Articles | Volume 37, issue 3
https://doi.org/10.5194/ejm-37-343-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-343-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Non-conventional pressure estimates by using transmission electron microscopy coupled with energy-dispersive spectroscopy (TEM-EDS): testing on submicrometer white mica from low-grade metapelites
Edoardo Sanità
Dipartimento di Scienze della Terra, University of Pisa, Pisa, 56126, Italy
Maria Di Rosa
Dipartimento di Scienze della Terra, University of Pisa, Pisa, 56126, Italy
Enrico Mugnaioli
CORRESPONDING AUTHOR
Dipartimento di Scienze della Terra, University of Pisa, Pisa, 56126, Italy
Centre for Instrument Sharing of the University of Pisa (CISUP), Pisa, Italy
Related authors
No articles found.
Cristian Biagioni, Jiří Sejkora, Natale Perchiazzi, Enrico Mugnaioli, Daniela Mauro, Donato Belmonte, Radek Škoda, and Zdeněk Dolníček
Eur. J. Mineral., 37, 733–746, https://doi.org/10.5194/ejm-37-733-2025, https://doi.org/10.5194/ejm-37-733-2025, 2025
Short summary
Short summary
Marioantofilliite, ideally [Cu4Al2(OH)12](CO3)•3H2O, is a new member of the hydrotalcite supergroup occurring as a supergene mineral in the Cu–Fe deposit of Monte Copello–Reppia (Liguria, Italy). Its name honours Mario Antofilli (1920–1983) for his contribution to the knowledge of the mineralogy of Liguria. Its discovery and description improve the knowledge of layered double hydroxides (LD), with implications for the group of Cu–Al LDH actively studied for its technological properties.
Roberto Conconi, Marco Merlini, Patrizia Fumagalli, Enrico Mugnaioli, Luigi Folco, and Giancarlo Capitani
Eur. J. Mineral., 37, 233–247, https://doi.org/10.5194/ejm-37-233-2025, https://doi.org/10.5194/ejm-37-233-2025, 2025
Short summary
Short summary
The study of minerals at microscopic and nanoscopic scales is essential for understanding the processes behind their formation. Indeed, by examining minerals in such detail, it is possible to uncover the underlying mechanisms that govern mineral development, from crystal growth to chemical reactions, providing insights into broader geological and environmental processes. The understanding of these processes is especially crucial when minerals contain elements valuable to various industries.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Alessandro F. Gualtieri, Simona Marchetti Dori, Daniele Malferrari, Tommaso Giovanardi, Riccardo Fantini, Francesco Colombo, Mattia Sisti, Rossella Arletti, Maria Cristina Gamberini, Eleonora Braschi, Andrea Orlando, and Enrico Mugnaioli
Eur. J. Mineral., 36, 749–765, https://doi.org/10.5194/ejm-36-749-2024, https://doi.org/10.5194/ejm-36-749-2024, 2024
Short summary
Short summary
This work deals with a challenging case of a commercial clay from Gomsiqe–Puka (Albania) contaminated by mineral fibres. Detection and quantification of asbestos in this material push the boundaries of current experimental methods. Using TEM, micro-Raman spectroscopy, and EPMA, we identified the presence of asbestos tremolite, along with a rare fibrous variety of diopside. The impact of milling on the detection and quantification of mineral fibres was also evaluated.
Cited articles
Abad, I., Nieto, F., Gutiérrez-Alonso, G., Campo, M. D., López-Munguira, A., and Velilla, N.: Illitic substitution in micas of very low-grade metamorphic clastic rocks, Eur. J. Mineral., 18, 59–69, https://doi.org/10.1127/0935-1221/2006/0018-0059, 2006
Airaghi, L., Lanari, P., de Sigoyer, J., and Guillot, S.: Microstructural vs compositional preservation and pseudomorphic replacement of muscovite in deformed metapelites from the Longmen Shan (Sichuan, China), Lithos, 282, 262–280, https://doi.org/10.1016/j.lithos.2017.03.013, 2017.
Bourdelle, F.: Low-temperature chlorite geothermometry and related recent analytical advances: a review, Minerals, 11, 130, https://doi.org/10.3390/min11020130, 2021.
