Articles | Volume 37, issue 4
https://doi.org/10.5194/ejm-37-483-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-37-483-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chrysoberyl from the Sabatini Volcanic Complex (Latium, Italy): chemical and petrological peculiarities
Giuseppe Illuminati
CORRESPONDING AUTHOR
Dipartimento Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy
Silvia Musetti
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Fabio Bellatreccia
CORRESPONDING AUTHOR
Dipartimento Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy
Cristian Biagioni
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Centro per l'Integrazione della Strumentazione scientifica dell'Università di Pisa (CISUP), Università di Pisa, 56126 Pisa, Italy
Enrico Caprilli
Dipartimento Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy
Ahmad Rabiee
Dipartimento Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy
Marco E. Ciriotti
Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Tommaso Valperga Caluso 35, 10125 Turin, Italy
Related authors
No articles found.
Cristian Biagioni, Jiří Sejkora, Yves Moëlo, Georges Favreau, Vincent Bourgoin, Jean-Claude Boulliard, Elena Bonaccorsi, Daniela Mauro, Silvia Musetti, Marco Pasero, Natale Perchiazzi, and Jana Ulmanová
Eur. J. Mineral., 37, 319–335, https://doi.org/10.5194/ejm-37-319-2025, https://doi.org/10.5194/ejm-37-319-2025, 2025
Short summary
Short summary
Ginelfite is a new Ag–Fe–Tl–Pb sulfosalt described from the hydrothermal deposit of Jas Roux (France). It belongs to the so-called boxwork sulfosalts, a group of species showing the highest structural complexity among this group of chalcogenides. This very complex structure is probably stabilized by the occurrence of minor chemical constituents (Tl, Fe) occupying specific structural positions.
Cristian Biagioni, Daniela Mauro, Jiří Sejkora, Zdeněk Dolníček, Andrea Dini, and Radek Škoda
Eur. J. Mineral., 37, 39–52, https://doi.org/10.5194/ejm-37-39-2025, https://doi.org/10.5194/ejm-37-39-2025, 2025
Short summary
Short summary
Dacostaite is a new fluoride–arsenate mineral found in the Sb(Au) deposit of the Cetine di Cotorniano Mine (Tuscany, Italy). It shows a novel crystal structure formed by heteropolyhedral layers and isolated Mg(H2O)6 groups connected by H bonds. The heteropolyhedral layers are similar to those occurring in alunite-supergroup minerals, and this is a further example of the ability of nature to use similar modules in forming the large number of currently known structural arrangements.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Marco E. Ciriotti, Uwe Kolitsch, Fernando Cámara, Pietro Vignola, Frédéric Hatert, Erica Bittarello, Roberto Bracco, and Giorgio Maria Bortolozzi
Eur. J. Mineral., 36, 863–872, https://doi.org/10.5194/ejm-36-863-2024, https://doi.org/10.5194/ejm-36-863-2024, 2024
Short summary
Short summary
The article provides the standard description of bonacinaite, Sc3+(AsO4)·2H2O, the first natural scandium arsenate. The new mineral species was found in a few specimens in the dumps of the old Varenche Mine, Valle d'Aosta, Italy, which is therefore the type locality and the only locality in the world. Bonacinaite forms colourless (with faint to distinct violet tints), pseudohexagonal, thick tabular crystals, up to 0.25 mm in size, or as small, faintly violet lath-shaped crystals.
Cristian Biagioni, Anatoly V. Kasatkin, Fabrizio Nestola, Radek Škoda, Vladislav V. Gurzhiy, Atali A. Agakhanov, and Natalia N. Koshlyakova
Eur. J. Mineral., 36, 529–540, https://doi.org/10.5194/ejm-36-529-2024, https://doi.org/10.5194/ejm-36-529-2024, 2024
Short summary
Short summary
Zvěstovite-(Fe) is a new, Ag-rich, member of the tetrahedrite group, the most widespread sulfosalts in ore deposits. Its discovery stresses the chemical variability of this mineral group, allowing for a better understanding of the structural plasticity of these compounds, which are able to host a plethora of different elements typical of hydrothermal environments.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Cristian Biagioni, Marco E. Ciriotti, Georges Favreau, Daniela Mauro, and Federica Zaccarini
Eur. J. Mineral., 34, 365–374, https://doi.org/10.5194/ejm-34-365-2022, https://doi.org/10.5194/ejm-34-365-2022, 2022
Short summary
Short summary
The paper reports the type description of the new mineral species graulichite-(La). This is a new addition to the dussertite group within the alunite supergroup, and its discovery improves our knowledge on the crystal chemistry of this important supergroup of minerals, having both technological and environmental applications.
