udachnaya kimberlite) and found that it equilibrated under relatively oxidized conditions, near the enstatite–magnesite–olivine–diamond (EMOD) buffer, similarly to Udachnaya xenoliths originating from comparable depths. These results can be reconciled with models suggesting relatively oxidized, water-rich CHO fluids as the most likely parents for lithospheric diamonds.