Articles | Volume 33, issue 1
https://doi.org/10.5194/ejm-33-77-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-77-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-scale characterization of glaucophane from Chiavolino (Biella, Italy): implications for international regulations on elongate mineral particles
Ruggero Vigliaturo
CORRESPONDING AUTHOR
Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Hayden Hall, Philadelphia, PA, USA
Sabrina M. Elkassas
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Giancarlo Della Ventura
Department of Geological Sciences, University of Roma Tre, Rome, Italy
INFN-Istituto Nazionale di Fisica Nucleare, Frascati, Rome, Italy
Günther J. Redhammer
Department of Materials Science and Physics, University of Salzburg, Salzburg, Austria
Francisco Ruiz-Zepeda
Department of Physics and Chemistry of Materials, Institute of Metals and Technology, Lepi pot 11, Ljubljana, Slovenia
Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
Michael J. O'Shea
Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Hayden Hall, Philadelphia, PA, USA
Goran Dražić
Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
Reto Gieré
Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Hayden Hall, Philadelphia, PA, USA
Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA
Related authors
Ruggero Vigliaturo, Giulia Pia Servetto, Erica Bittarello, Quentin Wehrung, Jean-François Brilhac, and Gwenaëlle Trouvé
Eur. J. Mineral., 36, 831–843, https://doi.org/10.5194/ejm-36-831-2024, https://doi.org/10.5194/ejm-36-831-2024, 2024
Short summary
Short summary
Technology for producing energy with zero-carbon emissions must be developed in light of the current climate emergency. Using recyclable metal fuels, such as magnesium (Mg), is one practical solution. Metals can therefore be seen as regenerable fuels and new energy vectors since the energy they contain can be transferred and released through metal combustion. To optimize the particle trapping capacity of the investigated system, we successfully characterized magnesium oxide (MgO) crystals.
Ruggero Vigliaturo, Giulia Pia Servetto, Erica Bittarello, Quentin Wehrung, Jean-François Brilhac, and Gwenaëlle Trouvé
Eur. J. Mineral., 36, 831–843, https://doi.org/10.5194/ejm-36-831-2024, https://doi.org/10.5194/ejm-36-831-2024, 2024
Short summary
Short summary
Technology for producing energy with zero-carbon emissions must be developed in light of the current climate emergency. Using recyclable metal fuels, such as magnesium (Mg), is one practical solution. Metals can therefore be seen as regenerable fuels and new energy vectors since the energy they contain can be transferred and released through metal combustion. To optimize the particle trapping capacity of the investigated system, we successfully characterized magnesium oxide (MgO) crystals.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Related subject area
Electron microscopy of minerals and rocks
Carbon-containing pyrite spherules: mineral biosignatures in black smokers?
Dauphiné twin in a deformed quartz: characterization by electron channelling contrast imaging and large-angle convergent-beam diffraction
Late metamorphic veins with dominant PS-15 polygonal serpentine in the Monte Avic ultramafite
Dislocation and disclination densities in experimentally deformed polycrystalline olivine
Appearance, study and a possible correction for boron: a phenomenon in ultra-soft X-ray measurements using a synthetic multilayer crystal and the EPMA
Weathering of stannite–kësterite [Cu2(Fe,Zn)SnS4] and the environmental mobility of the released elements
The hierarchical internal structure of labradorite
Automatic element and mineral detection in thin sections using hyperspectral transmittance imaging microscopy (HyperTIM)
Vanadium carbides in shungite
Investigating crystal orientation patterns of foraminiferal tests by electron backscatter diffraction analysis
Chloé Truong, Sylvain Bernard, François Baudin, Aurore Gorlas, and François Guyot
Eur. J. Mineral., 36, 813–830, https://doi.org/10.5194/ejm-36-813-2024, https://doi.org/10.5194/ejm-36-813-2024, 2024
Short summary
Short summary
Known as black smokers, sulfur-rich hydrothermal vents expel hot metal-rich water (~ 400°C). These extreme environments host micro-organisms capable of living at over 100°C. But to date, we do not know whether these microorganisms influence the formation of hydrothermal vents. The comparative study of minerals along the chimney wall is an essential step in determining whether microorganisms may have colonized and influenced mineral formation in certain parts of the chimney.
