Articles | Volume 37, issue 6
https://doi.org/10.5194/ejm-37-829-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-829-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Kayupovaite, Na2Mn10[(Si14Al2)O38(OH)8] ⋅ 7H2O – a new stilpnomelane-related mineral from the Ushkatyn-III deposit, Kazakhstan
Oleg S. Vereshchagin
CORRESPONDING AUTHOR
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Sergey N. Britvin
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Kola Science Center, Russian Academy of Sciences, Apatity, Fersman Str. 14, 184200, Russia
Aleksey I. Brusnitsyn
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Anastasiia K. Shagova
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Elena N. Perova
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Igor V. Pekov
Faculty of Geology, Moscow State University, Leninskie Gory, 119991 Moscow, Russia
Vladimir V. Shilovskikh
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Natalia S. Vlasenko
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Evgeniya Y. Avdontseva
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Natalia V. Platonova
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Vladimir N. Bocharov
Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7/9, 199034, Russia
Related authors
Sergey N. Britvin, Mikhail N. Murashko, Maria G. Krzhizhanovskaya, Yevgeny Vapnik, Natalia S. Vlasenko, Oleg S. Vereshchagin, Dmitrii V. Pankin, and Evgeny A. Vasiliev
Eur. J. Mineral., 37, 353–363, https://doi.org/10.5194/ejm-37-353-2025, https://doi.org/10.5194/ejm-37-353-2025, 2025
Short summary
Short summary
This paper reports a new natural oxyphosphate, the first mineral that crystallizes in the α-Fe2PO5 structure type. It is isotypic to a series of synthetic oxyphosphates with promising magnetic and electrochemical properties.
Oleg S. Vereshchagin, Sergey N. Britvin, Dmitrii V. Pankin, Marina S. Zelenskaya, Maria G. Krzhizhanovskaya, Maria A. Kuz'mina, Natalia S. Vlasenko, and Olga V. Frank-Kamenetskaya
Eur. J. Mineral., 37, 63–74, https://doi.org/10.5194/ejm-37-63-2025, https://doi.org/10.5194/ejm-37-63-2025, 2025
Short summary
Short summary
Andreybulakhite, ideally Ni(C2O4) · 2H2O, is a new oxalate mineral, which was discovered on the Kola Peninsula, Russia. Andreybulakhite forms segregations of crystals up to 2 × 1 × 1 mm in size disseminated within the fruiting bodies of Lecanora cf. polytropa lichen, whose colonies overgrow the oxidized surfaces of pyrrhotite–pentlandite–chalcopyrite ore. Andreybulakhite is named in honour of Andrey Glebovich Bulakh of Saint Petersburg State University.
Mikhail Rogov, Victoria Ershova, Oleg Vereshchagin, Kseniia Vasileva, Kseniia Mikhailova, and Aleksei Krylov
Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, https://doi.org/10.5194/essd-13-343-2021, 2021
Short summary
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
Sergey N. Britvin, Mikhail N. Murashko, Maria G. Krzhizhanovskaya, Yevgeny Vapnik, Natalia S. Vlasenko, Oleg S. Vereshchagin, Dmitrii V. Pankin, and Evgeny A. Vasiliev
Eur. J. Mineral., 37, 353–363, https://doi.org/10.5194/ejm-37-353-2025, https://doi.org/10.5194/ejm-37-353-2025, 2025
Short summary
Short summary
This paper reports a new natural oxyphosphate, the first mineral that crystallizes in the α-Fe2PO5 structure type. It is isotypic to a series of synthetic oxyphosphates with promising magnetic and electrochemical properties.
Nikita V. Chukanov, Vasilisa M. Gridchina, Ramiza K. Rastsvetaeva, Natalia V. Zubkova, and Igor V. Pekov
Eur. J. Mineral., 37, 133–142, https://doi.org/10.5194/ejm-37-133-2025, https://doi.org/10.5194/ejm-37-133-2025, 2025
Short summary
Short summary
The nolanite supergroup has been established and approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association. It contains eight mineral species with the nolanite-type structure. The nolanite supergroup is subdivided into three groups (nolanite, kamiokite, and rinmanite groups). After significant changes, the classification of the nolanite supergroup was approved again.
