Articles | Volume 33, issue 2
https://doi.org/10.5194/ejm-33-175-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-175-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Grimmite, NiCo2S4, a new thiospinel from Příbram, Czech Republic
Pavel Škácha
CORRESPONDING AUTHOR
Department of Mineralogy and Petrology, National Museum, Cirkusová
1740, 193 00 Prague 9 – Horní Počernice, Czech Republic
Mining Museum Příbram, Hynka Kličky place 293, 261 01
Příbram VI, Czech Republic
Jiří Sejkora
Department of Mineralogy and Petrology, National Museum, Cirkusová
1740, 193 00 Prague 9 – Horní Počernice, Czech Republic
Jakub Plášil
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 182 21 Prague
8, Czech Republic
Zdeněk Dolníček
Department of Mineralogy and Petrology, National Museum, Cirkusová
1740, 193 00 Prague 9 – Horní Počernice, Czech Republic
Jana Ulmanová
Department of Mineralogy and Petrology, National Museum, Cirkusová
1740, 193 00 Prague 9 – Horní Počernice, Czech Republic
Related authors
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Cristian Biagioni, Jiří Sejkora, Yves Moëlo, Georges Favreau, Vincent Bourgoin, Jean-Claude Boulliard, Elena Bonaccorsi, Daniela Mauro, Silvia Musetti, Marco Pasero, Natale Perchiazzi, and Jana Ulmanová
Eur. J. Mineral., 37, 319–335, https://doi.org/10.5194/ejm-37-319-2025, https://doi.org/10.5194/ejm-37-319-2025, 2025
Short summary
Short summary
Ginelfite is a new Ag–Fe–Tl–Pb sulfosalt described from the hydrothermal deposit of Jas Roux (France). It belongs to the so-called boxwork sulfosalts, a group of species showing the highest structural complexity among this group of chalcogenides. This very complex structure is probably stabilized by the occurrence of minor chemical constituents (Tl, Fe) occupying specific structural positions.
Cristian Biagioni, Daniela Mauro, Jiří Sejkora, Zdeněk Dolníček, Andrea Dini, and Radek Škoda
Eur. J. Mineral., 37, 39–52, https://doi.org/10.5194/ejm-37-39-2025, https://doi.org/10.5194/ejm-37-39-2025, 2025
Short summary
Short summary
Dacostaite is a new fluoride–arsenate mineral found in the Sb(Au) deposit of the Cetine di Cotorniano Mine (Tuscany, Italy). It shows a novel crystal structure formed by heteropolyhedral layers and isolated Mg(H2O)6 groups connected by H bonds. The heteropolyhedral layers are similar to those occurring in alunite-supergroup minerals, and this is a further example of the ability of nature to use similar modules in forming the large number of currently known structural arrangements.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Richard Pažout, Michal Dušek, Jiří Sejkora, Jakub Plášil, Gheorghe Ilinca, and Zdeněk Dolníček
Eur. J. Mineral., 36, 641–656, https://doi.org/10.5194/ejm-36-641-2024, https://doi.org/10.5194/ejm-36-641-2024, 2024
Short summary
Short summary
A new sulfosalt mineral species, lazerckerite, Ag3.7Pb4.6(Sb7.9Bi3.8)Σ11.7S24, has been found, identified, structurally solved, and approved by the IMA. The mineral belongs to the Sb–Bi mixed members of the andorite branch of the lillianite homologous series. The description and characterization of the mineral are presented, and the ways of distinguishing the mineral from other similar members of the group on the basis of chemical results are explained.
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Khulan Berkh, Juraj Majzlan, Jeannet A. Meima, Jakub Plášil, and Dieter Rammlmair
Eur. J. Mineral., 35, 737–754, https://doi.org/10.5194/ejm-35-737-2023, https://doi.org/10.5194/ejm-35-737-2023, 2023
Short summary
Short summary
Since As is detrimental to the environment, the As content of ores should be reduced before it is released into the atmosphere through a smelting process. Thus, Raman spectra of typical As minerals were investigated, and these can be used in the industrial removal of As-rich ores prior to the ore beneficiation. An additional objective of our study was an investigation of the secondary products of enargite weathering. They play a decisive role in the release or retainment of As in the waste form.
