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Abstract. Chemical compositions of mineral phases obtained using a common electron probe micro-analyzer
are generally used in many fields of geosciences, like the reconstruction of pressure–temperature paths, be-
cause their accuracy ensures high-quality data. However, on submicrometric mineral phases, mostly present in
low-grade rocks, the chemical analysis can be contaminated by the surrounding. Energy-dispersive X-ray spec-
troscopy coupled with a transmission electron microscope is demonstrated to be a valid alternative approach to
get high-quality data on submicrometric phases. In this work, we use this approach for geobarometric application
on white mica-rich low-grade metapelites from the Internal Ligurian Units (Northern Apennines). Our pressure
estimates gave satisfactory results supporting previously geobarometric constraints performed on the same rock
samples. The innovative methodological procedure used in this work confirms the tectonic scenario proposed for
the Internal Ligurian Units.

1 Introduction

Forward (e.g., isopleths thermobarometry; Evans, 2004) and
inverse (e.g., multi-equilibrium thermobarometry; Vidal and
Parra, 2000) thermodynamic modeling are robust methods
to retrieve the equilibrium conditions achieved by a rock.
In particular, inverse modeling considers the composition of
mineral phases in a rock micro-domain, which is supposed to
form together at thermodynamic equilibrium. This method is
based on calibrated temperature (T )-dependent (Vidal et al.,
2005; Inoue et al., 2009, 2018; Bourdelle et al., 2013; Lanari
et al., 2014, Bourdelle, 2021) and pressure (P )-dependent
(Massone and Schreyer, 1987; Parra et al., 2002; Dubacq
et al., 2010; Kamzolkin et al., 2016) reactions that involve
the mineral phases of interest and that produce elemental
fractionation. Accurate experimental measurements of min-
eral composition are crucial for applying these techniques.
Wavelength-dispersive X-ray spectroscopy (WDS) by using
an electron probe micro-analyzer (EPMA) is the technique

mostly used to perform chemical analysis on mineral phases
after a proper calibration with mineral standards of known
composition. However, the use of an EPMA-WDS on submi-
crometer grains may be controversial, because its relatively
large beam size (up to 1 µm) can produce mixed analysis.
Since low-grade rocks (term used here to indicate T <350 °C;
sensu Bucher and Grapes, 2011) show very fine-grained tex-
tures, the reconstruction of their P –T paths by inverse mod-
eling based on EPMA-WDS data is challenging. Innovative
approaches aiming to investigate the compositions of min-
erals by means of quantitative EPMA-WDS compositional
mapping (e.g., Lanari et al., 2019; Lanari and Duesterhoeft,
2019; Lanari and Hermann, 2021; Lardeaux, 2024) were ap-
plied to low-grade rocks so far (e.g., Lanari et al., 2012;
Scheffer et al., 2016; Airaghi et al., 2017; Sanità et al., 2022a,
b, 2024a; Frassi et al., 2023; Meneghini et al., 2023; De Ce-
sari et al., 2024). However, these approaches cannot be ap-
plied in all cases in which the incipient blastesis typical of
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the low-grade metamorphism only produce very small white
mica crystals.