Nobuyoshi Miyajima, Danielle Silva Souza, and Florian Heidelbach
Eur. J. Mineral., 36, 709–719, https://doi.org/10.5194/ejm-36-709-2024, https://doi.org/10.5194/ejm-36-709-2024, 2024
Short summary
Short summary
Dauphiné twin (DT) domains in a deformed quartz were visualized for the first time by using orientation-optimized electron channelling contrast imaging under Bragg conditions of the rhombohedral planes. The different contrast of a pair of DT domains in the backscattered electron images originates not from a misorientation between the two domains but from different diffraction intensities between positive and negative rhombohedral planes in quartz.
Luca Barale, Giancarlo Capitani, Paolo Castello, Roberto Compagnoni, Roberto Cossio, Gianluca Fiore, Linda Pastero, and Marcello Mellini
Eur. J. Mineral., 35, 347–360, https://doi.org/10.5194/ejm-35-347-2023, https://doi.org/10.5194/ejm-35-347-2023, 2023
Short summary
Short summary
The first occurrence of centimeter-thick PS-15 polygonal serpentine veins from ultramafics of Monte Avic, Val d'Aosta, is here reported. The combined mineralogical study led by three techniques with different resolutions has provided new analytical tools capable of recognizing the PS-15 polygonal serpentine. In particular, X-ray powder diffraction data (XRPD) and micro-Raman recognize polygonal serpentine more quickly and easily than transmission electron microscopy (TEM) but equally rigorously.
Sylvie Demouchy, Manuel Thieme, Fabrice Barou, Benoit Beausir, Vincent Taupin, and Patrick Cordier
Eur. J. Mineral., 35, 219–242, https://doi.org/10.5194/ejm-35-219-2023, https://doi.org/10.5194/ejm-35-219-2023, 2023
Short summary
Short summary
We report a comprehensive data set characterizing and quantifying two types of mineral defects in the most abundant mineral of Earth's upper mantle: olivine. Namely, we investigate translation defects of dislocation and rotation defects, called disclinations, in polycrystalline olivine deformed in uniaxial compression or torsion, at high temperature and pressure. The defects are identified via mapping of the crystallographic disorientation detected using electron backscatter diffraction.
Franziska Daniela Helena Wilke
Eur. J. Mineral., 35, 59–64, https://doi.org/10.5194/ejm-35-59-2023, https://doi.org/10.5194/ejm-35-59-2023, 2023
Short summary
Short summary
When detecting the light element boron in solid materials with, in part, considerably lower concentrations of boron than present in natural tourmalines by using the electron microprobe, irregularities become visible in the analyses. This was for the first time experienced in synthetic diamond that was contaminated with boron to achieve a blue color. With this work, one can check if boron analyses are reasonable, and if not, one can correct them.
Patrick Haase, Stefan Kiefer, Kilian Pollok, Petr Drahota, and Juraj Majzlan
Eur. J. Mineral., 34, 493–506, https://doi.org/10.5194/ejm-34-493-2022, https://doi.org/10.5194/ejm-34-493-2022, 2022
Short summary
Short summary
Stannite decomposition leads to the precipitation of an amorphous and metastable Sn–Fe–As-rich phase. With ageing, goethite and cassiterite crystallize from the precursor and mark the end of the weathering cycle. Other elements are lost in the initial stage of weathering (e.g. Zn, S) or after full oxidation of the sulfidic material (e.g. Cu, Ag). Electron microprobe (EMP) and transmission electron microscopy (TEM) analyses were performed to witness the mobility of the released elements.
Emilia Götz, Hans-Joachim Kleebe, and Ute Kolb
Eur. J. Mineral., 34, 393–410, https://doi.org/10.5194/ejm-34-393-2022, https://doi.org/10.5194/ejm-34-393-2022, 2022
Short summary
Short summary
Labradorite displays various structural features which have received attention in science for a long time. In this paper an electron microscopy study was performed investigating the hierarchical structure and connecting its features over several orders of magnitude. In addition, the atomic structure was solved with three-dimensional electron diffraction, showing results comparable to X-ray diffraction data and demonstrating the potential of the method to solve complicated crystal structures.
Helge L. C. Daempfling, Christian Mielke, Nicole Koellner, Melanie Lorenz, Christian Rogass, Uwe Altenberger, Daniel E. Harlov, and Michael Knoper
Eur. J. Mineral., 34, 275–284, https://doi.org/10.5194/ejm-34-275-2022, https://doi.org/10.5194/ejm-34-275-2022, 2022
Short summary
Short summary
In this study we present a novel method for the automatic detection of minerals and elements using hyperspectral transmittance imaging microscopy measurements of complete thin sections (HyperTIM).