Oleg S. Vereshchagin, Sergey N. Britvin, Dmitrii V. Pankin, Marina S. Zelenskaya, Maria G. Krzhizhanovskaya, Maria A. Kuz'mina, Natalia S. Vlasenko, and Olga V. Frank-Kamenetskaya
Eur. J. Mineral., 37, 63–74, https://doi.org/10.5194/ejm-37-63-2025, https://doi.org/10.5194/ejm-37-63-2025, 2025
Short summary
Short summary
Andreybulakhite, ideally Ni(C2O4) · 2H2O, is a new oxalate mineral, which was discovered on the Kola Peninsula, Russia. Andreybulakhite forms segregations of crystals up to 2 × 1 × 1 mm in size disseminated within the fruiting bodies of Lecanora cf. polytropa lichen, whose colonies overgrow the oxidized surfaces of pyrrhotite–pentlandite–chalcopyrite ore. Andreybulakhite is named in honour of Andrey Glebovich Bulakh of Saint Petersburg State University.
Victor V. Sharygin, Sergey N. Britvin, Felix V. Kaminsky, Richard Wirth, Elena N. Nigmatulina, Grigory A. Yakovlev, Konstantin A. Novoselov, and Mikhail N. Murashko
Eur. J. Mineral., 33, 727–742, https://doi.org/10.5194/ejm-33-727-2021, https://doi.org/10.5194/ejm-33-727-2021, 2021
Short summary
Short summary
Ellinaite, a natural analog of β-CaCr2O4, was discovered at Hatrurim Basin, Israel, and in an inclusion within the super-deep diamond from the Sorriso Creek placer, Brazil. Chemical composition, structural data and physical properties are given for this mineral. It is related to multiple oxides AB2O4 with tunnel structure. This group now includes eight minerals. The overview of ellinaite from all localities suggests different PT–X–fO2 conditions for the mineral and its host rocks.
Elena V. Belogub, Vladimir V. Shilovskikh, Konstantin A. Novoselov, Ivan A. Blinov, and Ksenia A. Filippova
Eur. J. Mineral., 33, 605–620, https://doi.org/10.5194/ejm-33-605-2021, https://doi.org/10.5194/ejm-33-605-2021, 2021
Short summary
Short summary
We found Ca- and S-rich rhabdophane in the upper part of the oxidation zone of a sulfide occurrence, where it forms spherules up to 35 µm in size and aggregates in fractures in goethite. Its formation is probably associated with desorption of REEs from Fe3+ oxyhydroxides and clay minerals in the oxidation zone and the influx of P from the soil as well as from the precursor rocks. The enrichment with REE phosphate in the studied case is similar to that in REE regolith-hosted deposits.
Evgeniy Nikolaevich Kozlov, Ekaterina Nikolaevna Fomina, Vladimir Nikolaevich Bocharov, Mikhail Yurievich Sidorov, Natalia Sergeevna Vlasenko, and Vladimir Vladimirovich Shilovskikh
Eur. J. Mineral., 33, 283–297, https://doi.org/10.5194/ejm-33-283-2021, https://doi.org/10.5194/ejm-33-283-2021, 2021
Short summary
Short summary
Carbonophosphates (sidorenkite, bonshtedtite, and bradleyite) with the general formula Na3MCO3PO4 (M is Mn, Fe, and Mg) are often found in inclusions of carbonatite and kimberlite minerals. This article presents the results of Raman spectroscopic study and a simple algorithm for diagnosing mineral phases of the carbonophosphate group. This work may be of interest both to researchers of carbonatites and/or kimberlites and to a wide range of specialists in the field of Raman spectroscopy.
