Articles | Volume 37, issue 2
https://doi.org/10.5194/ejm-37-221-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-37-221-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The fate of an old Mn–Fe amphibole species: description of clino-ferro-suenoite, □Mn2Fe2+5Si8O22(OH)2
Department of Geosciences, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden
Fernando Cámara
Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, Via Luigi Mangiagalli 34, 20133, Milan, Italy
Henrik Skogby
Department of Geosciences, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden
Andreas Karlsson
Department of Geosciences, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden
Alessandro De Leo
Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, Via Luigi Mangiagalli 34, 20133, Milan, Italy
Related authors
Dan Holtstam and Ataollah Hassani
Hist. Geo Space. Sci. Discuss., https://doi.org/10.5194/hgss-2024-8, https://doi.org/10.5194/hgss-2024-8, 2024
Revised manuscript accepted for HGSS
Short summary
Short summary
The meteorite "Veramin" fell in Persia ca. 1880. In the records, there are ambiguities about the event and we therefore scrutinized the available sources. The current official name, coined by meteoricist A. Brezina, is not supported by Iranian documents. A key document is a rediscovered label with the main mass of the meteorite. The indicated place of the event, probably occurring in February–April 1880, is Booghin of in the historical Zarand district, 100 km NW from Veramin (Varamin).
Dan Holtstam, Jörgen Langhof, Henrik Friis, Andreas Karlsson, and Muriel Erambert
Eur. J. Mineral., 36, 311–322, https://doi.org/10.5194/ejm-36-311-2024, https://doi.org/10.5194/ejm-36-311-2024, 2024
Short summary
Short summary
We described two new minerals, igelströmite and manganoschafarzikite, from the Långban manganese–iron deposit in Värmland, Sweden. The chemical formulae are Fe3+(Sb3+Pb2+)O4 and Mn2+Sb3+2O4, respectively. They belong to a new mineral group, where all members have the same crystal structure. It is called the minium group, after the lead-oxide mineral that is the oldest known substance of this kind.
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022, https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
Fernando Cámara, Dan Holtstam, Nils Jansson, Erik Jonsson, Andreas Karlsson, Jörgen Langhof, Jaroslaw Majka, and Anders Zetterqvist
Eur. J. Mineral., 33, 659–673, https://doi.org/10.5194/ejm-33-659-2021, https://doi.org/10.5194/ejm-33-659-2021, 2021
Short summary
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Giovanni B. Andreozzi, Claudia Gori, Henrik Skogby, Ulf Hålenius, Alessandra Altieri, and Ferdinando Bosi
Eur. J. Mineral., 37, 1–12, https://doi.org/10.5194/ejm-37-1-2025, https://doi.org/10.5194/ejm-37-1-2025, 2025
Short summary
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
Marco E. Ciriotti, Uwe Kolitsch, Fernando Cámara, Pietro Vignola, Frédéric Hatert, Erica Bittarello, Roberto Bracco, and Giorgio Maria Bortolozzi
Eur. J. Mineral., 36, 863–872, https://doi.org/10.5194/ejm-36-863-2024, https://doi.org/10.5194/ejm-36-863-2024, 2024
Short summary
Short summary
The article provides the standard description of bonacinaite, Sc3+(AsO4)·2H2O, the first natural scandium arsenate. The new mineral species was found in a few specimens in the dumps of the old Varenche Mine, Valle d'Aosta, Italy, which is therefore the type locality and the only locality in the world. Bonacinaite forms colourless (with faint to distinct violet tints), pseudohexagonal, thick tabular crystals, up to 0.25 mm in size, or as small, faintly violet lath-shaped crystals.
Daniel Müller, Thomas R. Walter, Valentin R. Troll, Jessica Stammeier, Andreas Karlsson, Erica de Paolo, Antonino Fabio Pisciotta, Martin Zimmer, and Benjamin De Jarnatt
Solid Earth, 15, 1155–1184, https://doi.org/10.5194/se-15-1155-2024, https://doi.org/10.5194/se-15-1155-2024, 2024
Short summary
Short summary
We use uncrewed-aerial-system-derived optical and infrared data, mineralogical and geochemical analyses of rock samples, and surface degassing measurements to analyze degassing and hydrothermal alteration at the fumaroles of the La Fossa cone, Vulcano island, Italy. We give a detailed view of associated structures and dynamics, such as local alteration gradients, diffuse active units that significantly contribute to the total activity, or effects of permeability reduction and surface sealing.