Vladimir V. Kovalevski and Igor A. Moshnikov
Eur. J. Mineral., 34, 131–141, https://doi.org/10.5194/ejm-34-131-2022, https://doi.org/10.5194/ejm-34-131-2022, 2022
Short summary
Short summary
Vanadium carbides in shungite are shown to be present in several forms, which reflects the distinctive conditions of their formation. An ordered carbon film revealed on the vanadium carbide particles could protect the particles from transformations for a long time. The parageneses of vanadium carbide and roscoelite occur, indicating that roscoelite in shungite rocks may be a secondary mineral formed upon vanadium carbide decomposition.
Stephanie Pabich, Christian Vollmer, and Nikolaus Gussone
Eur. J. Mineral., 32, 613–622, https://doi.org/10.5194/ejm-32-613-2020, https://doi.org/10.5194/ejm-32-613-2020, 2020
Short summary
Short summary
Electron backscatter diffraction (EBSD) is a powerful tool to visualize and differentiate between foraminiferal test structures, by providing information on crystal orientation and crystal sizes. This can be used to trace diagenetic recrystallization, altering geochemical proxy signals. The sediment samples from a core from the equatorial Pacific used here, spanning the last 45 Myr, showed no evidence for foraminiferal recrystallization, highlighting the suitability as geochemical proxy archive.
Cited articles
ANSES: Opinion of the French Agency for Food, Environmental and
Occupational Health and Safety on “Health Effects and the identification of
cleavage fragments of amphiboles from quarried minerals”, Request No.
2014_SA_0196, available at:
https://www.anses.fr/en/system/files/AIR2014sa0196RaEN.pdf (last access: 16 January 2021), 2015.
Ardizzone, M., Vizio C., Bozzetta, E., Pezzolato, M., Meistro, S., Dondo,
A., Giorgi, I., Seghesio, A., Mirabelli, D., Capella, S., Vigliaturo, R., and
Belluso, E.: The wild rat as sentinel animal in the environmental risk
assessment of asbestos pollution: A pilot study, Sci. Total. Environ.,
479-480, 31–38,
https://doi.org/10.1016/j.scitotenv.2014.01.108, 2014.
ASTM D6281-15: Standard Test Method for Airborne Asbestos Concentration in
Ambient and Indoor Atmospheres as Determined by Transmission Electron
Microscopy Direct Transfer (TEM), ASTM International, West Conshohocken, PA,
USA, https://doi.org/10.1520/D6281-15, available at: http://www.astm.org/cgi-bin/resolver.cgi?D6281-15 (last access: 16 January 2021), 2015.
ASTM D7200-06: Standard Practice for Sampling and Counting Airborne Fibers,
Including Asbestos Fibers, in: Mines and Quarries, by Phase Contrast
Microscopy and Transmission Electron Microscopy, ASTM International, West
Conshohocken, PA, USA, https://doi.org/10.1520/D7200-06, available at: http://www.astm.org/cgi-bin/resolver.cgi?D7200-06 (last access: 16 January 2021), 2006.
Bailey, K. F., Kelse, J., Wylie, A. G., and Lee, R. J.: The asbestiform and
prismatic mineral growth habit and their relationship to cancer study, MSHA,
asbestos docket, pictorial presentation, available at: https://www.cdc.gov/niosh/docket/archive/pdfs/NIOSH-099A/0099A-030104-Pictorialpresentation.pdf (last access: 16 January 2021),
2004.
Bailey, R. M.: Overview of Naturally Occurring Asbestos in California and
Southwestern Nevada, Environmental and Engineering Geoscience, 26, 9–14,
https://doi.org/10.2113/EEG-2282, 2020a.
Bailey, R. M.: Asbestiform Minerals of the Franciscan Assemblage in California
with a Focus on the Calaveras Dam Replacement Project, Environmental and
Engineering Geoscience, 26, 21–28, https://doi.org/10.2113/EEG-2264, 2020b.
Belluso, E., Cavallo, A., and Halterman, D.: Crystal habit of mineral fibres, EMU
Notes Mineral., 18, 65–109, https://doi.org/10.1180/EMU-notes.18.3, 2017.
Bersani, D., Andò, S., Scrocco, L., Gentile, P., Salvioli-Mariani, E.,
Fornasini, L., and Lottici, P. P.: Composition of amphiboles in the tremolite
– ferro-actinolite series by Raman spectroscopy, Minerals, 9, 491, https://doi.org/10.3390/min9080491, 2019.
