Articles | Volume 32, issue 1
https://doi.org/10.5194/ejm-32-13-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-13-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of recovery onset by subgrain and grain boundary migration in experimentally deformed polycrystalline olivine
Billy Clitton Nzogang
Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 – UMET – Unité
Matériaux et Transformations, 59000 Lille, France
Manuel Thieme
Univ. Montpellier, CNRS, Geosciences Montpellier, 34095 Montpellier,
France
Alexandre Mussi
Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 – UMET – Unité
Matériaux et Transformations, 59000 Lille, France
Sylvie Demouchy
Univ. Montpellier, CNRS, Geosciences Montpellier, 34095 Montpellier,
France
Patrick Cordier
CORRESPONDING AUTHOR
Univ. Lille, CNRS, INRA, ENSCL, UMR 8207 – UMET – Unité
Matériaux et Transformations, 59000 Lille, France
Related authors
No articles found.
Sylvie Demouchy, Manuel Thieme, Fabrice Barou, Benoit Beausir, Vincent Taupin, and Patrick Cordier
Eur. J. Mineral., 35, 219–242, https://doi.org/10.5194/ejm-35-219-2023, https://doi.org/10.5194/ejm-35-219-2023, 2023
Short summary
Short summary
We report a comprehensive data set characterizing and quantifying two types of mineral defects in the most abundant mineral of Earth's upper mantle: olivine. Namely, we investigate translation defects of dislocation and rotation defects, called disclinations, in polycrystalline olivine deformed in uniaxial compression or torsion, at high temperature and pressure. The defects are identified via mapping of the crystallographic disorientation detected using electron backscatter diffraction.
Sylvie Demouchy
Eur. J. Mineral., 33, 249–282, https://doi.org/10.5194/ejm-33-249-2021, https://doi.org/10.5194/ejm-33-249-2021, 2021
Short summary
Short summary
Olivine, a ferromagnesian orthosilicate, is the most abundant mineral in Earth’s upper mantle but also in Mars' and Venus'. The olivine atomic structure is also used to manufacture lithium batteries. Like any other crystalline solid, olivine never occurs with a perfect crystalline structure: defects in various dimensions are ubiquitous. In this contribution, I review the current state of the art of defects in olivine and several implications for key processes in geodynamics.
Cited articles
Ashby, M. F. and Verrall, R. A.: Diffusion-accommodated flow and
superplasticity, Acta Met., 21, 149–163, https://doi.org/10.1016/0001-6160(73)90057-6, 1973.
Avé Lallemant, H. G. and Carter, N. L.: Syntectonic recrystallization of
olivine and modes of flow in the upper mantle, Geol. Soc. Am. Bull.,
81, 2203–2220, https://doi.org/10.1130/0016-7606(1970)81[2203:SROOAM]2.0.CO;2, 1970.
Bachmann, F., Hielscher, R., and Schaeben, H.: Grain detection from 2d and
3d EBSD data – Specification of the MTEX algorithm, Ultramicroscopy, 111,
1720–1733, https://doi.org/10.1016/j.ultramic.2011.08.002,
2011.
Bai, Q. and Kohlstedt, D. L.: High-temperature creep of olivine single
crystals III. Mechanical results for unbuffered samples and creep
mechanisms, Philos. Mag. A, 66, 1149–1181, https://doi.org/10.1080/01418619208248011, 1992.
Barbe, F., Forest, S., and Cailletaud, G.: Intergranular and intragranular
behavior of polycrystalline aggregates. Part 2: Results, Int. J. Plasticity,
17, 537–563, https://doi.org/10.1016/S0749-6419(00)00062-0,
2001.
Behr, W. M. and Platt, J. P.: Brittle faults are weak, yet the ductile
middle crust is strong: Implications for lithospheric mechanics, Geophys.
Res. Lett., 41, 8067–8075, https://doi.org/10.1002/2014GL061349, 2014.
Ben Ismail, W. and Mainprice, D.: An olivine fabric database: an overview
of upper mantle fabrics and seismic anisotropy, Tectonophysics, 296,
145–158, https://doi.org/10.1016/S0040-1951(98)00141-3, 1998.
