Articles | Volume 37, issue 5
https://doi.org/10.5194/ejm-37-617-2025
https://doi.org/10.5194/ejm-37-617-2025
Research article
 | 
10 Sep 2025
Research article |  | 10 Sep 2025

Chromites in ordinary-chondrite fusion crusts

Manlio Bellesi, Giovanni Pratesi, Alessandro Di Michele, Sabrina Nazzareni, Lidia Pittarello, Steven Goderis, Carlo Santini, and Gabriele Giuli

Related authors

Living on the edge: Response of rudist bivalves (Hippuritida) to hot and highly seasonal climate in the low-latitude Saiwan site, Oman
Niels J. de Winter, Najat al Fudhaili, Iris Arndt, Philippe Claeys, René Fraaije, Steven Goderis, John Jagt, Matthias López Correa, Axel Munnecke, Jarosław Stolarski, and Martin Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2308,https://doi.org/10.5194/egusphere-2025-2308, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Clumped isotope temperature and salinity constrains for the Maastrichtian Chalk Sea based on planktonic and benthic foraminifera from Poland
Marion Peral, Marta Marchegiano, Weronika Wierny, Inigo A. Müller, Johan Vellekoop, Zofia Dubicka, Maciej J. Bojanowski, Steven Goderis, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-502,https://doi.org/10.5194/egusphere-2025-502, 2025
Short summary
Evidence of the existence of the As4S6 molecule produced by light exposure of alacranite, As8S9
Luca Bindi, Paola Bonazzi, Laura Chelazzi, Matteo M. N. Franceschini, Giovanni O. Lepore, Marta Morana, Giovanni Pratesi, Alice Taddei, Matteo Zoppi, and Silvio Menchetti
Eur. J. Mineral., 36, 615–622, https://doi.org/10.5194/ejm-36-615-2024,https://doi.org/10.5194/ejm-36-615-2024, 2024
Short summary
Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped-isotope paleothermometry
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022,https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary

Cited articles

Antoshechkina, P.: magmasource/alphaMELTS: v2.3.1, Zenodo [code], https://doi.org/10.5281/zenodo.13207460, 2024. 
Bunch, T. E., Keil, K., and Snetsinger, K. G.: Chromite composition in relation to chemistry and texture of ordinary chondrites, Geochim. Cosmochim. Ac., 31, 1569–1582, https://doi.org/10.1016/0016-7037(67)90105-6, 1967. 
Genge, M. J. and Grady, M. M.: The fusion crusts of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials, Meteorit. Planet. Sci., 34, 341–356, https://doi.org/10.1111/j.1945-5100.1999.tb01344.x, 1999. 
Ghiorso, M. S. and Sack, R. O.: Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Contr. Mineral. and Petrol., 119, 197–212, https://doi.org/10.1007/BF00307281, 1995. 
Download
Short summary
Chromites found within the fusion crust of ordinary-chondrite meteorites display significant differences with respect to chromites found in the interior of the same meteorites. Chromites within the fusion crust, when compared to those in the interior of the meteorite, display a significantly higher Mg / (Mg + Fe) ratio; moreover, ca. 15 % of the chromites formed within the crust display small but detectable amounts of Ni.
Share