The energy-dispersive X-ray spectroscopy (EDS) tech-
nique to collect submicrometer-scale chemical data by us-
ing transmission electron microscopy (TEM) is widely ad-
vancing (e.g., Tarantola et al., 2009; Bourdelle et al., 2018).
TEM-EDS has the crucial advantage to retrieve chemical
data from areas as small as a few nanometers, but the so-
obtained analyses are generally considered semiquantitative
or barely qualitative, because no correction for absorption
is applied. Notwithstanding, TEM-EDS chemical data have
been tentatively used by previous authors to improve the
comprehension of the chemical variability of chlorite and il-
lite (Jahren and Aagaard, 1989; Jahren, 1991; Tarantola et al.,
2009) and to estimate their temperature of formation after
a calibration procedure (Bourdelle et al., 2013, 2018). Re-
cently, an innovative procedure for data reduction has been
proposed for improving the accuracy of TEM-EDS data (the
absorption correction method; see Conconi et al., 2023) with-
out possible chemical and structural damage. This procedure
is based on the fine calibration of the k factor and sam-
ple thickness, obtained with the measurement of standards
of known composition, and on the calculation of a correc-
tion polynomial function aimed to preserve the overall elec-
troneutrality of the compound formula (van Cappellen and
Doukhan, 1994). Although the reliability of such a correction
procedure has been demonstrated from an analytical point of
view (Conconi et al., 2023), its application to solve geolog-
ical problems, such as the pressure conditions recorded by
subducted rocks, has not been tested yet. This is because a
dataset consisting of pressure estimations based on EPMA-
WDS chemical analyses is needed to make a comparison
and to evaluate the quality of the TEM-EDS data. In this
paper, we use the TEM-EDS chemical dataset of Sanità et
al. (2024b), corrected according to the procedure of Conconi
et al. (2023), taken from submicrometric white mica grains.
These grains have been studied in detail by previous authors
(Meneghini et al., 2023; Sanità et al., 2024c) and belong
to the ocean-derived Internal Ligurian Units exposed in the
Northern Apennines (Fig. 1), which are characterized by low
blueschist to phrenite-pumpellyte metamorphic facies condi-
tions. Such a TEM-EDS dataset is used to perform P esti-
mates for four samples of metapelites collected from several
tectonic units that have been recorded at different pressure
ranges. We make a comparison between the pressure ranges
obtained using the two different datasets, discussing the lim-
itations and the strengths that prove the use of TEM-EDS
chemical analysis as a valid alternative to EPMA-WDS anal-
ysis for geobarometric applications.

These units are considered fragments of the Ligure-
Piemontese oceanic lithosphere (Marroni et al., 2017). Most
of the Internal Ligurian Units include the Palombini Shale
Formation (Fm.), which are hemipelagic deposits consisting
of pelites alternated with limestones (Marroni et al., 2010,
2017). Since the metamorphic degree of these deposits varies

in the three tectonic units studied in this work (i.e., Portello
Unit, Gottero Unit, and Bracco-Val Graveglia Unit; Menegh-
ini et al., 2023; Sanità et al., 2024c), they are the ideal candi-
date for testing the calibration of TEM-EDS analysis to esti-
mate the P conditions. In the samples, the white mica grains,
formed during high pressure and low-temperature (HP–LT)
metamorphism, have a typical grain size that never exceeds
5 µm. The reliability of the obtained results will be tested
by comparison with P estimates obtained on the basis of
EPMA-WDS data taken from exceptionally large grains (8–
10 µm) present on the same samples.

2 Material and methods

The data processing performed in this work is based on
the TEM-EDS dataset (Supplement File S1) of Sanità et
al. (2024b), which includes four samples of metapelites from
the Palombini Shale Fm. (i.e., samples ULI3aT and ULI14T
– Gottero Unit; ULI8T – Portello Unit, and ULI22aT –
Bracco-Val Graveglia Unit; Fig. 1). Additional informa-
tion about the acquisition setting is provided in Supplement
File S2. P –T estimates for the samples (Meneghini et al.,
2023; Sanità et al., 2024c) indicated a low blueschist meta-
morphic imprint. The analyzed samples are characterized
by a pervasive syn-metamorphic S1 slaty cleavage devel-
oped during underthrusting and accretion into the Alpine
wedge (Marroni and Pandolfi, 1996; Sanità et al., 2024b)
and marked by (Fig. 2a, b) chlorite (Chl)+white mica
(Wm)+ quartz (Qz)± albite (Ab) and± calcite (Cc) (min-
eral abbreviations of Warr, 2021). Phyllosilicates show sizes
that never exceeds 10 µm (Fig. 2a, b). Both syn-metamorphic
Chl and Wm growing along the S1 foliation show sharp
edges, with no evidence of chemical zoning (e.g., Sanità et
al., 2024b). Detrital phases (phyllosilicates and feldspars)
up to 50–60 µm in size are also documented. Sample prepa-
ration for TEM-EDS investigation was performed follow-
ing Lezzerini et al. (1995) and Leoni et al. (1996) to ob-
tain <2 µm Wm-rich rock powder for each metapelite. This
ensures that the Wm grain population in the powders is
the smallest (Fig. 2c–f), which, as demonstrated by Sanità
et al. (2024b), would correspond to that grown along the
S1 slaty cleavage. These grains appear as thin foils appar-
ently homogeneous with no evidence of intergrowth lamellae
(Fig. 2c–f).

