Articles | Volume 33, issue 6
https://doi.org/10.5194/ejm-33-687-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-33-687-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization and origin of the Mn-rich patinas formed on Lunéville château sandstones
Laure Gatuingt
CORRESPONDING AUTHOR
Laboratoire Géomatériaux et Environnement, Univ. Gustave
Eiffel, 77454 Marne-La-Vallée, France
Laboratoire de Recherche des Monuments Historiques,
77420 Champs-sur-Marne, France
Centre de Recherche sur la Conservation, USR3224,
Sorbonne université, 75005 Paris, France
Stéphanie Rossano
Laboratoire Géomatériaux et Environnement, Univ. Gustave
Eiffel, 77454 Marne-La-Vallée, France
Jean-Didier Mertz
Laboratoire de Recherche des Monuments Historiques,
77420 Champs-sur-Marne, France
Centre de Recherche sur la Conservation, USR3224,
Sorbonne université, 75005 Paris, France
Chloé Fourdrin
Laboratoire Géomatériaux et Environnement, Univ. Gustave
Eiffel, 77454 Marne-La-Vallée, France
Olivier Rozenbaum
CEMHTI UPR3079, CNRS, Univ. Orléans, 45071 Orléans, France
Quentin Lemasson
Centre de Recherche et de Restauration des Musées de France,
Fédération de Recherche NewAGLAE, FR3506 CNRS, Ministère de la
Culture, Chimie ParisTech, Palais du Louvre, 75001 Paris, France
Solenn Reguer
Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
Nicolas Trcera
Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
Bruno Lanson
CORRESPONDING AUTHOR
ISTerre, Univ. Grenoble Alpes, CNRS, Univ. Savoie-Mont Blanc, IRD,
Univ. Gustave Eiffel, 38041 Grenoble, France
Related authors
No articles found.
Nicolas Finck, Nikoleta Morelová, Michel L. Schlegel, Dieter Schild, Solenn Reguer, Kathy Dardenne, and Horst Geckeis
Saf. Nucl. Waste Disposal, 2, 39–40, https://doi.org/10.5194/sand-2-39-2023, https://doi.org/10.5194/sand-2-39-2023, 2023
Short summary
Short summary
Stainless steel was exposed to highly saline brines under anoxic and elevated temperature conditions. Samples were analyzed by various techniques in order to identify the nature of the secondary phases present in the corrosion layer forming at the steel–brine interface. Outcomes suggest that the corrosion layer has duplex structure, with an inner layer mostly of chromium (hydr)oxides and an outer layer made of iron- and nickel-based spinel compounds with admixed nickel (hydr)oxides.
Etienne Balan, Guillaume Radtke, Chloé Fourdrin, Lorenzo Paulatto, Heinrich A. Horn, and Yves Fuchs
Eur. J. Mineral., 35, 105–116, https://doi.org/10.5194/ejm-35-105-2023, https://doi.org/10.5194/ejm-35-105-2023, 2023
Short summary
Short summary
Assignment of OH-stretching bands to specific atomic-scale environments in tourmaline is still debated, which motivates detailed theoretical studies of their vibrational properties. We have theoretically investigated the OH-stretching spectrum of foitite, showing that specific OH bands observed in the vibrational spectra of iron-rich and Na-deficient tourmalines are affected by the magnetic configuration of iron ions and X-site vacancy ordering.
Yves Fuchs, Chloé Fourdrin, and Etienne Balan
Eur. J. Mineral., 34, 239–251, https://doi.org/10.5194/ejm-34-239-2022, https://doi.org/10.5194/ejm-34-239-2022, 2022
Short summary
Short summary
Information about the local structure of tourmaline-group minerals can be obtained from the characteristic OH stretching bands in their vibrational spectra. However, their assignment to specific atomic-scale environments is debated. We address this question theoretically by investigating a series of dravite models. Our results support a local role of cationic occupancies in determining the OH stretching frequencies and bring constraints for the interpretation of the vibrational spectra.