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Yves Moëlo and Cristian Biagioni
Eur. J. Mineral., 32, 623–635, https://doi.org/10.5194/ejm-32-623-2020, https://doi.org/10.5194/ejm-32-623-2020, 2020
Short summary
Short summary
The plagionite group is a family of complex sulfides (
lead-antimony sulfosalts) encountered in various Pb-Cu-Zn ore deposits. Analysis of these crystal structures confirms a systematic Pb-versus-Sb substitution in two adjacent cation positions. Such a substitution varies according not only to the Pb / Sb ratio of each member but also, apparently, to the kinetics of crystallization. Re-examination of a Pb-free synthetic derivative permitted its redefinition as a Na-Sb sulfosalt.
Related subject area
X-ray and mineral structure
Average structure and microstructure of synchysite-(Ce) from Cuasso al Monte (Varese, Italy)
The thermal expansion of monticellite and olivine
Crystal chemistry of K-tourmalines from the Kumdy-Kol microdiamond deposit, Kokchetav Massif, Kazakhstan
Atomic-scale environment of niobium in ore minerals as revealed by XANES and EXAFS at the Nb K-edge
Structural and compositional data for childrenite from the Homolka granite, Czech Republic
Bobtraillite from Gejiu hyperagpaitic nepheline syenite, southwestern China: new occurrence and crystal structure
Iron oxide inclusions and exsolution textures of rainbow lattice sunstone
Contribution to the crystal chemistry of lead-antimony sulfosalts: systematic Pb-versus-Sb crossed substitution in the plagionite homologous series, Pb2N − 1(Pb1 − xSbx)2(Sb1 − xPbx)2Sb6S13+2N
Structural study of decrespignyite-(Y), a complex yttrium rare earth copper carbonate chloride, by three-dimensional electron and synchrotron powder diffraction
Mullite-2c – a natural polytype of mullite
Roberto Conconi, Marco Merlini, Patrizia Fumagalli, Enrico Mugnaioli, Luigi Folco, and Giancarlo Capitani
Eur. J. Mineral., 37, 233–247, https://doi.org/10.5194/ejm-37-233-2025, https://doi.org/10.5194/ejm-37-233-2025, 2025
Short summary
Short summary
The study of minerals at microscopic and nanoscopic scales is essential for understanding the processes behind their formation. Indeed, by examining minerals in such detail, it is possible to uncover the underlying mechanisms that govern mineral development, from crystal growth to chemical reactions, providing insights into broader geological and environmental processes. The understanding of these processes is especially crucial when minerals contain elements valuable to various industries.
Guy Hovis and Mario Tribaudino
Eur. J. Mineral., 37, 181–190, https://doi.org/10.5194/ejm-37-181-2025, https://doi.org/10.5194/ejm-37-181-2025, 2025
Short summary
Short summary
This paper provides new data on the thermal expansion of the mineral monticellite. Although thermal expansion was already reported in 1978, the data are scant and do not allow us to compare with the new data on olivine, a common mineral. We chose monticellite because it is a mineral slag formed in a blast and ladle furnace, with refractory properties. Moreover, its behaviour matters in predicting the conditions in which a rock was formed.
Beatrice Celata, Ferdinando Bosi, Kira A. Musiyachenko, Andrey V. Korsakov, and Giovanni B. Andreozzi
Eur. J. Mineral., 36, 797–811, https://doi.org/10.5194/ejm-36-797-2024, https://doi.org/10.5194/ejm-36-797-2024, 2024
Short summary
Short summary
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested its ultrahigh-pressure formation. We analyzed the role of K in the tourmaline structure, with a special focus on its stability. High pressure is necessary to squeeze the large cation K+ in the stiff framework of tourmaline, although K is the underdog component if Na+ is present in the mineralizing fluid. K-tourmaline is stable at high pressure, overcoming the stereotype of a mere crustal component.