Birle, J. D., Gibbs, G. V., Moore, P. B., and Smith, J. V.: Crystal structures
of natural olivines, Am. Mineral., 53, 807–824, 1968.
Boioli, F., Carrez, P., Cordier, P., Devincre, B., and Marquille, M.:
Modeling the creep properties of olivine by 2.5-dimensional dislocation
dynamics simulations, Phys. Rev. B, 92, 014115, https://doi.org/10.1103/PhysRevB.92.014115, 2015a.
Boioli, F., Tommasi, A., Cordier, P., Demouchy, S., and Mussi, A.: Low
steady-state stresses in the cold lithospheric mantle inferred from
dislocation dynamics models of dislocation creep in olivine, Earth Planet.
Sc. Lett., 432, 232–242, https://doi.org/10.1016/j.epsl.2015.10.012, 2015b.
Bollinger, C., Nzogang, B. C., Mussi, A., Bouquerel, J., Molodov, D. A., and
Cordier, P.: Microstructural evidence for grain boundary migration and
dynamic recrystallization in experimentally deformed forsterite aggregates,
Minerals, 9, 17, https://doi.org/10.3390/min9010017, 2019a.
Bollinger, C., Marquardt, K., and Ferreira, F.: Intragranular plasticity vs.
grain boundary sliding (GBS) in forsterite: Microstructural evidence at high
pressures (3.5–5.0 GPa), Am. Mineral., 104, 220–231, https://doi.org/10.2138/am-2019-6629, 2019b.
Chauve, T., Montagnat, M., Barou, F., Hidas, K., Tommasi, A., and Mainprice,
D.: Investigation of nucleation processes during dynamic recrystallization
of ice using cryo-EBSD, Philos. T. R. Soc. A, 375, 20150345, https://doi.org/10.1098/rsta.2015.0345, 2017.
Demouchy, S., Schneider, S. E., Mackwell, S. J., Zimmerman, M. E., and
Kohlstedt, D. L.: Experimental deformation of olivine single crystals at
lithospheric temperatures, Geophys. Res. Lett., 36, 1–55,
https://doi.org/10.1029/2008GL036611, 2009.
Demouchy, S., Tommasi, A., Ballaran, T. B., and Cordier, P.: Low strength of
Earth's uppermost mantle inferred from tri-axial deformation experiments on
dry olivine crystals, Phys. Earth Planet. In., 220, 37–49,
https://doi.org/10.1016/j.pepi.2013.04.008, 2013.
Demouchy, S., Mussi, A., Barou, F., Tommasi, A., and Cordier, P.:
Viscoplasticity of polycrystalline olivine experimentally deformed at high
pressure and 900 ∘C, Tectonophysics, 623, 123–135,
https://doi.org/10.1016/j.tecto.2014.03.022, 2014.
Drury, M. R.: Dynamic recrystallization and strain softening of olivine
aggregates in the Laboratory and the Lithosphere, Geol. Soc., 243, 143–158, https://doi.org/10.1144/GSL.SP.2005.243.01.11, 2005.
Drury, M. R., Avé Lallemant, H. G., Pennock, G. M., and Palasseac, L. N.:
Crystal preferred orientation in peridotite ultramylonites deformed by grain
size sensitive creep, Étang de Lers, Pyrenees, France, J. Struct. Geol.,
33, 1776–1789, https://doi.org/10.1016/j.jsg.2011.10.002, 2011.
Drury, M. R. and Pennock, G. M.: Subgrain Rotation Recrystallization in
Minerals, Mater. Sci. Forum, 550, 95–104, https://doi.org/10.4028/www.scientific.net/MSF.550.95, 2007.
Drury, M. R. and Urai, J. L.: Deformation-related recrystallization
processes, Tectonophysics, 172, 235–253, https://doi.org/10.1016/0040-1951(90)90033-5, 1990.