Cited articles
Baddour-Hadjean, R. and Pereira-Ramos, J. P.: Raman microspectrometry
applied to the study of electrode materials for Lithium batteries, Chem. Rev.,
110, 1278–1319, https://doi.org/10.1021/cr800344k,
2010.
Bargar, J. R., Tebo, B. M., Bergmann, U., Webb, S. M., Glatzel, P, Chiu, V.
Q., and Villalobos, M.: Biotic and abiotic products of Mn(II) oxidation by
spores of the marine Bacillus sp. strain SG-1, Am. Mineral., 90, 143–154,
https://doi.org/10.2138/am.2005.1557, 2005.
Beck, K.: Etude des propriétés hydriques et des mécanismes
d'altération de pierres calcaires à forte porosité, PhD
thesis, Université d'Orléans, France, 226 pp., 2006.
Beyer, D.: Evolution of reservoir properties in the Lower Triassic aquifer
sandstones of the Thuringian Syncline in Central Germany, dissertation,
Friedrich Schiller University Jena, Germany, 221 pp., 1983.
Bricker, O.: Some stability relations in the system Mn-O2-H2O at
25 ∘C and one atmosphere total pressure, Am. Mineral., 50, 1296–1354, 1965.
Chalmin, E.: Caractérisation des oxydes de manganèse et usage des
pigments noirs au Paléolithique supérieur, PhD thesis,
Université Paris-Est Marne-la-Vallée, France, 382 pp., 2003.
Colas, E.: Impact de l'humidité et des solutions salines sur le
comportement dimensionnel de grès du Buntsandstein: contribution à
la sélection de faciès de restauration, PhD thesis, Université
de Reims Champagne-Ardenne, France, 321 pp., 2011.
Colomban, P.: Imagerie Raman de matériaux et dispositifs
nano/microhétérogènes, Techniques de l'ingénieur Innovations en matériaux avancés, 2013.
Crerar, D. A., Cormick, R. K., and Barnes, H. L.: Geochemistry of Manganese:
an overview, in Geology and Geochemistry of Manganese, edited by: Varentsov,
I. M. and Grasselly, G., Schweizerbart Science Publishers, Stuttgart,
Germany, 293–334, 1980.
Dorn, R. I.: Rock varnish, in Geochemical Sediments and Landscapes, edited
by: Nash, D. J. and McLaren, S. J., Blackwell Publishing Ltd, 246–297,
https://doi.org/10.1002/9780470712917.ch8, 2007.
Engel, C. G. and Sharp, R. P.: Chemical data on desert varnish, GSA Bulletin,
69, 487–518, https://doi.org/10.1130/0016-7606(1958)69[487:CDODV]2.0.CO;2, 1958.
Farges, F.: Ab initio and experimental pre-edge investigations of the Mn
K-edge XANES in oxide-type materials, Phys. Rev. B, 71, 155109, https://doi.org/10.1103/PhysRevB.71.155109, 2005.
Ferrand, J.: Le phénomène de brunissement des vitraux
médiévaux: critères d'identification et nature de la phase
d'altération, PhD thesis, Université Paris-Est
Marne-la-Vallée, France, 207 pp., 2014.
Ferrand, J. Rossano, S., Loisel, C., Trcera, N., van Hullebusch, E. D.,
Bousta, F., and Pallot-Frossard, I.: Browning Phenomenon of Medieval Stained
Glass Windows, Anal. Chem., 87, 3662–3669, https://doi.org/10.1021/ac504193z, 2015.
Garvie, L. A. J., Burt, D. M. and Buseck, P. R.: Nanometer-scale complexity,
growth, and diagenesis in desert varnish, Geology, 36, 215–218,
https://doi.org/10.1130/G24409A.1, 2008.
Gatuingt, L.: Etude des mécanismes de formation des patines
manganésifères des grès du château de Lunéville, PhD
thesis, Université Paris-Est, France, 277 pp., 2017.
Gatuingt, L., Rossano, S., Mertz, J. D., Lanson, B., and Rozenbaum, O.:
Intrinsic parameters conditionning the formation of Mn-rich patinas on
Luneville sandstones, in Science and Art: A Future for Stone, proceedings of
the 13th International Congress on the Deterioration and Conservation of
Stone, Paisley, Scotland, 6–10 September 2016, 317–324, 2016.