Quentin Bollaert, Mathieu Chassé, Guillaume Morin, Benoît Baptiste, Alexandra Courtin, Laurence Galoisy, Gautier Landrot, Cécile Quantin, and Georges Calas
Eur. J. Mineral., 36, 55–72, https://doi.org/10.5194/ejm-36-55-2024, https://doi.org/10.5194/ejm-36-55-2024, 2024
Short summary
Short summary
X-ray absorption spectroscopy (XAS) was successfully used to investigate the atomic-scale environment of niobium (Nb) in ore minerals and Nb-doped compounds of technological importance. The demonstrated sensitivity of this technique to Nb minerals could help decipher Nb speciation in mining contexts such as hydrothermal and lateritic deposits and rationalize the origin of the enhanced physico-chemical properties of Nb-doped materials.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Yanjuan Wang, Fabrizio Nestola, Zengqian Hou, Xiangping Gu, Guochen Dong, Zhusen Yang, Guang Fan, Zhibin Xiao, and Kai Qu
Eur. J. Mineral., 35, 65–74, https://doi.org/10.5194/ejm-35-65-2023, https://doi.org/10.5194/ejm-35-65-2023, 2023
Short summary
Short summary
Bobtraillite is an extremely rare cyclosilicate with a unique composition and complex structure. In this paper, we describe the second occurrence of the extremely rare complex zirconium silicate. The results suggest that the ideal formula of bobtraillite could be written as (Na, □)12(□, Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O.
Shiyun Jin, Ziyin Sun, and Aaron C. Palke
Eur. J. Mineral., 34, 183–200, https://doi.org/10.5194/ejm-34-183-2022, https://doi.org/10.5194/ejm-34-183-2022, 2022
Short summary
Short summary
The inclusions and exsolution lamellae in rainbow lattice sunstone (RLS) are studied using microscopic observations, chemical analyses and single-crystal X-ray diffraction. Complicated processes producing the aventurescence and adularescence effect in RLS are revealed through the spatial relationship among the inclusions and exsolution lamellae, as well as the unique ordering pattern in the feldspar structures.
Yves Moëlo and Cristian Biagioni
Eur. J. Mineral., 32, 623–635, https://doi.org/10.5194/ejm-32-623-2020, https://doi.org/10.5194/ejm-32-623-2020, 2020
Short summary
Short summary
The plagionite group is a family of complex sulfides (
lead-antimony sulfosalts) encountered in various Pb-Cu-Zn ore deposits. Analysis of these crystal structures confirms a systematic Pb-versus-Sb substitution in two adjacent cation positions. Such a substitution varies according not only to the Pb / Sb ratio of each member but also, apparently, to the kinetics of crystallization. Re-examination of a Pb-free synthetic derivative permitted its redefinition as a Na-Sb sulfosalt.
Jordi Rius, Fernando Colombo, Oriol Vallcorba, Xavier Torrelles, Mauro Gemmi, and Enrico Mugnaioli
Eur. J. Mineral., 32, 545–555, https://doi.org/10.5194/ejm-32-545-2020, https://doi.org/10.5194/ejm-32-545-2020, 2020
Short summary
Short summary
The crystal structure of the mineral decrespignyite-(Y) from the Paratoo copper mine (South Australia) has been obtained by applying δ recycling direct methods to 3D electron diffraction data followed by Rietveld refinements of synchrotron powder diffraction data. Its structure mainly shows a metal layer sequence of polyhedra interconnecting hexanuclear (octahedral) oxo-hydroxo yttrium clusters along a ternary axis or tilted clusters to hetero-tetranuclear ones hosting Cu, Y and rare earths.
Stephan Lenz, Johannes Birkenstock, Lennart A. Fischer, Hartmut Schneider, and Reinhard X. Fischer
Eur. J. Mineral., 32, 235–249, https://doi.org/10.5194/ejm-32-235-2020, https://doi.org/10.5194/ejm-32-235-2020, 2020
Short summary
Short summary
A mineral from Ettringer Bellerberg (Eifel, Germany) proved to be a polytype of the important ceramic-phase mullite termed mullite-2c, with – similar to sillimanite – doubling of the c lattice parameter due to strong (Si,Al) order in tetrahedral diclusters and – similar to mullite – presence of oxygen vacancies and tetrahedral triclusters due to Al / Si > 1 in diclusters. Crystals were characterised using single-crystal XRD, electron microprobe
analysis (EMPA) and spindle-stage optical methods.
Cited articles
Anthony, J. W., Bideaux, R. A., Bladh, K. W., and Nichols, M. C.: Handbook of Mineralogy, Min. Soc. Am., 5, https://www.handbookofmineralogy.org (last access: March 2025), 2003.
Armiento, G., Bellatreccia, F., Cremisini, C., Della Ventura, G., Nardi, E., and Pacifico, R.: Beryllium natural background concentration and mobility: a reappraisal examining the case of high Be-bearing pyroclastic rocks, Environ. Monit. Assess., 185, 559–572, https://doi.org/10.1007/s10661-012-2575-3, 2013.