Durinck, J., Devincre, B., Kubin, L., and Cordier, P.: Modeling the plastic
deformation of olivine by dislocation dynamics simulations, Am. Mineral.,
92, 1346–1357, https://doi.org/10.2138/am.2007.2512, 2007.
Evans, B. and Goetze, C.: The temperature variation of hardness of olivine
and its implication for polycrystalline yield stress, J. Geophys. Res., 84,
5505–5524, https://doi.org/10.1029/JB084iB10p05505, 1979.
Gaboriaud, R. J., Darot, M., Gueguen, Y., and Woirgard, J.: Dislocations in
olivine indented at low-temperatures, Phys. Chem. Miner., 7, 100–104,
https://doi.org/10.1007/BF00309460, 1981.
Gasc, J., Demouchy, S., Barou, F., Koizumi, S., and Cordier, P.: Creep
mechanisms in the lithospheric mantle inferred from deformation of iron-free
forsterite aggregates at 900–1200 ∘C, Tectonophysics, 761, 16–30, https://doi.org/10.1016/j.tecto.2019.04.009, 2019.
Godfrey, A., Cao, W. Q., Hansen, N., and Liu, Q.: Stored energy,
microstructure, and flow stress of deformed metals, Metall. Mater. Trans. A,
36, 2371–2378, https://doi.org/10.1007/s11661-005-0109-0,
2005.
Goetze, C.: The mechanism of creep in olivine, Philos. T. R. Soc A,
288, 99–119, https://doi.org/10.1098/rsta.1978.0008, 1978.
Gouriet, K., Cordier, P., Garel, F., Thoraval, C., Demouchy, S., Tommasi,
A., and Carrez, P.: Dislocation Dynamics modelling of the power-law
breakdown in olivine single crystals: toward a unified creep law for the
upper mantle, Earth Planet Sc. Lett., 506, 282–291, https://doi.org/10.1016/j.epsl.2018.10.049, 2019.
Gueguen, Y.: Dislocations in naturally deformed terrestrial olivine:
classification, interpretation, application, B. Mineral., 102,
178–183, https://doi.org/10.3406/bulmi.1979.7273, 1979.
Hansen, L. N., Zimmerman, M. E., and Kohlstedt, D. L.: Grain boundary sliding
in San Carlos olivine: Flow law parameters and crystallographic preferred
orientation, J. Geophys. Res., 116, B08201, https://doi.org/10.1029/2011JB008220, 2011.
Hansen, L. N., Kumamoto, K. M., Thom, C. A., Wallis, D., Durham, W. B., Goldsby,
D. L., Breithaupt, T., Meyers, C. D., and Kohlstedt, D. L.: Low-temperature
plasticity in olivine: Grain size, strain hardening, and the strength of the
lithosphere, J. Geophys. Res.-Sol. Ea., 116, B08201, https://doi.org/10.1029/2018JB016736, 2019.
Hanson, D. R. and Spetzler, H. A.: Transient creep in natural and synthetic,
iron-bearing olivine single crystals: mechanical results and dislocation
microstructures, Tectonophysics, 235, 293–315, https://doi.org/10.1016/0040-1951(94)90191-0, 1994.
Hirth, G. and Kohlstedt, D. L.: Rheology of the upper mantle and the mantle
wedge: a view from the experimentalists, in: Inside The Subduction Factory,
AGU, Washington, 83–105, https://doi.org/10.1029/138GM06,
2003.
Jung, H.: Deformation fabrics of olivine in Val Malenco peridotite found in
Italy and implications for the seismic anisotropy in the upper mantle,
Lithos, 109, 341–349, https://doi.org/10.1016/j.lithos.2008.06.007, 2009.
Kohlstedt, D. L., Goetze, C., Durham, W. B., and Vander Sande, J.: New
technique for decorating dislocations in olivine, Science, 191, 1045–1046,
https://doi.org/10.1126/science.191.4231.1045, 1976.
Langdon, T. G.: Grain boundary sliding revisited: Developments in sliding
over four decades, J. Mater Sci., 41, 597–609 https://doi.org/10.1007/s10853-006-6476-0, 2006.