Bourdelle, F., Parra, T., Chopin, C., and Beyssac, O.: A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions, Cont. Min. Petrol., 165, 723–735, https://doi.org/10.1007/s00410-012-0832-7, 2013.
Bourdelle, F., Beyssac, O., Parra, T., and Chopin, C.: Nanoscale chemical zoning of chlorite and implications for low-temperature thermometry: Application to the Glarus Alps (Switzerland), Lithos, 314, 551–561, https://doi.org/10.1016/j.lithos.2018.06.030, 2018.
Bucher, K. and Grapes, R.: Petrogenesis of metamorphic rocks (Vol. 428), Springer, Berlin, https://doi.org/10.1007/978-3-031-12595-9, 2011.
Conconi, R., Ventruti, G., Nieto, F., and Capitani, G.: TEM-EDS microanalysis: Comparison among the standardless, Cliff & Lorimer and absorption correction quantification methods, Ultramicroscopy, 254, 113845, https://doi.org/10.1016/j.ultramic.2023.113845, 2023.
De Cesari, F., Di Rosa, M., Sanità, E., Pandolfi, L., and Marroni, M.: Long-lived sedimentation in the Western Tethys oceanic basin: revisiting the metasediments of Bagliacone-Riventosa Formation (Corsica, France), Int. Geol. Rev., 67, 906–932, https://doi.org/10.1080/00206814.2024.2411537, 2024.
Dubacq, B., Vidal, O., and De Andrade, V.: Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates, Cont. Min. Petrol., 159, 159–174, https://doi.org/10.1007/s00410-009-0421-6, 2010.
Evans, T. P.: A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: Implications for isopleth thermobarometry, J. Met. Geol., 22, 547–557, https://doi.org/10.1111/j.1525-1314.2004.00532.x, 2004.
Forshaw, J. B. and Pattison, D. R.: Ferrous/ferric ( ) partitioning among silicates in metapelites, Cont. Min. Petrol., 176, 63, https://doi.org/10.1007/s00410-021-01814-4, 2021.
Frassi, C., Di Rosa, M., Farina, F., Pandolfi, L., and Marroni, M.: Anatomy of a deformed upper crust fragment from western Alpine Corsica (France): insights into continental subduction processes, Int. Geol. Rev., 65, 40–60, https://doi.org/10.1080/00206814.2022.2031315, 2023.
Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D., and Vieillard, P.: Application of chemical geothermometry to low-temperature trioctahedral chlorites, Clay. Clay Miner., 57, 371–382, https://doi.org/10.1346/CCMN.2009.0570309, 2009.
Inoue, A., Inoué, S., and Utada, M.: Application of chlorite thermometry to estimation of formation temperature and redox conditions, Clay Miner., 53, 143–158, https://doi.org/10.1180/clm.2018.10, 2018.
Jahren, J. S.: Evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks offshore Norway, Clay Miner., 26, 169–178, https://doi.org/10.1180/claymin.1991.026.2.02, 1991.
Jahren, J. S. and Aagaard, P.: Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry, Clay Miner., 24, 157–170, 1989.
Kamzolkin, V. A., Ivanov, S. D., and Konilov, A. N.: Empirical phengite geobarometer: Background, calibration, and application, Geol. Ore Dep., 58, 613–622, https://doi.org/10.1134/S1075701516080092, 2016.
Lanari, P.: Micro-cartographie P–T-” dans les roches métamorphiques. Applications aux Alpes et à l'Himalaya, PhD Thesis, University of Grenoble, 544 pp., https://theses.hal.science/tel-00799283v1 (last access: 14 June 2025), 2012.
Lanari, P. and Duesterhoeft, E.: Modeling metamorphic rocks using equilibrium thermodynamics and internally consistent databases: Past achievements, problems and perspectives, J. Petrol., 60, 19–56, https://doi.org/10.1093/petrology/egy105, 2019.
Lanari, P. and Hermann, J.: Iterative thermodynamic modelling – part 2: tracing equilibrium relationships between minerals in metamorphic rocks, J. Metamorph. Geol., 39, 651–674, https://doi.org/10.1111/jmg.12575, 2021.