Bezacier, L., Reynard, B., Bass, J. D., Wang, J., and Mainprice, D.:
Elasticity of glaucophane, seismic velocities and anisotropy of the
subducted oceanic crust, Tectonophysics, 494, 201–210, https://doi.org/10.1016/j.tecto.2010.09.011, 2010.
Boscardin, M. and Orlandi, P.: Fengite e glaucofane di Oropa (Biellese), Rivista
Mineralogica Italiana, 3, 103, available at: https://www.gmlmilano.it/rmi-dal-1980-al-1989.html (last access: 16 January 2021), 1984.
Cantù, M., Spaggiari, L., Zucali, M., Zanoni, D., and Iole Spalla, M.:
Structural analysis of a subduction-related contact in southern Sesia-Lanzo
Zone (Austroalpine domain, Italian Western Alps), J. Maps, 12, 22–35,
https://doi.org/10.1080/17445647.2016.1155925, 2016.
Carpinteri, A. and Chiaia, B.: Multifractal scaling laws in the breaking
behaviour of disordered materials, Chaos Soliton. Fract., 8, 135–150,
https://doi.org/10.1016/S0960-0779(96)00088-4, 1997.
Case, B. W., Abraham, J. L., Meeker, G., Pooley, F. D., and Pinkerton, K. E.:
Applying definitions of “asbestos” to environmental and “low dose”
exposure levels and health effects, particularly malignant mesothelioma, J.
Toxicol. Env. Heal. B, 14, 3–39, https://doi.org/10.1080/10937404.2011.556045, 2011.
CEN Workplace Atmospheres: Size Fraction Definitions for Measurement of
Airborne Particles, European Standard EN 481, European Standardization
Committee (CEN), Brussels, 1993.
Chisholm, J. E. J.: Planar defects in fibrous amphiboles, Mater. Sci., 8, 475–483, https://doi.org/10.1007/BF00550451, 1973.
Compagnoni, R. and Schmid, S.: Guidebook for the excursion of the Annual
Convention of the Swiss Association of Energy Geoscientists (SASEG) Valle
d'Aosta (Italy), 22–23 June, available at: https://www.saseg.ch/cms/images/pdf/conventions/2014/Guide-book_SASEG_Aosta.pdf (last access: 16 January 2021), 2014.
Council of the European Union: European Parliament. Directive 2009/148/EC of
the European Parliament and of the Council of 30 November 2009 on the
Protection of Workers Against the Risks Associated with Exposure to
Asbestos, Publications Office of the European Union: Brussels, Belgium,
2009.
Della Ventura, G.: The analysis of asbestos minerals using vibrational
spectroscopies (FTIR, Raman): crystal-chemistry, identification and
environmental applications, in: Mineral fibres: crystal
chemistry, chemical-physical properties, biological interactions and
toxicity, edited by: Gualtieri, A., EMU Notes Mineralog., 18, 135–169, https://doi.org/10.1180/EMU-notes.18.5,
2017.
Della Ventura, G., Redhammer, G. J., Iezzi, G., Hawthorne, F. C., Papin, A., and
Robert, J.-L.: A Mössbauer and FTIR study of synthetic amphiboles along
the magnesio-riebeckite – ferri-clinoholmquistite join, Phys. Chem.
Miner., 32, 103–113, https://doi.org/10.1007/s00269-005-0451-1, 2005.
Della Ventura, G., Redhammer, G., Robert, J. L., Sergent, J., Iezzi, G., and
Cavallo, A.: Crystal-chemistry of synthetic amphiboles along the richterite –
ferro-richterite join: a combined spectroscopic (FTIR, Mössbauer), XRPD
and microchemical study, Can. Mineral., 54, 97–114,
https://doi.org/10.3749/canmin.1500076, 2016.
Della Ventura, G., Vigliaturo, R., Gierè, R., Pollastri, S., Gualtieri,
A., and Iezzi, G.: Infra Red Spectroscopy of the Regulated Asbestos Amphiboles,
Minerals, 8, 413, https://doi.org/10.3390/min8090413, 2018.
Della Ventura, G., Hawthorne, F. C., Mihailova, B., and Sodo, A.: Raman and FTIR
spectroscopy of synthetic amphiboles: I. The OH librational bands in
synthetic richterites, Can. Mineral., https://doi.org/10.3749/canmin.1900090, in press, 2021a.