Gatuingt, L., Rossano, S., Mertz, J., Rozenbaum, O., Lanson, B., Fourdrin, C., Reguer, S., and Trcera, N.: XANES, XRD and Raman-spectroscopy data on Mn-rich phases on Lunéville château sandstones (patinas and bulks), Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.26022/IEDA/111980, 2021.
Gaviño, M., Hermosin, B., Vergès-Belmin, V., Nowik, W., and
Sáiz-Jiménez, C.: New insights on the chemical nature of stone
yellowing produced after laser cleaning, in Cultural Heritage Conservation
and Environmental Impact Assessment by Non-Destructive Testing and
Micro-Analysis, edited by: Janssens, K. and Van Grieken, R., CRC Press,
London, United Kingdom, 149–157, https://doi.org/10.1201/9781482283983, 2005.
Goldsmith, Y., Stein, M., and Enzel, Y.: From dust to varnish: Geochemical
constraints on rock varnish formation in the Negev Desert, Israel, Geochim. Cosmochim. Ac.,
126, 97–111, https://doi.org/10.1016/j.gca.2013.10.040, 2014.
Grangeon, S., Lanson, B., Lanson, M., and Manceau, A.: Crystal structure of
Ni-sorbed synthetic vernadite: a powder X-ray diffraction study, Mineral. Mag.,
72, 1279–1291, https://doi.org/10.1180/minmag.2008.072.6.1279, 2008.
Hanesch, M.: Raman spectroscopy of iron oxides and (oxy)hydroxides at low
laser power and possible applications in environmental magnetic studies,
Geophys. J. Int., 61, 941–948, https://doi.org/10.1111/j.1365-246X.2009.04122.x, 2009.
Hem, J. D.: Rates of manganese oxidation in aqueous systems, Geochim. Cosmochim. Ac., 45, 1369–1374,
https://doi.org/10.1016/0016-7037(81)90229-5, 1981.
Hem, J. D. and Lind, C. J.: Nonequilibrium models for predicting forms of
precipitated manganese oxides, Geochim. Cosmochim. Ac., 47, 2037–2046, https://doi.org/10.1016/0016-7037(83)90219-3, 1983.
Julien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S. and
Pereira-Ramos, J. P.: Raman spectra of birnessite manganese dioxides, Solid State Ionics,
159, 345–356, https://doi.org/10.1016/S0167-2738(03)00035-3, 2003.
Julien, C. M., Massot, M., and Poinsignon, C.: Lattice vibrations of
manganese oxides: Part I. Periodic structures, Spectrochim. Acta A, 60, 689–700,
https://doi.org/10.1016/S1386-1425(03)00279-8, 2004.
Kosaka, N.: Etude expérimentale de l'interaction entre des solutions
naturelles et des roches poreuses: contrôle géochimique et
pétrophysique, PhD thesis, Université Louis Pasteur de Strasbourg,
France, 217 pp., 1995.
Krumbein, W. E. and Jens, K.: Biogenic rock varnishes of the negev desert
(Israel) an ecological study of iron and manganese transformation by
cyanobacteria and fungi, Oecologia, 50, 25–38, https://doi.org/10.1007/BF00378791, 1981.
Macholdt, D. S., Jochuma, K. P., Pöhlker, C., Stoll, B., Weis, U.,
Weber, B., Müller, M., Kappl, M., Buhre, S., Kilcoyne, A. L. D.,
Weigand, M., Scholz, D., Al-Amri, A. M., and Andreae, M. O.: Microanalytical
methods for in-situ high-resolution analysis of rock varnish at the
micrometer to nanometer scale, Chem. Geol., 411, 57–68, https://doi.org/10.1016/j.chemgeo.2015.06.023, 2015.
Macholdt, D. S., Herrmann, S., Jochum, K. P., Kilcoyne, A. L. D. ,
Laubscher, T., Pfisterer, J. H. K., Pöhlker, C., Schwager, B., Weber,
B., Weigand, M., Domke, K. F., and Andreae, M. O.: Black manganese-rich
crusts on a Gothic cathedral, Atmos. Environ., 171, 205–220, https://doi.org/10.1016/j.atmosenv.2017.10.022, 2017.