Mikhail Rogov, Victoria Ershova, Oleg Vereshchagin, Kseniia Vasileva, Kseniia Mikhailova, and Aleksei Krylov
Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, https://doi.org/10.5194/essd-13-343-2021, 2021
Short summary
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
Cited articles
Brusnitsyn, A. I., Starikova, E. V., Krivovichev, S. V., and Chukanov, N. V.: Ba-parsettensite from manganese deposit Kysyl-Tash (South Ural), Zapiski RMO, 6, 79–90, 1999 (in Russian).
Brusnitsyn, A. I., Kuleshov, V. N., Sadykov, S. A., Perova, E. N., and Vereshchagin, O. S.: Isotopic composition (δ13C and δ18O) and genesis of manganese-bearing deposits of the Ushkatyn-III deposit, Central Kazakhstan, Lithology and Mineral Resources, 522–548, https://doi.org/10.31857/S0024497X20060026, 2020.
Brusnitsyn, A. I., Perova, E. N., Vereshchagin, O. S., Britvin, S. N., Platonova, N. V., and Shilovskikh, V. V.: The Mineralogy of Iron and Manganese Ores of the Ushkatyn-III Deposit in Central Kazakhstan, Geol. Ore Deposits 63, 772–792, https://doi.org/10.1134/S1075701521080031, 2021.
Brusnitsyn, A. I., Vladimirova, D. A., Perova, E. N., Vereshchagin, O. S., and Zhukov, I. G.: Jacobsite as an indicator of genrsis of manganese ore of the Ushkatyn-III deposit (Central Kazakhstan), Zapiski Vserossijskogo mineralogičeskogo obsestva, CLIII, 98–118, https://doi.org/10.31857/S0869605524010063, 2024.
Brusnitsyn, A. I., Perova, E. N., Vereshchagin, O. S., and Britvin, S. N.: Ushkatyn-III deposit: Ba–Pb, Fe, Mn ores in carbonate sediments of the paleorift, Skifia-print, Saint-Petersburg, Russia, ISBN 978-5-98620-758-2, 2025 (in Russian).
Buzmakov, E. I., Shibrik, V. I., Rozhnov, A. A., Sereda, V., and Radchenko N. M.: Stratiform iron-manganese and polymetallic deposits of the Ushkatynsky ore field (Central Kazakhstan), Geology of Ore Deposits, 1, 32–46, 1975.
Chukanov, N. V.: Infrared Spectra of Mineral Species: Extended Library, Springer Geochemistry/Mineralogy Ser, Springer Netherlands, Dordrecht, 11733 pp., ISBN 978-94-007-7127-7, https://doi.org/10.1007/978-94-007-7128-4, 2014.
Chukanov, N. V. and Chervonnyi, A. D.: Infrared Spectroscopy of Minerals and Related Compounds, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-25349-7, 2016.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., and Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr., 42, 339–341, https://doi.org/10.1107/S0021889808042726, 2009.
Dunn, P. J., Leavens, P. B., Norberg, J. A., and Ramik, R. A.: Bannisterite: new chemical data and empirical formulae, Am. Mineral., 66, 1063–1067, 1981.
Dunn, P. J., Peacor, D. R., and Simmons, W. B.: Lennilenapeite, the Mg-analogue of stilpnomelane, and chemical data on other stilpnomelane species from Franklin, New Jersey, The Canadian Mineralogist, 22, 259–263, 1984.
Dunn, P. J., Peacor, D. R., and Su, S.-C.: Franklinphilite, the manganese analog of stilpnomelane, from Franklin, New Jersey, Mineral. Rec., 23, 465–468, 1992.
Eggleton, R. A.: The crystal structure of stilpnomelane. Part II. The full cell, Mineral. Mag., 38, 693–711, https://doi.org/10.1180/minmag.1972.038.298.06, 1972.
Eggleton, R. A. and Guggenheim, S.: The use of electron optical methods to determine the crystal structure of a modulated phyllosilicate: Parsettensite., Am. Mineral., 79, 426–437, 1994.
Ferrow, E. A., Morad, S., Koark, H. J., and Ounchanum, P.: Bannisterite from the Nyberget Mn-Fe ore deposits, central Sweden. chemistry and mode of occurrence, N. Jb. Miner. Abh., 164, 169–182, 1992.