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Juraj Majzlan, Alexandra Plumhoff, Martin Števko, Gwladys Steciuk, Jakub Plášil, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 35, 157–169, https://doi.org/10.5194/ejm-35-157-2023, https://doi.org/10.5194/ejm-35-157-2023, 2023
Short summary
Short summary
This research was done to understand how toxic elements, such as copper or arsenic, move through the environment. The data presented here can be used to model mobility of such elements and to improve remediation strategies at sites contaminated by mining.
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Cited articles
Ahmed, A. H., Arai, S., and Ikenne, M.: Mineralogy and paragenesis of the
Co-Ni arsenide ores of Bou Azzer, Anti-Atlas, Morocco, Econ. Geol., 104,
249–266, 2009.
Anderson, E. B.: Isotopic-geochronological investigation of the uranium
mineralization of Czechoslovaki, Unpublished Czechoslovak Uranium Industry
Report 1962-87, 1987.
Anthony, J. W., Bideaux, R. A., Bladh, K. W., and Nichols, M. C.: Handbook
of Mineralogy: Volume I. Elements, Sulfides, Sulfosalts, Mineral Data
Publishing, Tucson, Arizona, 1–588, 1990.
Biagioni, C. and Pasero, M.: The systematics of the spinel-type minerals: An
overview, Am. Mineral., 99, 1254–1264, 2014.
Bossi, F., Biagioni, C., and Pasero, M.: Nomenclature and classification of
the spinel supergroup, Eur. J. Mineral., 31, 183–192, https://doi.org/10.1127/ejm/2019/0031-2788, 2019.
Bouchard, R. J., Russo, P. A., and Wold, A.: Preparation and electrical
properties of some thiospinels, Inorg. Chem., 4, 685–688, 1965.
Buerger, M. J. and Robinson, D. W.: The Crystal Structure and Twinning of
Co2S3, P. Natl. Acad. Sci. USA, 41,
199–203, 1955.
Chaplygin, I. V., Mozgova, N. N., Bryzgalov, I. A., and Mokhov, A. V.:
Cadmoindite, CdIn2S4, a new mineral from Kudriavy volcano, Iturup
isle, Kurily islands, Zap. Vserossij. Mineralog. Obsh., 133, 21–27, 2004.
Cílek, V., Prokeš, S., Škubal, M., Hladíková, J.,
Šmejkal, V., and Žák, K.: Geochemistry of hydrothermal
carbonates of the Příbram uranium deposit, Vlastivěd. Sbor.
Podbrdska, 26, 79–102, 1984.
Criddle, A. J. and Stanley, C. J.: Quantitative data file for ore minerals,
3rd Edn., Chapman & Hall, London, 1993.
Dana, J. D.: Siegenite, in: A system of Mineralogy, 3rd Edn., 687 pp.,
Putnam, New York, 1850.
Dragov, P. and Petrunov, R.: Composition of thiospinel minerals from
Elatsite porphyry-copper deposit, Geochem. Mineral. Petrolog., 33, 25–28,
1998.
Ettler,V., Sejkora, J., Drahota, P., Litochleb, J., Pauliš, P., Zeman,
J., Novák, M., and Pašava, J.: Příbram and Kutná Hora
mining districts – from historical mining to recent environmental impact,
in: IMA 2010, Budapest, Acta Mineral.-Petrogr., Field Guide Series, 7, 1–23,
2010.
Gao, Y. P. and Huang, K. J.: NiCo2S4 materials for supercapacitor
applications, Chemistry – An Asian Journal, 12, 1969–1984, 2017.
Genkin, A. D. and Murav'eva, I. V.: Indite and dzhalindite, new indium
minerals, Zap. Vserossij. Mineralog. Obsh., 92, 445–457, 1963.