Barton, M. D.: Phase equilibria and thermodynamic properties of minerals in the BeO-Al2O3-SiO2-H2O (BASH) system, with petrologic application, Am. Mineral., 71, 277–300, 1986.
Bauerhansl, P. and Beran, A.: Trace hydrogen in the olivine-type minerals chrysoberyl, Al2BeO4 and sinhalite, MgAlBO4 – a polarized FTIR spectroscopic study, Schweiz. Miner. Petrog., 77, 131–136, 1997.
Beus, A. A.: Geochemistry of Beryllium and genetic types of Beryllium deposits, edited by: Freeman, W. H., San Francisco, 401, 1966.
Bouzari, N., Tabatabai, H., Abbasi, Z., Firooz, A., and Dowlati, Y.: Laser hair removal: comparison of long-pulsed Nd:YAG, long-pulsed alexandrite, and long-pulsed diode lasers, Dermatol. Surg., 30, 498–502, https://doi.org/10.1111/j.1524-4725.2004.30163.x, 2004.
Bragg, W. L. and Brown, G. B.: The crystalline structure of chrysoberyl, Proc. R. Soc. Lond. A., 110, 34–63, https://doi.org/10.1098/rspa.1926.0003, 1926.
Brown, W. L. and Parsons, I.: Alkali feldspars: ordering rates, phase transformations and behaviour diagrams for igneous rocks, Mineral. Mag., 53, 25–42, https://doi.org/10.1180/minmag.1989.053.369.03, 1989.
Bruker AXS Inc.: APEX4. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA, 2022.
Bukin, G. V., Matrosov, V. N., Orekhova, V. P., Remigailo, Yu. L., Sevastyanov, B. K., Syomin, E. G., Solntsev, V. P., and Tsvetkov, E. G.: Growth of alexandrite crystals and investigation of their properties, J. Cryst. Growth, 52, 537–541, https://doi.org/10.1016/0022-0248(81)90335-3, 1981.
Cámara, F., Oberti, R., Ottolini, L., Della Ventura, and Bellatreccia, G. F.: The crystal chemistry of Li in gadolinite, Am. Mineral., 93, 996–1004, https://doi.org/10.2138/am.2008.2748, 2008.
Cavarretta, G. and Tecce, F.: Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini volcanic district, Latium, Italy, Geothermics, 16, 127–145, https://doi.org/10.1016/0375-6505(87)90061-7, 1987.
Černý, P.: Mineralogy of beryllium in granitic pegmatites, in: Beryllium: Mineralogy, Petrology and Geochemistry, edited by: Grew, E. S., Rev. Mineral. Geochem., 50, 405–444, https://doi.org/10.1515/9781501508844-011, 2002.
Černý, P., Novák, M., and Chapman, R.: Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Maršíkov, Northern Moravia, Czechoslovakia, Can. Mineral., 30, 699–718, 1992.
Conticelli, S. and Peccerillo, A.: Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources, Lithos, 28, 221–240, https://doi.org/10.1016/0024-4937(92)90008-M, 1992.
Colombo, F., Sfragulla, J., González Del Tánago, J., and Pannunzio Miner, E. V.: Crisoberilo de la pegmatita Tablata I, Grupo pegmatitico Pocho, distrito Altautina (provincia de Córdoba, Argentina), Revista de la Asociación Geológica Argentina, 78, 344–354, 2021.
Cygan, G. L., Chou, I. M., and Sherman, D. M.: Reinvestigation of the annite = sanidine + magnetite + H2 reaction using the fH2 sensor technique, Am. Mineral., 81, 475–485, 1996.
Della Ventura, G., Di Lisa, G. A., Marcelli, M., Mottana, A., and Paris, R.: Composition and structural state of alkali feldspars from ejecta in the Roman potassic province, Italy; petrological implications, Eur. J. Mineral., 4, 411–424, https://doi.org/10.1127/ejm/4/3/0411, 1992.
Della Ventura, G., Rossi, P., Parodi, G. C., Mottana, A., Rausepp, M., and Prencipe, M.: Stoppaniite, (Fe,Al,Mg)4(Be6Si12O36)*(H2O)2(Na,□) a new mineral of the beryl group from Latium (Italy), Eur. J. Mineral., 12, 121–127, https://doi.org/10.1127/0935-1221/2000/0012-0121, 2000.
Della Ventura, G., Bonazzi, P., Oberti, R., and Ottolini, L.: Ciprianiite and mottanaite-(Ce), two new minerals of the hellandite group from Latium (Italy), Am. Mineral., 87, 739–744, https://doi.org/10.2138/am-2002-5-617, 2002.