Fransolet, A.-M., Abraham, K., and Sahl, K.: Davreuxite: a reinvestigation, Am. Mineral., 69, 777–782, 1984.
Grice, J. D. and Gault, R. A.: Varennesite, a new species of hydrated Na-Mn silicate with a unique monophyllosilicate structure, Can. Mineral., 33, 1073–1081, 1995.
Guggenheim, S. and Eggleton, R. A.: Modulated 2:1 layer silicates; review, systematics, and predictions, Am. Mineral., 72, 724–738, 1987.
Guggenheim, S. and Eggleton, R. A.: Chapter 17. Crystal chemistry, classification, and identification of modulated layer silicates, in: Hydrous Phyllosilicates: (Exclusive of Micas), edited by: Bailey, S. W., Walter de Gruyter GmbH, Boston, 675–718, https://doi.org/10.1515/9781501508998-022, 1988.
Haugaard, R., Ootes, L., and Konhauser, K.: Neoarchaean banded iron formation within a ∼2620 Ma turbidite-dominated deep-water basin, Slave craton, NW Canada, Precambrian Research, 292, 130–151, https://doi.org/10.1016/j.precamres.2017.01.025, 2017.
Hawthorne, F. C., Uvarova, Y. A., and Sokolova, E.: A structure hierarchy for silicate minerals: sheet silicates, Mineral. Mag., 83, 3–55, https://doi.org/10.1180/mgm.2018.152, 2019.
Heaney, P. J., Post, J. E., and Evans, H. T.: The Crystal Structure of Bannisterite, Clays Clay Miner., 40, 129–144, https://doi.org/10.1346/CCMN.1992.0400201, 1992.
Hughes, J. M., Rakovan, J., Bracco, R., and Gunter, M. E.: The atomic arrangement of the ganophyllite-group modulated layer silicates as determined from the orthorhombic dimorph of tamaite, with the elusive 16.8 Å ganophyllite-group superstructure revealed, Am. Mineral., 88, 1324–1330, https://doi.org/10.2138/am-2003-8-915, 2004.
Kalinin, V. V.: Complex iron-manganese and zinc-lead-barite ores of the Ushkatyn group deposits (Central Kazakhstan), in: Volcanogenic-sedimentary and hydrothermal manganese deposits, Nauka, Moscow, 5–64, 1985.
Kayupova, M. M.: Pyrosmalite from the Dzhumart and Ushkatyn deposits, central Kazakhstan, Doklady Akademii Nauk USSR, Earth Science Section, 159, 82–85, 1964.
Kayupova, M. M.: Discovery of brandtite [in Kazakhstan], first one in the USSR, Doklady Akademii Nauk USSR, Earth Science Section, 1198–1200, 1972.
Kayupova, M. M.: Mineralogy of iron and manganese ores from West Atasu (Central Kazakhstan), Alma-Ata: Nauka, Almaty, Kazakhstan, 1974.
Krivovichev, S. V., Yakovenchuk, V. N., Armbruster, T., Pakhomovsky, Y. A., Weber, H.-P., and Depmeier, W.: Synchrotron X-ray diffraction study of the structure of shafranovskite, K2Na3(Mn,Fe,Na)4[Si9(O,OH)27](OH)2 ⋅nH2O, a rare manganese phyllosilicate from the Kola peninsula, Russia, Am. Mineral., 89, 1816–1821, https://doi.org/10.2138/am-2004-11-1228, 2004.
Kuebler, K. E.: A combined electron microprobe (EMP) and Raman spectroscopic study of the alteration products in Martian meteorite MIL 03346, J. Geophys. Res.-Planets., 118, 347–368, https://doi.org/10.1029/2012JE004244, 2013.
Liebau, F.: Structural Chemistry of Silicates: Structure, Bonding, and Classification, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-50076-3, 1985.
Matsubara, S. and Kato, A.: A barian bannisterite from Japan, Min. Mag., 53, https://doi.org/10.1180/minmag.1989.053.369.09, 85–87, 1989.