Della Ventura, G., Mihailova, B., and Hawthorne, F. C.: Raman and FTIR
spectroscopy of synthetic amphiboles: II. Divalent (Mg-Co) substitutions at
the octahedral sites, Can. Mineral., https://doi.org/10.3749/canmin.1900091, in press, 2021b.
Donaldson, K., Murphy, F. A., Duffin, R., and Poland, C. A.: Asbestos, carbon
nanotubes and the pleural mesothelium: a review and the hypothesis regarding
the role of long fibre retention in the parietal pleura, inflammation and
mesothelioma, Part. Fibre Toxicol., 7, 5, https://doi.org/10.1186/1743-8977-7-5, 2010.
Erskine, B. G. and Bailey, M.: Characterization of asbestiform
glaucophane-winchite in the Franciscan Complex blueschist, northern Diablo
Range, California, Toxicol. Appl. Pharmacol., 361, 3–13, https://doi.org/10.1016/j.taap.2018.09.020, 2018.
European Commission: Commission Directive 1999/77/EC Adapting to Technical
Progress for the Sixth Time ANNEX I to Council Directive 76/769/EEC on the
Approximation of the Laws, Regulations, and Administrative Provisions of the
Member States Relating to Restrictions on the Marketing and use of Certain
Dangerous Substances and Preparations (Asbestos), Publications Office of the
European Union: Brussels, Belgium, 18–20, 1999.
Evans, B. and Brown, E.: Blueschists and eclogites, Geological Society of
America, Memoir, 164, 169–184, https://doi.org/10.1130/MEM164, 1986.
Fantauzzi, M., Pacella, A., Atzei, D., Gianfagna, A., Andreozzi, G. B., and Rossi, A.:
Combined use of X-ray photoelectron and Mössbauer spectroscopic
techniques in the analytical characterization of iron oxidation state in
amphibole asbestos, Anal. Bioanal. Chem., 396, 2889, https://doi.org/10.1007/s00216-010-3576-0, 2010.
Filippakis, S. E., Perdikatsis, B., and Paradellis, T.: An analysis of blue pigments
from the greek bronze age, Stud. Conserv., 21, 143–153, https://doi.org/10.1179/sic.1976.024, 1976.
Frost, D. and Langenhorst, F.: The effect of Al2O3 on Fe-Mg partitioning
between magnesiowüstite and magnesium silicate perovskite, Earth Planet.
Sc. Lett., 199, 227–241, https://doi.org/10.1016/S0012-821X(02)00558-7, 2002.
Gelzleichter, T. R., Bermudez, E., Mangum, J. B., Wong, B. A., Everitt, J. I., and
Moss, O. R.: Pulmonary and Pleural Responses in Fischer 344 Rats
Following Short-Term Inhalation of a Synthetic Vitreous Fiber: I.
Quantitation of Lung and Pleural Fiber Burdens, Toxicol. Sci., 30,
31–38, https://doi.org/10.1093/toxsci/30.1.31, 1996.
Germine, M. and Puffer, J. H.: Analytical transmission electron microscopy of
amosite asbestos from South Africa, Arch. Environ. Occup. H., 75, 36–44,
https://doi.org/10.1080/19338244.2018.1556201, 2019.
Gonda, I. and Abd El Khalik, A. F.: On the calculation of the aerodynamic diameters
of fibers, Aerosol Sci. Tech., 4, 233–238, https://doi.org/10.1080/02786828508959051, 1985.
Gunter, M. E.: Elongate mineral particles in the natural environment, Toxicol.
Appl. Pharm., 361, 157–164, https://doi.org/10.1016/j.taap.2018.09.024, 2018.
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F.,
Schumacher, J. C., and Welch, M.: IMA Report: Nomenclature of the amphibole
supergroup, Am. Mineral., 9, 2031–2048, https://doi.org/10.2138/am.2012.4276, 2012.
ICRP: Human respiratory tract model for radiological protection,
International Commission on Radiological Protection Publication 66, Annals
of the ICRP 24(1-3), Elsevier Science Ltd., Oxford, UK, available at: https://www.icrp.org/publication.asp?id=_icrp publication 66 (last access: 16 January 2021), 1994.
Iezzi, G., Della Ventura, G., Hawthorne, F. C., Pedrazzi, G., Robert, J.-L., and
Novembre, D.: The (Mg,Fe2+) substitution in ferri-clinoholmquistite,
⋅ Li2 (Mg,Fe2+)3 Fe Si8 O22
(OH)2, Eur. J. Mineral., 17, 733–740, https://doi.org/10.1127/0935-1221/2005/0017-0733, 2005.