De Rita, D., Funiciello, R., Rossi, U., and Sposato, A.: Structure and evolution of the Sacrofano-Baccano caldera, Sabatini volcanic complex, Rome, J. Volcanol. Geoth. Res., 17, 219–236, https://doi.org/10.1016/0377-0273(83)90069-0, 1983.
De Rita, D., Funiciello, R., Corda, L., Sposato, A., and Rossi, U.: Volcanic Units, in: Sabatini Vulcanic Complex, edited by: Di Filippo, M., Progetto finalizzato di Geodinamica, Quaderni de La Ricerca Scientifica, Monografie finali, 11, 33–79, 1993.
De Rita, D., Di Filippo, M., and Rosa, C.: Structural evolution of the Bracciano volcano-tectonic depression, Sabatini volcanic complex, Italy, Geological Society special publication, 110, 225–236, https://doi.org/10.1144/gsl.sp.1996.110.01.17, 1996.
De Rita, D., Rodani, S., Rosa, C., and Puzzilli, L.: Il settore sud-occidentale del distretto vulcanico sabatino: stratigrafia ed evoluzione alla luce di dati di sondaggio e di rilevamento, Bollettino della Società Geologica Italiana, 116, 319–334, 1997.
Di Filippo, M. (Ed.): Sabatini volcanic complex, Quaderni de La Ricerca Scientifica, Monografie finali, 11, 9–109, 1993.
Dostal, J.: Some new data for chrysoberyl from Maršíkov, Acta U. Carol. Geol., 4, 261–270, 1969.
Downes, P. J. and Bevan, A. W. R.: Chrysoberyl, beryl and zincian spinel mineralization in granulite facies at Dowerin, Western Australia, Mineral. Mag., 66, 985–1002, https://doi.org/10.1180/0026461026660072, 2002.
Drev, S., Komelj, M., Mazaj, M., Daneu, N., and Rečnik, A.: Structural investigation of (130) twins and rutile precipitates in chrysoberyl crystals from Rio das Pratinhas in Bahia (Brazil), Am. Mineral., 100, 861–871, https://doi.org/10.2138/am-2015-5120, 2015.
Droop, G. T. R.: A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 51, 431–435, https://doi.org/10.1180/minmag.1987.051.361.10, 1987.
Eremin, N. N., Gromalova, N. A., and Urusov, V. S.: Atomic modeling and prediction of the structure, energy characteristics of point defects, and thermodynamic and elastic properties of the simple and complex beryllium oxides, Glass Phys. Chem., 35, 613–619, https://doi.org/10.1134/S1087659609060108, 2009.
European Commission: Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, in: Study on the critical raw materials for the EU 2023: final report, edited by: Grohol, M. and Veeh, C., Publications Office of the European Union, https://doi.org/10.2873/725585, 2023.
Farrell, E. F., Fang, J. H., and Newnham, R. E.: Refinement of the chrysoberyl structure, Am. Mineral., 48, 804–810, 1963.
Fibrich, M., Šulc, J., Vyhlídal, D., Jelínková, H., and Čech, M.: Alexandrite spectroscopic and laser characteristic investigation within 78–400 K temperature range, Laser Phys., 27, 115801, https://doi.org/10.1088/1555-6611/aa884c, 2017.
Franz, G. and Morteani, G.: The formation of chrysoberyl in metamorphosed pegmatites, J. Petrol., 25, 27–52, https://doi.org/10.1093/petrology/25.1.27, 1984.
Franz, G. and Morteani, G.: Be-Minerals: Synthesis, Stability and Occurrence in Metamorphic Rocks, in: Beryllium: Mineralogy, Petrology and Geochemistry, edited by: Grew, E. S., Rev. Mineral. Geochem., 50, 552–589, https://doi.org/10.1515/9781501508844-014, 2002.
Funiciello, R., Parotto, M., De Rita, D., Di Filippo, M., and Sposato, A.: Carta geologica del Complesso vulcanico sabatino. con note illustrative. Consiglio Nazionale delle Ricerche, Progetto finalizzato Geodinamica, Sottoprogetto 3: Sorveglianza dei vulcani attivi e rischio vulcanico, Comitato redazionale C.N.R., Ed., Roma, 1988.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr., B71, 562–578, 2015.
Gao, Y., Li, X., Cheng, Y., Huang, T., Li, K., Xu, B., and Tang, R.: Gemological, Spectral and Chemical Features of Canary Yellow Chrysoberyl, Crystals, 13, 1580, https://doi.org/10.3390/cryst13111580, 2023.