Gertsen, L. Y., Kotelnikov, P. Y., and Yeremeyeva, Y. Y.: Second jaipurite
find in the world, Trans. (Dokl.) USSR Acad. Sci., Earth Sci. Sect., 303, 157–160, 1988.
Groves, D. I. and Hall, S. R.: Argentian pentlandite with parkerite, joseite
A and the probable Bi-analogue of ullmannite from Mount Windarra, Western
Australia, Can. Mineral., 16, 1–7, 1978.
Hazen, R. M., Hystad, G., Golden, J. J., Hummer, D. R., Liu, C., Downs, R.
T., Morrison, S. M., Ralph, J., and Grew, E. S.: Cobalt mineral ecology, Am.
Mineral., 102, 108–116, 2017.
Huang, C. H. and Knop, O.: Chalkogenides of the transition elements. VIII An
X-ray and neutron diffraction study of spinel CoNi2S4, Can. J.
Chem., 40, 598–602, 1971.
Imai, N., Mariko, T., and Shiga, Y.: Siegenite from the Nippo ore deposit of
the Kamaishi mine, Iwate Prefecture, Japan, Mining Geol., 23, 347–354,
1973.
Isa, J., Ma, C., and Rubin, A. E.: Joegoldsteinite: A new sulfide mineral
(MnCr2S4) from the Social Circle IVA iron meteorite, Am. Mineral.,
101, 1217–1221, 2016.
Janoušek, V., Wiegand, B. A., and Žák, J.: Dating the onset of
Variscan crustal exhumation in the core of the Bohemian Massif: new U–Pb
single zircon ages from the high-K calc-alkaline granodiorites of the
Blatná suite, Central Bohemian Plutonic Complex, J. Geol. Soc., 167,
347–360, 2010.
Kiefer, S., Majzlan, J., Chovan, M., and Števko, M.: Mineral
compositions and phase relations of the complex sulfarsenides and arsenides
from Dobšiná (Western Carpathians, Slovakia), Ore Geol. Rev., 89,
894–908, 2017.
Knop, O., Reid, K. I. G., Sutarno, and Nakagawa, Y.: Chalkogenides of the
transition elements. VI. X-Ray, neutron, and magnetic investigation of the
spinels Co3O4, NiCo2O4, Co3S4, and
NiCo2S4, Can. J. Chem., 46, 3463–3476, 1968.
Komínek, J.: Geology of the Příbram district and its broader
surroundings, in: Final report of the Příbram district, 2nd
part, Unpublished MS, DIAMO State Enterprise, 1995.
Kraus, W. and Nolze, G.: POWDER CELL – a program for the representation and
manipulation of crystal structures and calculation of the resulting X-ray
powder patterns, J. Appl. Crystallogr., 29, 301–303, 1996.
Lee, S. Y., Watanabe, M., Hoshino, K., Oomori, T., Fujioka, K., and Rona, P.
A.: First report of linnaeite (Co3S4) and millerite (NiS) from
active submarine hydrothermal deposits: Rainbow hydrothermal field,
Mid-Atlantic Ridge at 36∘14' N, N. Jb. Mineral. Mh., 2002, 1–21,
2002.
Litochleb, J., Černý, P., Litochlebová, E., Sejkora, J., and
Šreinová, B.: The deposits and occurrences of mineral raw materials
in the Střední Brdy Mts. and the Brdy piedmont area (Central
Bohemia), Bull. Mineral.-Petrolog. Odd. Nár. Muz. (Praha), 11, 57–86,
2003.
Litochleb, J., Sejkora, J., and Škácha, P.: Tsumoite (BiTe) from the
gold-bearing quartz veins from Bytíz – Staré hory near
Příbram, Bull. Mineral.-Petrolog. Odd. Nár. Muz. (Praha), 13,
150–153, 2005.
Litochleb, J., Sejkora, J., and Šrein, V.: The Au-Ag-Sb-Bi-Te
mineralization from the deposit Bytíz (Mine 19), the Příbram
uranium-polymetallic ore district, Czech Republic, Mineral. Polon.-Spec.