The chemical analysis of this Wm population was used for
P estimates. The data reduction of the raw TEM-EDS anal-
ysis was performed using the correction procedure of Con-
coni et al. (2023) after the update for the absorption cor-
rection method of Sanità et al. (2024b). Such an approach
paid attention to hydrated minerals accounting for the con-
tribution of hydrogen using a reduced net valence of each
oxygen and neglectable amounts of fluoride and chloride an-
ions. The quality check for each analysis has been performed
through a stoichiometric approach using 12 oxygens by San-
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Figure 1. Simplified sketch of the Internal Ligurian Units stack in the Northern Apennines (after Marroni et al., 2004, 2010, 2017; Meneghini
et al., 2020). On the bottom left, the geographic location of the study area is also reported.

ità et al. (2024b). The chemical analysis is considered cor-
rected if the electroneutrality is maintained with an error of
±0.04. This procedure ensures an improvement of the qual-
ity of the analysis with standard deviation lower than those
of EPMA-WDS (Sanità et al., 2024b). A detailed list of the
chemical analysis successfully corrected is reported in Sup-
plement File S1. The Wm composition used in this work is
shown in Figs. 3 and 4, and they were used for pressure esti-
mates. In this paper, we expressed the final structural formu-
las as dry white mica, i.e., with 11 oxygen atoms (see Sup-
plement File S1), to favor the comparison with the EPMA-
WDS analysis reported in the previous papers (Meneghini et
al., 2023; Sanità et al., 2024c).

The white mica (Phg)-Qz-H2O method (Dubacq et al.,
2010) is used for P estimates. It is based on the dehydration
of white mica to refine the thermodynamic status of water
content in the A site, which is mainly a T -sensitive reaction:
pyrophyllite(H)= pyrophyllite+H2O

3 Mg-celadonite+ 2 pyrophyllite = 2 muscovite

+ phlogopite + 11 quartz + 2 H2O.

However, the reactions are also P dependent, and, for fixed
T , the percentage of Fe3+ can be optimized and the P value
can be estimated (Lanari, 2012; Lanari et al., 2012, 2019;

Scheffer et al., 2016; Sanità et al., 2022a, b; 2024a; Frassi et
al., 2023; De Cesari et al., 2024). The procedure of Dubacq
et al. (2010) was used to estimate the P conditions of the
white mica grains by using the ChlMicaEqui software (La-
nari, 2012). The results are represented in the P –T space
(Fig. 5) as equilibrium lines, representative of the abovemen-
tioned reactions. Along each line, empty circles represent the
hydration state of Wm, which decreases moving from LP–LT
to HP–HT conditions (further details are given in Supple-
ment File S2).