Manceau, A., Gorshkov, A. I., and Drits, V. A.: Structural chemistry of Mn,
Fe, Co, and Ni in Mn hydrous oxides; Part I, information from XANES
spectroscopy, Am. Mineral., 77, 1133–1143, 1992.
Manceau, A., Tamura, N., Celestre, R. S., Macdowell, A. A., Geoffroy, N.,
Sposito, G., and Padmore, H. A.: Molecular-scale speciation of Zn and Ni in
soil ferromanganese nodules from loess soils of the Mississippi Basin,
Environ. Sci. Technol., 37, 75–80, https://doi.org/10.1021/es025748r, 2003.
Manceau, A., Tommaseo, C., Rihs, S., Geoffroy, N., Chateigner, D., Schlegel,
M., Tisserand, D., Marcus, M. A., Tamura, N., and Chen, Z. S.: Natural
speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil
using X-ray fluorescence, absorption, and diffraction, Geochim. Cosmochim. Ac., 69,
4007–4034, https://doi.org/10.1016/j.gca.2005.03.018, 2005.
Manceau, A., Marcus, M. A., and Grangeon, S.: Determination of Mn valence states in
mixed-valent manganates by XANES spectroscopy, Am. Mineral., 97, 816–827,
https://doi.org/10.2138/am.2012.3903, 2012.
Marszalek, M., Alexandrowicz, Z., and Rzepa, G.: Composition of weathering
crusts on sandstones from natural outcrops and architectonic elements in an
urban environment, Environ. Sci. Pollut. R., 16, 14023–14036, https://doi.org/10.1007/s11356-014-3312-y, 2014.
Martin, S. T.: Precipitation and Dissolution of Iron and Manganese Oxides,
in “Environmental Catalysis”, edited by: Grassian, V. H., CRC Press, Boca
Raton, Florida, United States, 61–81, https://doi.org/10.1201/9781420027679, 2005.
McKeown, D. A. and Post, J. E.: Characterization of manganese oxide
mineralogy in rock varnish and dendrites using X-ray absorption
spectroscopy, Am. Mineral., 86, 701–713, https://doi.org/10.2138/am-2001-5-611, 2001
Mertz, J.-D.: Etat des lieux, diagnostic des pathologies et perspectives, in:
Restauration des façades des monuments urbains – contraintes,
problèmes et satisfactions, edited by: Carré, D., Ministère de
la Culture et de la Communication, OPPIC, France, 8–13, 2010.
Murray, J. W., Dillard, J. G., Giovanoli, R., Moers, H., and Stumm, W.:
Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing,
Geochim. Cosmochim. Ac., 49, 463–470, https://doi.org/10.1016/0016-7037(85)90038-9, 1984.
Nord, A. G. and Ericsson, T.: Chemical analysis of thin black layers on
building stone, Studies in Conservation, 38, 25–35, https://doi.org/10.2307/1506389, 1993.
Ortiz-Montalvo, D. L., Vicenzi, E. P., Ritchie, N. W., Grissom, C. A.,
Livingston, R. A., Weldon-Yochim, Z., Conny, J. M., and Wight, S. A.:
Chemical compound classification by elemental signatures in Castle dust
using SEM automated X-ray particle analysis, Microsc. Microanal., 24, 718–719, https://doi.org/10.1017/S1431927618004087,
2018.
Pichon, L., Moignard, B., Lemasson, Q., Pacheco, C., and Walter, P.:
Development of a Multi-Detector and a Systematic Imaging System on the AGLAE
External Beam, Nucl. Instrum. Meth. B, 318, 27–31, https://doi.org/10.1016/j.nimb.2013.06.065, 2014.
Post, J. E.: Manganese oxide minerals: Crystal structures and economic and
environmental significance, P. Natl. Acad. Sci. USA, 96, 3447–3454, https://doi.org/10.1073/pnas.96.7.3447, 1999.