Pap., 28, 133–135, 2006.
Lundqvist, D.: Crystal structure of daubréelite, Arkiv Kemi, Mineral.
Geol., 17B, 1–4, 1943.
Makariová, M. (Ed.): Biographic dictionary of the Bohemian lands,
Academia, 744 pp., 2017.
Minčeva-Stefanova, J.: Nickelian cobaltite, cuprosiegnite, nickelian
carrollite and cobaltian gersdorffite from the stratiform polymetallic
deposits in the western Stara Planina Mountains, Geochem. Mineral.
Petrolog., 3, 31–51, 1975.
Minčeva-Stefanova, J. and Kostov, I.: On siegenite and the “miscibility”
between linnaeite and polydymite, Geochem. Mineral. Petrolog., 4, 35–56,
1976.
Ondruš, P., Veselovský, F., Gabašová, A., Hloušek, J.,
Šrein, V., Vavřín, I., Skála, R., Sejkora, J., and
Drábek, M.: Primary minerals of the Jáchymov ore district, J. Czech
Geol. Soc., 48, 19–147, 2003.
Petříček, V., Dušek, M., and Palatinus, L.:
Crystallographic computing system Jana2006: general features, Z.
Kristallogr., 229, 345–352, 2014.
Petruk, W., Harris, D. C., and Stewart, J. M.: Langisite, a new mineral, and
the rare minerals cobalt pentlandite, siegenite, parkerite and bravoite from
the Langis mine, Cobalt-Gowganda area, Ontario, Can. Mineral., 9, 597–616,
1969.
Picot, P. and Johan, Z.: Atlas of ore minerals, B.R.G.M., Elsevier, 1982.
Pouchou, J. L. and Pichoir, F.: “PAP” (πρZ) procedure for
improved quantitative microanalysis, in: Microbeam
Analysis, edited by: Armstrong, J. T., San Francisco Press, California, 104–106, 1985.
Reznickij, L. Z., Skl'arov, E. V., and Ustschapovskaya, Z. F.: Kalininite
ZnCr2S4 – a new natural sulphospinel, Zap. Vserossij. Mineralog.
Obsh., 114, 622–627, 1985.
Rigaku: CrysAlis CCD and CrysAlis RED. Rigaku-Oxford Diffraction Ltd,
Yarnton, Oxfordshire, UK, 2019.
Riley, F. J.: Ferroan carrollites, cobaltian violarites, and other members
of the “linnaeite group” (Co,Ni,Fe,Cu)3S4, Mineral. Mag., 43,
733–739, 1980.
Roseboom, E. H.: Skutterudites (Co, Ni, Fe)As3−x: Composition and cell
dimensions, Am. Mineral., 47, 310–327, 1962.
Rudashevsky, N. S., Men'shikov, Y. P., Mochalov, A. G., Trubkin, N. V.,
Shumskaya, N. I., and Zhdanov, V. V.: Cuprorhodsite CuRh2S4 and
cuproiridsite CuIr2S4 – new natural thiospinels of platinum-group
elements, Zap. Vserossij. Mineralog. Obsh., 114, 187–195, 1985.
Sejkora, J., Litochleb, J., and Süsser, C.: The occurrence of parkerite
at the uranium ore district Horní Slavkov (Czech Republic), Bull.
Mineral.-Petrolog. Odd. Nár. Muz. (Praha), 17, 29–32, 2009.
Sejkora, J., Škácha, P., Laufek, F., and Plášil, J.:
Brodtkorbite, Cu2HgSe2, from Příbram, Czech Republic:
crystal structure and description, Eur. J. Mineral., 29, 663–672, https://doi.org/10.1127/ejm/2017/0029-2647, 2017.
Sejkora, J., Škácha, P., and Dolníček, Z.: Ag-Bi-Hg
mineralization from the deposit Brod, uranium and base-metal ore district
Příbram (Czech Republic), Bull. Mineral. Petrolog., 27, 259–268,
2019.