3 Results

3.1 Wm mineral chemistry

The SiO2 content of the white mica analyzed in this work
ranges from 50.31 wt % to 53.71 wt % (Fig. 3a), which cor-
respond to a Si content between 3.15–3.33 a.p.f.u. (atoms per
formula unit, Fig. 3b). Minor white micas with a Si con-
tent >3.40–3.50 a.p.f.u, (14 % of total, Fig. 3) attributed to
detrital grains are also documented. Sample ULI3aT shows
the highest XMg, ranging between ca. 0.8–1.0 (Fig. 4a and
Supplement File S2), while samples ULI14T and ULI22aT
show less-scattered values (0.7–0.8 and 0.6–0.8, respec-
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Figure 2. Microscale and nanoscale structural features of the Wm grains of interest. (a) Detail of S1 foliation (dashed red line, sample ULI3a)
marked by pressure solution surfaces and syn-metamorphic phyllosilicates (e.g., Chl and Wm), Qz, and calcite (Cc). (b) Backscattered
electron image of the S1 foliation (dashed red line, sample ULI14). Detrital grain (e.g., detrital Chl) appears bigger with frayed edges than
the syn-metamorphic one. (c–f) Nanoscale dark-field images of submicrometer Wm grains pictured at the TEM in scanning transmission
electron microscopy (STEM) mode. White boxes indicate the EDS analyzed areas.
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Figure 3. (a) Histogram showing the distribution of the SiO2 wt % values of the white mica compositions from all studied samples. (b) His-
togram showing the distribution of the Si content expressed in a.p.f.u. of the white micas from all studied samples.

Figure 4. Mineral chemistry of Wm grains acquired by TEM-EDS. (a) Si–XMg plot; (b) K–Si plot; (c) Altot–Si plot. The blue line marks the
Tschermak substitution, while the black star indicates the theoretical muscovite composition; (d) triangular plot for endmember composition
(from Vidal and Parra, 2000). It is clear that the Wm grains exhibit a composition lying in the celadonite–muscovite–pyrophyllite space.
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tively). XMg in the ULI8T sample ranges between 0.55 and
1.0 (Fig. 4a). The ULI14 sample shows the highest Si con-
tents (3.20–3.38 a.p.f.u.) and the lowest Altot contents (2.50–
2.70 a.p.f.u.). Overall, the K+Na content (Fig. 4b) ranges
between 0.55 and 0.95 in all samples, with higher values for
samples ULI8T and ULI3aT. By contrast, samples ULI3aT
and ULI22aT show high Altot and low Si values (2.60–2.80
and 3.10–3.25 a.p.f.u., respectively). Sample ULI8T shows
Altot and Si contents of 2.10–2.85 and 3.06–3.50 a.p.f.u., re-
spectively (Fig. 4c). Besides, Altot–Si and K+Na–Si plots
show no clear evidence for alkaline cation loss (Abad et al.,
2006). Regarding the Wm endmember proportion (Fig. 4d),
all samples show high Al2O3 wt %, shifting toward the mus-
covite (Ms) composition (XMs > 60 %, Fig. 4d), with minor
contents of XPrl (peak: 25 %–33 % and 13 %–26 % for sam-
ples ULI14T and ULI8T, respectively). The highest XPrl and
XTri values are observed for sample ULI22aT (peak: 23 %–
31 % and 6 %–14 %, respectively) and for sample ULI3aT
(13 %–29 % and 3 %–10 %, respectively – see Supplement
File S1). The XCel proportion is neglectable in all investi-
gated samples.

3.2 P estimates based on TEM-EDS data

Figure 5 displays the input parameters and the setup used
for each simulation, as well as the related P estimates ob-
tained for each sample. Computations for the ULI3aT sam-
ple were performed with a Fe3+ content ranging between
0 % and 30 %, and the best results (i.e., a single solution
of XH2O value) were obtained for an optimized ferric iron
value of 10 % (Fig. 5a) for a XH2O value of 0.96. Under
these conditions, an overall P range of 1.1–0.6 GPa was de-
tected. However, taking into account the XH2O value of 0.96,
it is also possible to detect a consistent cluster in the P –T

space, which relates to a main P range of 1.05–0.7 GPa (red
ellipse in Fig. 5a).

The P range for sample ULI8T was estimated with a ferric
iron content ranging between 5 % and 15 % of FeOtot. The
best output (Fig. 5b), obtained with a Fe3+

= 10 %, is for
XH2O of 0.96. With these parameters, the model predicts
P values between 1.43 and 0.75 GPa. Also, a main cluster
corresponding to a P value of 1.03–0.9 GPa can be observed.