Gjessing, L., Larsson, T., and Major, H.: lsomorphous Substitute for Al3+ in the compound Al2BeO4, Norsk Geol Tidssk, 22, 92–99, 1943.
González del Tánago, J.: Las pegmatitas graníticas de Sierra Albarrana (Córdoba, España): Mineralizaciones de berilio, Boletín Geológico y Minero de España 102, 90–114, https://hdl.handle.net/20.500.14352/60256, 1991.
Gromalova, N. A., Eremin, N. N., and Urusov, V. S.: Atomistic modeling of the mixing properties and local structure of Be(Al,Cr,FeIII)2O4 solid solutions, Glass Phys. Chem., 3, 293–306, https://doi.org/10.1134/S1087659611030059, 2011.
Gromalova, N. A., Mal'tsev, V. V., Dorokhova, G. I., Leonyuk, N. I., and Urusov, V. S.: Recrystallization of natural chrysoberyl in multicomponent melts, Crystallog. Rep., 57, 603–608, https://doi.org/10.1134/S1063774512030078, 2012.
Hawkesworth, C. J.: Beryllium: Mineralogy, Petrology, and Geochemistry, edited by: Grew, E. S., Rev. Mineral. Geochem., 50, Washington, D.C, USA, https://doi.org/10.1180/0670824, 2003.
Hawthorne, F. C. and Gagné, O. C.: New ion radii for oxides and oxysalts, fluorides, chlorides and nitrides, Acta Cryst., B80, 326–339, https://doi.org/10.1107/S2052520624005080, 2024.
Hazen, R. M. and Finger, L. W.: High-temperature crystal chemistry of phenakite (Be2SiO4) and chrysoberyl (BeAl2O4), Phys. Chem. Miner., 14, 426–434, https://doi.org/10.1007/BF00628819, 1987.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., and Frick, D. A.: Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines, Geostand. Geoanal. Res., 35, 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Kanouo, N. S., Ekomane, E., Yongue, R. F., Njonfang, E., Zaw, K., Ma, C., Ghogomu, T. R., Lentz, D., and Venkatesh, A. S.: Trace elements in corundum, chrysoberyl, and zircon: Application to mineral exploration and provenance study of the western Mamfe gem clastic deposits (SW Cameroon, Central Africa), J. Afr. Earth Sci., 113, 35–50, https://doi.org/10.1016/j.jafrearsci.2015.09.023, 2016.
Landthaler, M. and Hohenleutner, U.: Laser therapy of vascular lesions, Photodermatol. Photoimmunol. Photomed., 22, 324–332, https://doi.org/10.1111/j.1600-0781.2006.00254.x, 2006.
Li, L., Kono, T., Groff, W. F., Chan, H. M., Kitazawa, Y., and Nozaki, N. J.: Comparison study of a long-pulse pulsed dye laser and a long-pulse pulsed alexandrite laser in the treatment of port wine stains, J. Cosmet. Laser. Ther., 10, 12–15, https://doi.org/10.1080/14764170701817023, 2008.
Libowitzky, E.: Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals, Monatsh. Chem., 130, 1047–1059, https://doi.org/10.1007/BF03354882, 1999.
London, D. and Evensen, J. M.: Beryllium in Silicic Magmas and the Origin of Beryl-Bearing Pegmatites, in: Beryllium: Mineralogy, Petrology and Geochemistry, edited by: Grew, E. S., Rev. Mineral. Geochem., 50, 445–486, https://doi.org/10.1515/9781501508844-012, 2002.
Lottermoser, W., Redhammer, G. J., Weber S. U., Litterst, F. J., Tippelt, G., Dlugosz, S., Bank, H., Amthauer, G., and Grodzicki, M.: The electric field gradient in natural iron-doped chrysoberyl Al2BeO4 and sinhalite MgAlBO4 single crystals, Phys. Chem. Miner., 38, 787–799, https://doi.org/10.1007/s00269-011-0451-2, 2011.
Malsy, A. K. and Armbruster, T.: Synthetic alexandrite – Growth methods and their analytical fingerprints, Eur. J. Mineral., 24, 153–162, https://doi.org/10.1127/0935-1221/2012/0024-2181, 2012.
Mandarino, J. A.: The Gladstone-Dale relationship. Part I: derivation of new constants, Can. Mineral., 14, 498–502, 1976.