Ishida, K.: Infrared spectra of alkali amphiboles of the
glaucophane-riebeckite series and their relation to chemical composition,
Mineralogical Journal, 15, 147–161, https://doi.org/10.2465/minerj.15.147, 1990.
Ishida, K., Jenkins, D. M., and Hawthorne, F. C.: Mid-IR bands of synthetic
calcic amphiboles of the tremolite-pargasite series and of natural calcic
amphiboles, Am. Mineral., 93, 1112–1118, https://doi.org/10.2138/am.2008.2756, 2008.
ISO Air Quality: Particle Size Fraction Definitions for Health-related
Sampling, ISO Standard 7708, International Organization for Standardization
(ISO), Geneva, available at: https://www.iso.org/standard/14534.html (last access: 16 January 2021), 1995.
Jenkins, D. M., Della Ventura, G., Oberti, R., and Bozhilov, K.: Synthesis and
characterization of amphiboles along the tremolite–glaucophane join, Am.
Mineral., 98, 588–600, https://doi.org/10.2138/am.2013.4281,
2013.
Kane, A. B., Boffetta, P., Saracci, R., and Wilbourn, J. D.: Mechanisms of fibre
carcinogenesis, IARC Scientific Publication 140, Lyon, International Agency
for Research on Cancer, WHO, ISBN: 978-92-832-2140-1, 1996.
Langenhorst, F., Harries, D., and Pollok, K.: Non-stoichiometry, defects and
superstructures in sulfide and oxide minerals, EMU Notes Mineralog.,
14, 261–295, https://doi.org/10.1180/EMU-notes.14.8, 2013.
Le Bouffant, L., Daniel, H., Henn, J. P., Martin, J. C., Normand, M. C.,
Tichoux, G., and Trolard, F.: Experimental study on long-term effects of inhaled
MMMF on the lungs of rats, Ann. Occup. Hyg., 31, 765–790, https://doi.org/10.1093/annhyg/31.4b.765, 1987.
Leissner, L., Schlüter, J., Horn, I., and Mihailova, B.: Exploring the
potential of Raman spectroscopy for crystallochemical analyses of complex
hydrous silicates: I. Amphiboles, Am. Mineral., 100, 2682–2694, https://doi.org/10.2138/am-2015-5323, 2015.
Lister, G. S. and Raouzaious, A.: The Tectonic Significance of a
Porphyroblastic Blueschist Facies Overprint During Alpine Orogenesis:
Sifnos, Aegean Sea, Greece, J. Struct. Geol., 18, 1417–1435, https://doi.org/10.1016/S0191-8141(96)00072-7, 1996.
Locock, A. J.: An EXCEL spreadsheet to classify chemical analyses of
amphiboles following the IMA 2012 recommendations, Comput. Geosci., 62,
1–11, https://doi.org/10.1016/j.cageo.2013.09.011, 2014.
Militello, G. M., Sanguineti, E., Yus González, A., Mantovani, F., and
Gaggero, L.: The Concentration of Asbestos Fibers in Bulk Samples and Its
Variation with Grain Size, Minerals, 9, 539, https://doi.org/10.3390/min9090539, 2019.
Ministerial Decree No. 06/09/1994: (All.1–B), Determinazione Quantitativa
Dell'amianto in Campioni in Massa, available at: https://www.gazzettaufficiale.it/atto/serie_generale/caricaArticolo?art.progressivo=0&art.idArticolo=1&art.versione=1&art.codiceRedazionale=094A5917&art.dataPubblicazioneGazzetta=1994-09-20&art.idGruppo=0&art.idSottoArticolo1=10&art.idSottoArticolo=1&art.flagTipoArticolo=2 (last access: 16 January 2021), 1994.
Morrow, P. E.: Possible mechanisms to explain dust overloading of the lungs,
Fundam. Appl. Toxicol., 10, 369–384, https://doi.org/10.1016/0272-0590(88)90284-9, 1988.
Mottana, A., Crespi, R., and Liborio, G.: “Minerali e rocce”, Arnoldo Mondadori
Editore, ISBN 13: 9788804142898, 1981.
Nagai, H. and Toyokuni, S.: Differences and similarities between carbon
nanotubes and asbestos fibers during mesothelial carcinogenesis: Shedding
light on fiber entry mechanism, Cancer Sci., 103, 1378–1390, https://doi.org/10.1111/j.1349-7006.2012.02326.x, 2012.