Sejkora, J., Litochleb, J., Novák, M., Cícha, J., and
Dolníček, Z.: Nickel-(Bi, Ag) sulphide mineralization from NYF
Vepice pegmatite, Milevsko pluton, southern Bohemia (Czech Republic) – a
reflection of the parental granite chemistry, J. Geosci., 65, 187–199, 2020.
Sejkora, J., Škácha, P., Plášil, J., Dolníček, Z.
and Ulmanová, J.: Hrabákite, Ni9PbSbS8, a new member of
the hauchecornite group from Příbram, Czech Republic, Mineral. Mag.,
https://doi.org/10.1180/mgm.2021.1, online first, 2021.
Shen, L., Wang, J., Xu, G., Li, H., Dou, H., and Zhang, X.:
NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an
advanced electrode for supercapacitors, Adv. Energy Mater., 5,
1400977, https://doi.org/10.1002/aenm.201400977, 2015.
Škácha, P., Sejkora, J., and Plášil, J.:
Příbramite, CuSbSe2, the Se-analogue of chalcostibite, a new
mineral from Příbram, Czech Republic, Eur. J. Mineral., 29,
653–661, https://doi.org/10.1127/ejm/2017/0029-2623, 2017a.
Škácha, P., Sejkora, J., and Plášil, J.: Selenide
mineralization in the Příbram uranium and base-metal district
(Czech Republic), Minerals, 7, 91, https://doi.org/10.3390/min7060091, 2017b.
Škácha, P., Sejkora, J., and Plášil, J.: Bytízite, a
new Cu-Sb selenide from Příbram, Czech Republic, Mineral. Mag., 82,
199–209, 2018.
Škácha, P., Sejkora, J., and Dolníček, Z.: Cu-Ag-Sb-As
mineralization from the Milín deposit, uranium and base-metal ore
district Příbram (Czech Republic), Bull. Mineral. Petrolog., 27,
419–426, 2019.
Škácha, P., Sejkora, J., Plášil, J., and Makovicky, E.:
Pošepnýite, a new Hg-rich member of the tetrahedrite group from
Příbram, Czech Republic, J. Geosci., 65, 173–186, 2020.
Skinner, B. J., Erd, R. C., and Grimaldi, F. S.: Greigite, the thio-spinel
of iron; a new mineral, Am. Mineral., 49, 543–555, 1964.
Spiridonov, E. M. and Gritsenko, Y. D.: Ferroskutterudite,
nickelskutterudite, and skutterudite from the Norilsk ore field, New Data on
Minerals Moscow, 42, 16–27, 2007.
Spiridonov, E. M., Gritsenko, Y. D., and Kulikova, I. M.: Ferroskutterudite
(Fe,Co)As3: a new mineral species from the dolomite-calcite veins of
the Noril'sk ore field, Dokl. Earth Sci., 417, 1278–1280, 2007.
Wagner, T. and Cook, N. J.: Carrollite and related minerals of the linnaeite
group; solid solutions and nomenclature in the light of new data from the
Siegerland District, Germany, Can. Mineral., 37, 545–558, 1999.
Xia, C., Li, P., Gandi, A. N., Schwingenschlögl, U., and
Alshareef, H. N.: Is NiCo2S4 really a semiconductor?, Chem.
Mater., 27, 6482–6485, 2015.
Yu, T. H., Lin, S. J., Chao, P., Fang, C. S., and Huang, C. S.: A
preliminary study of some new minerals of the platinum-group and another
associated new one in platinum-bearing intrusions in a region of China, Acta
Geol. Sin., 2, 202–218, 1974.
Žák, K. and Dobeš, P.: Stable isotopes and fluid inclusions in
hydrothermal deposits: the Příbram ore region, Rozpr.
Českoslov. Akad. věd, Ř. matem., přír. Věd, 101,
1–109, 1991.
Short summary
Grimmite, sulfide of cobalt and nickel, is the new mineral for the mineralogical system.
Grimmite, sulfide of cobalt and nickel, is the new mineral for the mineralogical system.