Mandarino, J. A.: The Gladstone-Dale relationship: Part III. Some general applications, Can. Mineral., 17, 71–46, 1979.
Marcos-Pascual, C. and Moreiras, D. B.: Characterization of alexandrite, emerald and phenakite from Franqueira (NW Spain), J. Gem., 25, 340–357, https://doi.org/10.15506/JoG.1997.25.5.340, 1997.
Merino, E., Villaseca, C., Perez-Soba, C., and Orejana, D.: First occurrence of Gahnite and chrysoberyl in an Iberian Hercynian pluton: the Belvis de Monroy granite (Careres, Spain), Macla, Revista de la Sociedad espanola de mineralogia, 13, 159–160, 2010.
Merino, E., Villaseca, C., Orejana, D., and Jeffries, T.: Gahnite, hrysoberyl and beryl co-occurrence as accessory minerals in highly evolved peraluminous pluton: The belvìs de Monroy leucogranite (Càceres, Spain), Lithos, 179, 137–156, https://doi.org/10.1016/j.lithos.2013.08.004, 2013.
Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst., 44, 1272–1276, https://doi.org/10.1107/S0021889811038970, 2011.
Newnham, R. E., Santoro, R., Pearson, J., and Jansen, C.: Ordering of Fe and Cr in chrysoberyl, Am. Mineral., 49, 427–430, 1964.
Oberti, R., Langone, A., Boiocchi, M., Bernabè, E., and Hawthorne, F. C.: News from the hellandite group: the redefinition of mottanaite and ciprianiite and the new mineral description of ferri-mottanaite-(Ce), the first Fe3+-dominant hellandite, Eur. J. Mineral., 31, 799–806, https://doi.org/10.1127/ejm/2019/0031-2858, 2019.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite: Freeware for the visualisation and processing of mass spectrometric data, J. Anal. Atom. Spectrom., 26, 2508–2518, https://doi.org/10.1039/C1JA10172B, 2011.
Pawlas, N. and Pałczyński, C. M.: Beryllium, in: Handbook on the Toxicology of Metals (Fifth Edition), Vol. II: Specific Metals, 101–119, https://doi.org/10.1016/B978-0-12-822946-0.00004-0, 2022.
Peccerillo, A.: Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics, Springer Berlin, Heidelberg, https://doi.org/10.1007/3-540-29092-3, 2005.
Peccerillo, A.: Cenozoic Volcanism in the Tyrrhenian Sea Region, Advances in Volcanology, Springer Cham., 399, https://doi.org/10.1007/978-3-319-42491-0, 2016.
Rabiee, A., Rossetti, F., Lustrino, M., Azizi, H., Asahara, Y., Alipour, S., and Selby, D.: Formation and degradation of a porphyry occurrence: The Oligocene Khatoon-Abad porphyry Mo-Cu system, NW Iran, Ore Geol. Rev., 174, 106330, https://doi.org/10.1016/j.oregeorev.2024.106330, 2024.
Rossi, P., Bellatreccia, F., Caprilli, E., Parodi, G., Della Ventura, G., and Mottana, A.: A new occurrence of rare minerals in an ejectum in the pyroclastics of Vico Volcano, Roman Comagmatic Region, Italy, Rend. Fis. Acc. Lincei, 6, 147–156, https://doi.org/10.1007/BF03001663, 1995.
Rybnikova, O., Uher, P., Novák, M., Chládek, Š., Bacik, P., Kurylo, S., and Vaculovic, T.: Chrysoberyl and associated beryllium minerals resulting from metamorphic overprint of the Maršíkov-Schinderhübel-III pegmatite, Czech Republic, Mineral. Mag., 87, 369–381, https://doi.org/10.1180/mgm.2023.22, 2023.
Schmetzer, K., Bernhardt, H. J., and Hainschwang, T.: Flux-grown synthetic alexandrites from Creative Crystals Inc., J. Gem., 33, 49–81, https://doi.org/10.15506/JoG.2012.33.1.49, 2012.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Cryst., C71, 3–8, https://doi.org/10.1107/s2053229614024218, 2015.
Soman, K. and Nair, N. G. K.: Genesis of chrysoberyl in the pegmatites of Southern Kerala, India, Mineral. Mag., 733–738, https://doi.org/10.1180/minmag.1985.049.354.14, 1985.
Sottili, G., Palladino, D. M., Marra, F., Jicha, B., Karner, D. B., and Renne, P.: Geochronology of the most recent activity in the Sabatini Volcanic District, Roman Province, central Italy, J. Volcanol. Geoth. Res., 196, 20–30, https://doi.org/10.1016/j.jvolgeores.2010.07.003, 2010.