Lanari, P., Guillot, S., Schwartz, S., Vidal, O., Tricart, P., Riel, N., and Beyssac, O.: Diachronous evolution of the alpine continental subduction wedge: evidence from P–T estimates in the Briançonnais Zone houillère (France–Western Alps), J. Geod., 56, 39–54, https://doi.org/10.1016/j.jog.2011.09.006, 2012.
Lanari, P., Wagner, T., and Vidal, O.: A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: Applications to P–T sections and geothermometry, Cont. Min. Petrol., 167, 968, https://doi.org/10.1007/s00410-014-0968-8, 2014.
Lanari, P., Vho, A., Bovay, T., Airaghi, L., and Centrella, S.: Quantitative compositional mapping of mineral phases by electron probe micro-analyser, Geological Society, London, Special Publications, 478, 39–63, https://doi.org/10.1144/SP478.4, 2019.
Lardeaux, J. M.: Metamorphism and linked deformation in understanding tectonic processes at varied scales, C. R. Géosci., 356, 525–550, https://doi.org/10.5802/crgeos.204, 2024.
Leoni, L., Marroni, M., Sartori, F., and Tamponi, M.: Metamorphic grade in metapelites of the internal liguride units (Northern Apennines, Italy), Eu. J. Min., 8, 35–50, https://doi.org/10.1127/ejm/8/1/0035, 1996.
Lezzerini, M., Sartori, F., and Tamponi, M.: Effect of amount of material used on sedimentation slides in the control of illite “crystallinity” measurements, Eu. J. Min., 7, 819–823, https://doi.org/10.1127/ejm/7/4/0819, 1995.
Marroni, M. and Pandolfi, L.: The deformation history of an accreted ophiolite sequence: the Internal Liguride units (Northern Apennines, Italy), Geodin. Acta, 9, 13–29, https://doi.org/10.1080/09853111.1996.11417260, 1996.
Marroni, M., Meneghini, F., and Pandolfi, L.: From accretion to exhumation in a fossil accretionary wedge: a case history from Gottero Unit (Northern Apennines, Italy), Geodin. Acta, 17, 41–53, https://doi.org/10.3166/ga.17.41-53, 2004.
Marroni, M., Meneghini, F., and Pandolfi, L.: Anatomy of the Ligure-Piemontese subduction system: evidence from Late Cretaceous–middle Eocene convergent margin deposits in the Northern Apennines, Italy, Int. Geol. Rev., 52, 1160–1192, https://doi.org/10.1080/00206810903545493, 2010.
Marroni, M., Meneghini, F., and Pandolfi, L.: A revised subduction inception model to explain the Late Cretaceous, double-vergent orogen in the precollisional western Tethys: Evidence from the Northern Apennines, Tectonics, 36, 2227–2249, https://doi.org/10.1002/2017TC004627, 2017.
Massone, H. J. and Schreyer, W.: Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz, Cont. Min. Petrol., 96, 212–224, https://doi.org/10.1007/BF00375235, 1987.
Meneghini, F., Pandolfi, L., and Marroni, M.: Recycling of heterogeneous material in the subduction factory: evidence from the sedimentary mélange of the Internal Ligurian Units, Italy, J. Geol. Soc., 177, 587–599, https://doi.org/10.1144/jgs2019-081, 2020.
Meneghini, F., Di Rosa, M., Marroni, M., Raimbourg, H., and Pandolfi, L.: Subduction signature in the Internal Ligurian units (Northern Apennine, Italy): Evidence from P–T metamorphic peak estimate, Terra Nova, 36, 182–190, https://doi.org/10.1111/ter.12694, 2023.
Papeschi, S., Rossetti, F., and Walters, J. B.: Growth of kyanite and Fe-Mg chloritoid in Fe2O3-rich high-pressure–low-temperature metapelites and metapsammites: A case study from the Massa Unit (Alpi Apuane, Italy), J. Metam. Geol., 41, 1049–1079, https://doi.org/10.1111/jmg.12736, 2024.