For sample ULI14T, a Fe3+ content ranging around 20 %
of the FeOtot was chosen (Fig. 5c), and the model predicts
an XH2O value of 0.95 in the A site for the investigated
Wm compositions. The estimated P ranges between 1.4 and
0.8 GPa with a main cluster at 1.0–0.82 GPa.

In sample ULI22aT, the ferric iron content shows the high-
est values (30 %–50 % of FeOtot), with an optimized value at
50 % of Fe3+content. This XFe3+ value is coherent with a
modeled XH2O of 0.95 (A site), yielding an overall P range
of 0.8–0.2 GPa (Fig. 5d) with a main cluster at 0.6–0.4 GPa.

4 Discussion

4.1 Comparison with the P estimates based on
EPMA-WDS chemical data

In Fig. 5, the P ranges obtained with the Phg-Qz-H2O
method applied on EPMA-WDS chemical data are reported.
The XH2O values and the optimized XFe3+ ranges used
during computations are shown in the inserts. The recalcu-
lation of the TEM-EDS analysis on white mica obtained in
this paper corroborate with that of Meneghini et al. (2023)
and Sanità et al. (2024c), detected with the EPMA-WDS
technology. Overall, P estimates (Phg-Qz-H2O method) ob-
tained from the EPMA-WDS analysis systematically show a
slightly more restricted range than TEM-EDS (orange boxes
in Fig. 5). However, the most statistically reliable TEM-EDS-
based P values are clustered within more restricted ranges
(red ellipses in Fig. 5). These estimates clearly overlap the
P ranges obtained using the EPMA-WDS analysis for all
the investigated samples, and, in a few cases, they are al-
most equivalent (see samples ULI8T and ULI22aT). Also in-
dicated in Fig. 5 are P conditions (purple boxes) estimated
by Meneghini et al. (2023) and Sanità et al. (2024c) us-
ing the multiequilibrium thermobarometry approach of Vi-
dal and Parra (2000). These estimates show a good match
with the clustered TEM-EDS-based P ranges, although the
former result is more accurate than the latter. However, such
differences are within ±0.2 GPa, the error associated with
Vidal and Parra’s approach.

4.2 Reliability of P estimates

The sample preparation procedure used in this work allowed
us to get a Wm-rich population for each sample and, as stated
by Sanità et al. (2024b), the data correction procedure pro-
vided reliable chemical analysis from a statistical and chem-
ical point of view. Wm chemistry shows that there are few
differences among the investigated Wm grains. The major
differences concern the Si contents, with the lowest values
for sample ULI22aT, which has a relatively higher Prl con-
tent. Such differences reflect those described by Meneghini
et al. (2023) and Sanità et al. (2024c). The mineral chem-
istry presented in this work (Figs. 3, 4) is that of white mi-
cas recrystallized in the lower blueschist facies conditions
(e.g., Papeschi et al., 2024; De Cesari et al., 2024; Sanità et
al., 2024a) and predicted to be stable by forward and inverse
thermodynamic modeling.

TEM-EDS analyses have been used to perform P esti-
mates by exploiting the Phg-Qz-H2O method (Dubacq et al.,
2010). Such P ranges, estimated for a fixed T and by op-
timizing the Fe3+ content and XH2O values, gave robust
results. The amount of Fe3+ optimized for the investigated
Wm grains is within the theoretical range indicated by For-
shaw and Pattison (2021), justifying its usage in the mod-
els. Overall, the P range estimated for each sample falls
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Figure 5. Geobarometric results obtained for (a) the Gottero Unit, (b) the Portello Unit, (c) the Gottero Unit, and (d) the Bracco-Val
Graveglia Unit. The P –T space shows the results of the Phg-Qz-H2O method. In each diagram, blue lines mark the equilibrium reactions
(see the main text) used for the Phg-Qz-H2O method. Along the lines, the empty circle indicates the interlayer H2O content progressively
decreasing from low-temperature and low-pressure conditions to high-temperature and high-pressure conditions. The gray circles indicate
the XH2O content used during the modeling. The green lines indicate the whole P range estimated with the TEM-EDS technique, including
the main clusters (red ellipsis). The P range estimated from previous studies with the Chl-Wm-Qz-H2O approach (Vidal and Parra, 2000)
is reported in the inserts (purple bars), as well as the modeling parameters for each sample. Here, the parameters and settings used for the
modeling for each studied sample are shown. Along the y axes, the P ranges obtained with the Phg-Qz-H2O method from EPMA-WDS data
(from Meneghini et al., 2023 and Sanità et al., 2024c) are also reported (orange rectangular bars). Those comparisons shown in the figure
reinforce the robustness of P estimates performed in this work (see the main text for details).