Post, J. E., McKeown, D. A. and Heaney, P. J.: Raman spectroscopy study of
manganese oxides: Tunnel structures, Am. Mineral., 105, 1175–1190, https://doi.org/10.2138/am-2020-7390, 2020.
Potter, R. M. and Rossman, G. R.: The tetravalent manganese oxides:
identification, hydration, and structural relationships by infrared
spectroscopy, Am. Mineral., 64, 1199–1218, 1979.
Rousset-Tournier, B.: Transfert par capillarité et évaporation dans
des roches - rôle des structures de porosité, PhD thesis,
Université Louis Pasteur de Strasbourg, France, 203 pp., 2001.
Schaffer, R. J.: The weathering of natural building stones, London H. M.
Stationery Office, 149 pp., 1932.
Sepulveda, M., Gutierrez, S., Vallette, M. C., Standen, V. G., Arriaza, B.
T., and Carcamo-Vega, J. J.: Micro-Raman spectral identification of
manganese oxides black pigments in an archaeological context in Northern
Chile, Heritage Science, 3, 32,
https://doi.org/10.1186/s40494-015-0061-2, 2015.
Sharps, M. C., Grissom, C. A., and Vicenzi, E. P.: Nanoscale structure
and compositional analysis of manganese oxide coatings on the Smithsonian
Castle, Washington, DC, Chem. Geol., 537, 119486, https://doi.org/10.1016/j.chemgeo.2020.119486, 2020.
Siegesmund, S., Weiss, T., and Vollbrecht, A.: Natural stone, weathering
phenomena, conservation strategies and case studies: introduction,
Geo. Soc. S. P., 205, 1–7, https://doi.org/10.1144/GSL.SP.2002.205.01.01,
2002.
Soyk, D.: Diagenesis and reservoir quality of the Lower and Middle
Buntsandstein (Lower Triassic), dissertation, Heidelberg University,
Germany, 201 pp., 2015.
Tebo, B. M. and He, L. M.: Microbially mediated oxidative precipitation
reactions. Mineral-water interfacial reactions, ACS Symposium Series, 715,
393–414, https://doi.org/10.1021/bk-1998-0715.ch020 , 1999.
Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G .J., Murray, K. J.,
Parker, D., Verity, R., and Webb, S. M.: Biogenic manganese oxides:
Properties and mechanisms of formation, Annu. Rev. Earth Pl. Sci.,
32, 287–328, https://doi.org/10.1146/annurev.earth.32.101802.120213, 2004.
Thiagarajan, N. and Lee, S. T. A.: Trace-element evidence for the origin of
desert varnish by direct aqueous atmospheric deposition, Earth Planet. Sc. Lett., 224,
131–141, https://doi.org/10.1016/j.epsl.2004.04.038, 2004.
Thomachot, C.: Modifications de propriétés pétrophysiques de
grès soumis au gel ou recouverts “d'encroûtements noirs
vernissés”, PhD thesis, Université Louis Pasteur de Strasbourg,
France, 324 pp., 2002.
Thomachot, C. and Jeannette, D.: Effects of iron black varnish on
petrophysical properties of building sandstone, Environ. Geol., 47, 119–131,
https://doi.org/10.1007/s00254-004-1139-4, 2004.
Vicenzi, E. P., Grissom, C. A., Livingston, R. A., and Weldon-Yochim, Z.:
Rock varnish on architectural stone: microscopy and analysis of nanoscale
manganese oxide deposits on the Smithonian Castle, Washington DC, Heritage Science,
4, 26 https://doi.org/10.1186/s40494-016-0093-2, 2016.
Short summary
Dark patinas rich in manganese (Mn) developed on several sandstones of the Lunéville château (France) contrasting with the general yellow color of the building. The characterization of the Mn compounds in the patinas, but also in the building stones, allowed us to propose a model for the patina formation based on the dissolution of the Mn phases initially present in the stone bulks. The results obtained in this study might enlighten processes occurring on other buildings or in natural settings.
Dark patinas rich in manganese (Mn) developed on several sandstones of the Lunéville château...
Special issue