National Institute for Occupational Safety and Health (NIOSH): Method 7400,
Asbestos and other fibers by PCM, Issue 2, 15 August 1994, in: NIOSH Manual
of Analytical Methods, 4th Edn., DHSS (NIOSH), Cincinnati, OH, USA,
available at: https://www.cdc.gov/niosh/nmam/pdf/7400.pdf (last asccess: 16 January 2021), 1994a.
National Institute for Occupational Safety and Health (NIOSH): Method 7402:
Asbestos by TEM, Issue 2, 15 August 1994, in: NIOSH Manual of Analytical
Methods (NMAM), 4th Edn.; DHSS (NIOSH): Cincinnati, OH, USA, available at:
https://www.cdc.gov/niosh/docs/2003-154/pdfs/7402.pdf (last asccess: 16 January 2021), 1994b.
National Institute for Occupational Safety and Health (NIOSH): Asbestos
fibers and other elongate mineral particles: State of the science and
roadmap for research, Revised Edn., Department of Health and Human
Services, DHHS (NIOSH) Publication No. 2011-159, Current Intelligence
Bulletin, 62, 1–159, available at: https://www.cdc.gov/niosh/docs/2011-159/default.html (last asccess: 16 January 2021), 2011.
Oberdörster, G. and Graham, U.: Predicting EMP hazard: Lessons from studies
with inhaled fibrous and non-fibrous nano- and micro-particles, Toxicol.
Appl. Pharm., 361, 50–61, https://doi.org/10.1016/j.taap.2018.05.004, 2018.
Petriglieri, J. R., Laporte-Magoni, C., Gunkel-Grillon, P., Tribaudino, M.,
Bersani, D., Sala, O., Le Mestre, M., Vigliaturo, R., Bursi Gandolfi, N.,
and Salvioli-Mariani, E.: Mineral fibres and environmental monitoring: A
comparison of different analytical strategies in New Caledonia, Geosci.
Front., 11, 189–202, https://doi.org/10.1016/j.gsf.2018.11.006, 2020.
Piana, F., Fioraso, G., Irace, A., Mosca, P., d'Atri, A., Barale, L., Falletti, P.,
Monegato, G., Morelli, M., Tallone, S., and Vigna, G. B.: Geology of Piemonte region
(NW Italy, Alps–Apennines interference zone), J. Maps, 13, 395–405,
https://doi.org/10.1080/17445647.2017.1316218, 2017.
Profi, S., Weier, L., and Filippakis, S. E.: X-Ray Analysis of Greek Bronze
Age Pigments from Knossos, Stud. Conserv., 21, 34–39, https://doi.org/10.2307/1505608, 1976.
Quick, J. E., Sinigoi, S., Negrini, L., Demarchi, G., and Mayer, A.:
Synmagmatic deformation in the underplated igneous complex of the
Ivrea-Verbano zone, Geology, 20, 613–616, https://doi.org/10.1130/0091-7613(1992)020<0613:SDITUI>2.3.CO;2,
1992.
Redhammer, G. J. and Roth, G.: Crystal structure and Mössbauer
spectroscopy of the synthetic amphibole potassic-ferri-ferrorichterite at
298 K and low temperatures (80–110 K), Eur. J. Mineral., 14, 105–114,
https://doi.org/10.1127/0935-1221/2002/0014-0105, 2002.
Reinsch, D.: Glaucophanites and eclogites from Val Chiusella, Sesia-Lanzo
Zone (Italian Alps), Contrib. Mineral. Petr., 70, 257–266, https://doi.org/10.1007/BF00375355, 1979.
Ridley, J.: Arcuate Lineation Trends in a Deep Level, Ductile Thrust Belt,
Syros, Greece, Tectonophysics, 88, 347–360, https://doi.org/10.1016/0040-1951(82)90246-3, 1981.
Rodríguez-Carvajal, J.: Recent Developments of the Program FULLPROF,
Newsletter in Commission on Powder Diffraction (IUCr), 26, 12–19, available at: https://www.ill.eu/sites/fullprof/php/reference.html (last access: 16 January 2021), 2001.
Rojac, T., Bencan, A., Drazic, G., Sakamoto, N., Ursic, H., Jancar, B., Tavcar, G.,
Makarovic, M., Walker, J., Malic, B., and Damjanovic, D.: Domain-wall conduction in
ferroelectric BiFeO3 controlled by accumulation of charged defects, Nat.