Steven, C. J. and Gunter, M. E.: Excelibr: an excel spreadsheet for solving the optical orientation of uniaxial and biaxial crystals, The Microscope, 65, 147–152, 2017.
Šulc, J. and Jelínková, H.: Solid-state lasers for medical application, in: Laser for Medical application, 1st edn., edited by: Jelínková, H., Woodhead Publishing Series in Electronic and Optical Materials, Elsevier BV, 127–176, https://doi.org/10.1533/9780857097545.2.127, 2013.
Sun, Z., Palke, A. C., Muyal, J., DeGhionno, D., and McClure, S. F.: Geographic origin determination of alexandrite, Gems Gemol., 55, 660–681, https://doi.org/10.5741/GEMS.55.4.660, 2019.
Swanson, H. E., Cook, M. I., Issacs, T., and Evans, E. H.: Standard X-ray diffraction powder patterns, Bur. Std. Circ., 539, 9, 64 pp., 1960.
Tabata, H., Ishii, E., and Okuda, H.: Solid Solubilities in the System BeAl2O4-BeR2O4 (R=Cr, Fe, Ga), J. Ceram. Assoc., 89, 31–38, https://doi.org/10.2109/jcersj1950.89.31, 1981.
Tarquini S., Isola, I., Favalli, M., Battistini, A., and Dotta, G.: TINITALY, a digital elevation model of Italy with a 10 meters cell size (Version 1.1), INGV, https://doi.org/10.13127/tinitaly/1.1, 2023.
Vignola, P., Zucali, M., Rotiroti, N., Marotta, G., Risplendente, A., and Pavese, A.: The chrysoberyl- and phosphate-bearing albite pegmatite of Malga Garbella, Val Di Rabbi, Trento province, Italy, Can. Mineral., 56, 411–424, https://doi.org/10.3749/canmin.1700058, 2018.
Vinokurov, V. M., Zaripov, M. M., Stepanov, V. G., Pol'skii, Y. E., Cherkin, G. K., and Shekun, L. Y.: Electron paramagnetic resonance in natural chrysoberyl, Sov. Phys.-Sol. State (English translation), 3, 1797–1800, 1962.
Warr, L. N.: IMA–CNMNC approved mineral symbols, Mineral. Mag., 85, 291–320, https://doi.org/10.1180/mgm.2021.43, 2021.
Washington, H. S.: The Roman Comagmatic Region, Carnegie Institution for Science, Washington, D.C., USA, 57, p. 199, 1906.
Weber, S. U., Grodzicki, M., Lottermoser, W., Redhammer, G. J., Tippelt, G., Ponahlo, J., and Amthauer, G.: 57Fe Mössbauer spectroscopy, X-ray single-crystal diffractometry, and electronic structure calculations on natural alexandrite, Phys. Chem. Miner., 34, 507–515, https://doi.org/10.1007/s00269-007-0166-6, 2007.
Welberry, T. R. (Ed.): International Tables for Crystallography,Volume C: Mathematical, physical and chemical tables, second on-line edition, IUCr Series, International Tables for Crystallography, https://doi.org/10.1107/97809553602060000117, 2021.
Yardley, B. W., Rochelle, C. A., Barnicoat, A. C., and Lloyd, G. E.: Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism, Mineral. Mag., 55, 357–365, https://doi.org/10.1180/minmag.1991.055.380.06, 1991.
YinCe, M., Tao, H., ShanKe, L., Hang, L., Huadong, M., Wei, W., and Xingwang, X.: Types and genetic mechanism of chrysoberyl deposits, Acta Petrol. Sin., 38, 943–962, https://doi.org/10.18654/1000-0569/2022.04.01, 2022.
Žáček, V. and Vràna, S.: Iron-rich chrysoberyl from Kalanga Hill, Muyombe District, north-eastern Zambia, Neues Jb. Miner. Monat., 12, 529–540, https://doi.org/10.1127/0028-3649/2002/2002-0529, 2002.
Short summary
In this work, we present the most iron-rich chrysoberyl discovered to date, found in the Sabatini Volcanic Complex (Latium, Italy). We provide a comprehensive overview of its chemical, structural, spectroscopic, and optical properties. The characterization of this chrysoberyl reveals several unique features, offering valuable insights into its genetic model and geochemical constraints, which are consistent with existing literature on the Sabatini complex and with ongoing research.
In this work, we present the most iron-rich chrysoberyl discovered to date, found in the...