Miyano, T. and Klein, C.: Phase equilibria in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-CO2 and the stability limit of stilpnomelane in metamorphosed Precambrian iron-formations, Contr. Mineral. and Petrol., 102, 478–491, https://doi.org/10.1007/BF00371089, 1989.
Pekov, I. V., Chukanov, N. V., Dubinchuk, V. T., and Zadov, A. E.: Middendorfite, K3Na2Mn5Si12(O,OH)36 ⋅2H2O, a new mineral species from the Khibiny pluton, Kola Peninsula, Geol. Ore Deposits, 49, 522–529, https://doi.org/10.1134/S1075701507070069, 2007.
Plimer, I. R.: Bannisterite from Broken Hill, Australia, Neu. Jb. Mineral., Mh., 11, 504–509, 1977.
Rozhnov, A. A.: Comparative characteristics of manganese deposits of Atasuisky and Nikopol-Chiatura types, in: Geology and geochemistry of manganese, Nauka, Moscow, 116–121, 1982.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Sheldrick, G. M.: A short history of SHELX, Acta Crystallogr. A, 64, 112–122, https://doi.org/10.1107/S0108767307043930, 2008.
Smith, M. L. and Frondel, C.: The related layered minerals ganophyllite, bannisterite, and stilpnomelane, Mineral. Mag., 36, 893–913, https://doi.org/10.1180/minmag.1968.283.036.01, 1968.
Sustavov, S. G., Brusnitsyn, A. I., and Ilina, A. N.: New data of bannisterite, Zapiski VRMO, 5, 64–74, 1997 (in Russian).
Vereshchagin, O. S., Britvin, S. N., Perova, E. N., Brusnitsyn, A. I., Polekhovsky, Y. S., Shilovskikh, V. V., Bocharov, V. N., van der Burgt, A., Cuchet, S., and Meisser, N.: Gasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, Central Kazakhstan, and metamorphic rocks of the Wanni glacier, Switzerland, Am. Mineral., 104, 1469–1480, https://doi.org/10.2138/am-2019-7028, 2019.
Vereshchagin, O. S., Britvin, S. N., Pankin, D. V., Zelenskaya, M. S., Krzhizhanovskaya, M. G., Kuz'mina, M. A., Vlasenko, N. S., and Frank-Kamenetskaya, O. V.: Andreybulakhite, Ni(C2O4)⋅2H2O, the first natural nickel oxalate, Eur. J. Mineral., 37, 63–74, https://doi.org/10.5194/ejm-37-63-2025, 2025.
Wang, A., Freeman, J. J., and Jolliff, B. L.: Understanding the Raman spectral features of phyllosilicates, J. Raman Spectrosc., 46, 829–845, https://doi.org/10.1002/jrs.4680, 2015.
Yakovenchuk, V. N., Krivovichev, S. V., Pakhomovsky, Y. A., Ivanyuk, G. Y., Selivanova, E. A., Men'shikov, Y. P., and Britvin, S. N.: Armbrusterite, K5Na6Mn3+Mn [Si9O22]4(OH)10
⋅4H2O, a new Mn hydrous heterophyllosilicate from the Khibiny alkaline massif, Kola Peninsula, Russia, Am. Mineral., 92, 416–423, https://doi.org/10.2138/am.2007.2200, 2007.
Zagalskaya, Y. G. and Litvinskaya, G. P.: Geometrical Crystallography, Moscow University Press, Moscow, 1973.
Short summary
Kayupovaite is a new mineral named in honor of Maria Mikhailovna Kayupova (1921–1980), the mineralogist who studied the Ushkatyn-III deposit (Kazakhstan), the type of locality of the described mineral. Kayupovaite is monoclinic and of space group C2/c. The mineral belongs to the group of modulated manganese phyllosilicates and is structurally related to stilpnomelane. The absence of iron in the mineral is a result of oxidative Mn–Fe fractionation during the formation of braunite-rich Mn ores.
Kayupovaite is a new mineral named in honor of Maria Mikhailovna Kayupova (1921–1980), the...