within a large area (Fig. 5). However, clusters correspond-
ing to 95 % of confidence indicated more restricted P ranges
(1.05–0.7, 1.03–0.9, 1.0–0.82, and 0.6–0.4 GPa for ULI3aT,
ULI8T, ULI14T, and ULI22aT, respectively). These values
show a clear overlap with the EPMA-WDS-based P values
estimated by applying the same geobarometer (Fig. 5).

Interestingly, there is a good fit between our data and the
P values estimated with the multiequilibrium thermobarom-
etry method (Vidal and Parra, 2000) applied by Meneghini

et al. (2023) and Sanità et al. (2024c) on the same samples.
As stated by Vidal and Parra (2000), a proper usage of their
method leads to an error of ±0.2 GPa for P . Although the
TEM-EDS-based P ranges within 95 % of confidence are
slightly more scattered, they are within the error associated
with this approach. The P ranges estimated in this work
(main clusters) from TEM-EDS data are perfectly coherent
with those proposed by previous authors. Therefore, the re-
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sults described in this work confirm the HP–LT metamorphic
imprint of the Internal Ligurian Units.

4.3 Thoughts on the adopted strategy

The good fit between EPMA-WDS- and TEM-EDS-based P

estimates confirms the robustness of our approach. The re-
sults documented in this paper impact on both the methodol-
ogy and the data processing:

1. From a statistical point of view, the clusters related
to TEM-EDS-based P estimates are referring to Wm,
reflecting the main population in each studied rock
powder. This implies that the sample preparation pro-
posed by Lezzerini et al. (1995) is an efficient proce-
dure to obtain syn-kinematic Wm-rich powders of low-
grade rocks. The procedure and the analytical strat-
egy adopted in this work ensure an accurate investi-
gation of the chemical compositions of submicrome-
ter Wm grains. These grains can be investigated using
non-conventional methods, i.e., TEM-EDS, which can
be better controlled for sampling very fine grained min-
erals compared to the EPMA-WDS.

2. Our strategy combined with the data reduction de-
scribed by Conconi et al. (2023), after accounting for
the H contribution (Sanità et al., 2024b), provides a sta-
tistically reliable amount of data.

Eventually, the obtained results promote the TEM-EDS pro-
tocol as a key tool to get reliable and reproducible chemi-
cal data of submicrometer minerals, after a proper correc-
tion procedure. This is a major step forward for the geo-
science community with a huge impact in many fields. In
this paper, we tested a possible application of the TEM-EDS
apparatus for geobarometric estimates. The usage of cor-
rected TEM-EDS analysis to perform P estimates on Wm
is clearly shown to be a way worth pursuing. This could
open up new perspectives for geobarometric applications on
low-grade metamorphic rocks characterized by submicrom-
eter minerals, e.g., phyllosilicates, which have been difficult
to study so far.

5 Conclusion

We estimated the P conditions recorded by low-grade
metapelites belonging to Internal Ligurian Units (North-
ern Apennines) using corrected TEM-EDS analysis on syn-
metamorphic Wm grains. The estimated P values are coher-
ent with those obtained for the same samples using EPMA-
WDS data, confirming the HP–LT metamorphism for the In-
ternal Ligurian Units and supporting the tectonic reconstruc-
tion proposed by previous authors. The usage of a robust data
reduction technique for TEM-EDS analysis opens new per-
spectives for the study of low-grade rocks.
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