Le Roux, V., Bodinier, J. L., Tommasi, A., Alard, O., Dautria, J. M., Vauchez,
A., and Riches, A. J. V.: The Lherz spinel lherzolite: refertilized rather
than pristine mantle, Earth Planet. Sc. Lett., 259, 599–612,
https://doi.org/10.1016/j.epsl.2007.05.026, 2007.
Le Roux, V., Tommasi, A., and Vauchez, A.: Feedback between melt percolation
and deformation in an exhumed lithosphere-asthenosphere boundary, Earth
Planet. Sc. Lett., 274, 401–413, https://doi.org/10.1016/j.epsl.2008.07.053, 2008.
Liu, W., Kung, J., and Li, B.: Elasticity of San Carlos olivine to 8 GPa and
1073 K,
Geophys. Res. Lett., 32, L16301, https://doi.org/10.1029/2005GL023453, 2005.
Mainprice, D., Tommasi, A., Couvy, H., Cordier, P., and Frost, D. J.:
Pressure sensitivity of olivine slip systems and seismic anisotropy of the
Earth's upper mantle, Nature, 433, 731–733, https://doi.org/10.1038/nature03266, 2005.
Mei, S. and Kohlstedt, D. L.: Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime, J. Geophys. Res. 105, 21457–21469, https://doi.org/10.1029/2000JB900179, 2000a.
Mei, S. and Kohlstedt, D. L.: Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime, J. Geophys. Res., 105, 21471–21481, https://doi.org/10.1029/2000JB900180, 2000b.
Mises, R. V.: Mechanik der plastischen Formänderung von Kristallen, Z.
Angew. Math. Me., 8, 161–185, https://doi.org/10.1002/zamm.19280080302, 1928.
Miura, H., Sakai, T., Mogawa, R., and Jonas, J. J.: Nucleation of dynamic
recrystallization and variant selection in copper bicrystals, Philos. Mag.,
87, 4197–4209, https://doi.org/10.1080/14786430701532780, 2007.
Mussi, A., Cordier, P., Demouchy, S., and Vanmansart, C.: Characterization
of the glide planes of the [001] screw dislocations in olivine using
electron tomography, Phys. Chem. Miner., 41, 537–545, https://doi.org/10.1007/s00269-014-0665-1, 2014.
Mussi, A., Cordier, P., and Demouchy, S.: Characterization of dislocation
interactions in olivine using electron tomography, Philos. Mag., 95,
335–345, https://doi.org/10.1080/14786435.2014.1000996,
2015.
Mussi, A., Cordier, P., Demouchy, S., and Hue, B.: Hardening mechanisms in
olivine single crystal deformed at 1090 ∘C: an electron
tomography study, Philos. Mag., 97, 3172–3185, https://doi.org/10.1080/14786435.2017.1367858, 2017.
Nzogang, B. C., Thieme, M., Mussi, A., Demouchy, S., and Cordier, P.: Research data supporting for “Characterization of recovery onset by subgrain and grain boundary migration in experimentally deformed polycrystalline olivine” [Data set], Zenodo, https://doi.org/10.5281/zenodo.3492179, 2019.
Pantleon, W.: Resolving the geometrically necessary dislocation content by
conventional electron backscattering diffraction, Scripta Mater., 58,
994–997, https://doi.org/10.1016/j.scriptamat.2008.01.050,
2008.
Paterson, M. S.: Rock deformation experimentation, in: The Brittle-Ductile
transition in rocks: the Heard volume, edited by: Duba, A. G., Durham, W. B., Handin, J. W.,
and Wang, H. F., Geophysical Monograph Series, AGU, Washington, 187–194,
https://doi.org/10.1029/GM056p0187, 1990.
Phakey, P., Dollinger, G., and Christie, J.: Transmission electron
microscopy of experimentally deformed olivine crystals, in: Flow and
Fracture of Rocks, American Geophysical Union, https://doi.org/10.1029/GM016p0117, 1972.
Platt, J. P. and Behr, W. M.: Grainsize evolution in ductile shear zones:
Implications for strain localization and the strength of the lithosphere, J.