Parra, T., Vidal, O., and Agard, P.: A thermodynamic model for Fe-Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages, Cont. Min. Petrol., 143, 706–732, https://doi.org/10.1007/s00410-002-0373-6, 2002.
Sanità, E., Di Rosa, M., Lardeaux, J. M., Marroni, M., and Pandolfi, L.: Metamorphic peak estimates of the Marguareis Unit (Briançonnais Domain): New constrains for the tectonic evolution of the south-western Alps, Terra Nova, 34, 305–313, https://doi.org/10.1111/ter.12592, 2022a.
Sanità, E., Di Rosa, M., Lardeaux, J. M., Marroni, M., and Pandolfi, L.: The Moglio-Testico Unit (Ligurian Alps, Italy) as Subducted Metamorphic Oceanic Fragment: Stratigraphic, Structural and Metamorphic Constraints, Minerals, 12, 1343, https://doi.org/10.3390/min12111343, 2022b.
Sanità, E., Di Rosa, M., Lardeaux, J. M., Marroni, M., Tamponi, M., Lezzerini, M., and Pandolfi, L.: Deciphering the pressure-temperature path in low-grade metamorphic rocks by combining crystal chemistry, thermobarometry and thermodynamic modelling: an example in the Marguareis Massif (Western Ligurian Alps, Italy), Min. Mag, 1–22, https://doi.org/10.1180/mgm.2024.80, 2024a.
Sanità, E., Conconi, R., Lorenzon, S., Di Rosa, M., Capitani, G., and Mugnaioli, E.: Application of an improved TEM-EDS protocol based on charge balance for accurate chemical analysis of sub-micrometric phyllosilicates in low-grade metamorphic rocks, Clay. Clay Miner., 72, e31, https://doi.org/10.1017/cmn.2024.32, 2024b.
Sanità, E., Di Rosa, M., Marroni, M., Meneghini, F., and Pandolfi, L.: Insights into the Subduction of the Ligure-Piemontese Oceanic Basin: New Constraints from the Metamorphism in the Internal Ligurian Units (Northern Apennines, Italy), Minerals, 14, 64, https://doi.org/10.3390/min14010064, 2024c.
Scheffer, C., Vanderhaeghe, O., Lanari, P., Tarantola, A., Ponthus, L., Photiades, A., and France, L.: Syn-to post-orogenic exhumation of metamorphic nappes: Structure and thermobarometry of the western Attic-Cycladic metamorphic complex (Lavrion, Greece), J. Geod., 96, 174–193, https://doi.org/10.1016/j.jog.2015.08.005, 2016.
Tarantola, A., Mullis, J., Guillaume, D., Dubessy, J., de Capitani, C., and Abdelmoula, M.: Oxidation of CH4 to CO2 and H2O by chloritization of detrital biotite at 270 ± 5 °C in the external part of the Central Alps, Switzerland, Lithos, 112, 497–510, https://doi.org/10.1016/j.lithos.2009.04.008, 2009.
van Cappellen, E. and Doukhan, J. C.: Quantitative transmission X-ray microanalysis of ionic compounds, Ultramicroscopy, 53, 343–349, https://doi.org/10.1016/0304-3991(94)90047-7, 1994.
Vidal, O. and Parra, T.: Exhumation paths of high-pressure metapelites obtained from local equilibria for chlorite–phengite assemblages, Geol. J., 35, 139–161, https://doi.org/10.1002/gj.856, 2000.
Vidal, O., Parra, T., and Vieillard, P.: Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation, Am. Mineral., 90, 347–358, https://doi.org/10.2138/am.2005.1554, 2005.
Warr, L. N.: IMA–CNMNC approved mineral symbols, Min Mag., 85, 291–320, https://doi.org/10.1180/mgm.2021.43, 2021.
Short summary
The purpose of this paper is to present new perspectives on the pressure estimate of submicrometric white mica using energy-dispersive X-ray spectroscopy performed by a transmission electron microscope. This technique aims to explore the mineral chemistry of single grains whose dimensions do not allow for analysis by microprobe. The validation of this procedure opens a wide range of applications hitherto untested due to instrumental incompatibility with mineral phases smaller than 5 µm.
The purpose of this paper is to present new perspectives on the pressure estimate of...