Mater., 16, 322–327, https://doi.org/10.1038/nmat4799, 2017.
Susta, U., Della Ventura, G., Hawthorne, F. C., Milahova, B., and Oberti, R.: The
crystal-chemistry of riebeckite, ideally
Na2Fe Fe3+2Si8O22(OH)2: a
multi-technique study, Mineral. Mag., 84, 837–852, https://doi.org/10.1180/minmag.2017.081.064, 2018.
Spalla, M. I., Lardeaux, J. M., Vittorio Dal Piaz, G., Gosso, G., and
Messiga, B.: Tectonic significance of Alpine eclogites, J.
Geodyn., 21, 257–285, https://doi.org/10.1016/0264-3707(95)00033-X, 1996.
Tan, H., Verbeeck, J., Abakumov, A., and VanTendeloo, G.: Oxidation state and
chemical shift investigation in transition metal oxides by EELS,
Ultramicroscopy, 116, 24–33, https://doi.org/10.1016/j.ultramic.2012.03.002, 2012.
Veblen, D. R. and Wylie, A. G.: Mineralogy of amphiboles and 1:1 layer
silicates, in: Reviews in Mineralogy and Geochemistry, edited by: Guthrie Jr., G. D. and Mossman, B. T., Mineralogical Society of America: Chantilly, VA, USA,
28, 61–137, https://doi.org/10.1515/9781501509711-006, 1993.
Vigliaturo, R., Capella, S., Rinaudo, C., and Belluso, E.: “Rinse and trickle”:
a protocol for TEM preparation and investigation of inorganic fibers from
biological material, Inhal. Toxicol., 28, 357–363, https://doi.org/10.1080/08958378.2016.1175527, 2016.
Vigliaturo, R., Della Ventura, G., Choi, J. K., Marengo, A., Lucci, F.,
O'Shea, M. J., Pérez-Rodriguez, I., and Gieré, R.: Mineralogical
Characterization and Dissolution Experiments in Gamble's Solution of
Tremolitic Amphibole from Passo di Caldenno (Sondrio, Italy), Minerals,
8, 557, https://doi.org/10.3390/min8120557, 2018.
Vigliaturo, R., Pollastri, S., Gieré, R., Gualtieri, A. F.,
and Dražić, G.: Experimental quantification of the Fe-valence state at
amosite-asbestos boundaries using acSTEM dual-electron energy-loss
spectroscopy, Am. Mineral., 104, 1820–1828, https://doi.org/10.2138/am-2019-7218, 2019.
Vigliaturo, R., Choi, J. K., Pérez-Rodriguez, I., and Gieré, R.:
Dimensional distribution control of elongate mineral particles for their use
in biological assays, MethodsX, 7, 100937, https://doi.org/10.1016/j.mex.2020.100937, 2020.
Waeselmann, N., Schlüter, J., Malcherek, T., Della Ventura, G., Oberti,
R., and Mihailova, B.: Non-destructive determination of the amphibole crystal
chemistry by Raman spectroscopy; one step closer, J. Raman Spectrosc.,
51, 1–19, https://doi.org/10.1002/jrs.5626, 2019.
Williams, C., Dell, L., Adams, R., Rose, T., and Van Orden, D.:
State-of-the-science assessment of non-asbestos amphibole exposure. Is there
a cancer risk?, Environ. Geochem. Hlth., 35, 357–377, https://doi.org/10.1007/s10653-012-9500-0, 2013.
World Health Organisation: WHO Air Quality Guidelines, 2nd Edn., Asbestos,
Regional Office for Europe, Copenhagen, Denmark,
available at: https://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf (last access: 16 January 2021), 2000.
Wylie, A. G.: Modeling asbestos population: a fractal approach, Can. Mineral.,
31, 437–446, https://doi.org/10.3749/1499-1276-31.2.437,
1993.
Zingg, A.: The Ivrea Crustal Cross-Section (Northern Italy and Southern
Switzerland), in: Exposed Cross-Sections
of the Continental Crust, edited by: Salisbury, M. H. and Fountain, D. M., NATO ASI Series (Series C: Mathematical and
Physical Sciences), 317, Springer, Dordrecht, https://doi.org/10.1007/978-94-009-0675-4_1, 1990.
Zoltai, T.: Amphibole asbestos mineralogy, in: Amphiboles
and other hydrous pyriboles, Mineralogy, edited by: Veblen, D. R., Rev. Mineral., 9A, 237–278,
https://doi.org/10.1515/9781501508219-009, 1981.