Struct. Geol., 33, 537–550, https://doi.org/10.1016/j.jsg.2011.01.018, 2011.
Précigout, J. and Hirth, G.: B-type olivine fabric induced by grain
boundary sliding, Earth Planet. Sc. Lett., 395, 231–240, https://doi.org/10.1016/j.epsl.2014.03.052, 2014.
Raleigh, C. B.: Mechanisms of plastic deformation of olivine, J. Geophys.
Res., 73, 5391–5406, https://doi.org/10.1029/JB073i016p05391,
1968.
Rauch, E. F. and Dupuy, L.: Rapid spot diffraction patterns identification
through template matching, Arch. Metall. Mater., 50, 87–99, 2005.
Rauch, E. F. and Véron, M.: Automated crystal orientation and phase
mapping in TEM, Mater. Charact., 98, 1–9, https://doi.org/10.1016/j.matchar.2014.08.010, 2014.
Ree, J. H.: Grain boundary sliding and development of grain boundary opening
in experimentally deformed octachloropropane, J. Struct. Geol., 16,
403–418, https://doi.org/10.1016/0191-8141(94)90044-2, 1994.
Ribe, N. and Yu, Y.: A theory for plastic deformation and textural
evolution of olivine polycrystals, J. Geophys. Res., 96, 8325–8335,
https://doi.org/10.1029/90JB02721, 1991.
Rollett, A., Humphreys, F. J., Rohrer, G. S., and Hatherly, M.:
Recrystallization and Related Annealing Phenomena, 2nd Edn., Elsevier,
Oxford, UK, 658 pp., ISBN 9780080441641, 2004.
Satsukawa, T. and Michibayashi, K.: Flow in the uppermost mantle during
back-arc spreading revealed by Ichinomegata peridotite xenoliths, NE Japan,
Lithos, 189, 89–104, https://doi.org/10.1016/j.lithos.2013.10.035, 2014.
Taylor, G. I.: Plastic strain in metals, J. l. Met., 62, 307–324, 1938.
Thieme, M., Demouchy, S., Mainprice, D., Barou, F., and Cordier, P.: Stress
evolution and associated microstructure during transient creep of olivine at
1000–1200 ∘C, Phys. Earth Planet. In., 278, 34–46,
https://doi.org/10.1016/j.pepi.2018.03.002, 2018.
Tielke, J. A., Zimmerman, M. E., and Kohlstedt, D. L.: Hydrolytic weakening in
olivine single crystals, J. Geophys. Res., 122, 3465–3479,
https://doi.org/10.1002/2017JB014004, 2017.
Wallis, D., Hansen, L. N., Ben Britton, T., and Wilkinson, A. J.:
Geometrically necessary dislocation densities in olivine obtained using
high-angular resolution electron backscatter diffraction, Ultramicroscopy,
168, 34–45, https://doi.org/10.1016/j.ultramic.2016.06.002,
2016.
Warren, J. M. and Hirth, G.: Grain size sensitive deformation mechanisms in
naturally deformed peridotites, Earth Planet. Sc. Lett., 248, 438–450,
https://doi.org/10.1016/j.epsl.2006.06.006, 2006.
Wheeler, J., Mariani, E., Piazolo, S., Prior, D. J., Trimby, P., and Drury, M. R.:
The weighted Burgers vector: a new quantity for constraining
dislocation densities and types using electron backscatter diffraction on 2D
sections through crystalline materials, J. Microscopy, 233, 482–494,
https://doi.org/10.1111/j.1365-2818.2009.03136.x, 2009.
Wright, S. I., Nowell, M. M., and Field, D. P.: A review of strain analysis
using electron backscatter diffraction, Microsc. Microanal., 17, 316–329,
https://doi.org/10.1017/S1431927611000055, 2011.
Zimmerman, M. E. and Kohlstedt, D. L.: Rheological properties of partially
molten lherzolite, J. Petrol., 45, 275–298, https://doi.org/10.1093/petrology/egg089, 2004.