Dan Holtstam and Ataollah Hassani
Hist. Geo Space. Sci. Discuss., https://doi.org/10.5194/hgss-2024-8, https://doi.org/10.5194/hgss-2024-8, 2024
Revised manuscript accepted for HGSS
Short summary
Short summary
The meteorite "Veramin" fell in Persia ca. 1880. In the records, there are ambiguities about the event and we therefore scrutinized the available sources. The current official name, coined by meteoricist A. Brezina, is not supported by Iranian documents. A key document is a rediscovered label with the main mass of the meteorite. The indicated place of the event, probably occurring in February–April 1880, is Booghin of in the historical Zarand district, 100 km NW from Veramin (Varamin).
Dan Holtstam, Jörgen Langhof, Henrik Friis, Andreas Karlsson, and Muriel Erambert
Eur. J. Mineral., 36, 311–322, https://doi.org/10.5194/ejm-36-311-2024, https://doi.org/10.5194/ejm-36-311-2024, 2024
Short summary
Short summary
We described two new minerals, igelströmite and manganoschafarzikite, from the Långban manganese–iron deposit in Värmland, Sweden. The chemical formulae are Fe3+(Sb3+Pb2+)O4 and Mn2+Sb3+2O4, respectively. They belong to a new mineral group, where all members have the same crystal structure. It is called the minium group, after the lead-oxide mineral that is the oldest known substance of this kind.
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022, https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
Fernando Cámara, Dan Holtstam, Nils Jansson, Erik Jonsson, Andreas Karlsson, Jörgen Langhof, Jaroslaw Majka, and Anders Zetterqvist
Eur. J. Mineral., 33, 659–673, https://doi.org/10.5194/ejm-33-659-2021, https://doi.org/10.5194/ejm-33-659-2021, 2021
Short summary
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Cited articles
Apopei, A. I., Buzgar, N., and Buzatu, A.: Raman and infrared spectroscopy of kaersutite and certain common amphiboles. Analele Stiintifice ale Universitatii “Al I Cuza” din Iasi Seria Geologie, 57, 35–58, 2011.
Beetsma, J. J.: Retrograde fluid evolution of the Stollberg Pb–Zn–Fe–Mn(Ag) ore deposit, central Bergslagen, Sweden, Geol. Fören. Stock. Förhandl., 114, 279–290, 1992.
Bernard, C., Estrade, G., Salvi, S., Béziat, D., and Smith, M.: Alkali pyroxenes and amphiboles: a window on rare earth elements and other high field strength elements behavior through the magmatic-hydrothermal transition of peralkaline granitic systems, Contrib. Mineral. Petrol., 175, 1–27, https://doi.org/10.1007/s00410-020-01723-y, 2020.
Boffa Ballaran, T., McCammon, C. A., and Carpenter, M. A.: Order parameter behavior at the structural phase transition in cummingtonite from Mössbauer spectroscopy. Am. Mineral., 87, 1490–1493, 2002.
Cipriani, C.: Amphiboles: historical perspective, Rev. Mineral. Geochem., 67, 517–546, 2007.
Clark, A. M.: Hey's mineral index: mineral species, varieties and synonyms, Chapman and Hall, London, 852 pp., ISBN 0412399504, 1993.
Dana, J. D.: Fourth supplement to Dana's mineralogy, Am. J. Sci. Arts, 24, 107–132, 1857.
Erdmann, A.: Dannemora jernmalmsfält i Upsala län, till dess geognostiska beskaffenhet skildradt; Ett försök af Axel Erdmann, Kongliga Vetenskaps-Akademiens Handlingar för år 1850, 1–138, 1851 (in Swedish).
Finger, L. W.: The crystal structure and cation distribution of a grunerite, Mineralogical Society of America Special Paper, 2, 95–100, 1969.
Geijer, P. and Magnusson, N. H.: De mellansvenska järnmalmernas geologi, Norstedt, 654 pp., ISSN 0348-1352, 1944 (in Swedish).
Goldman, D. S.: A reevaluation of the Mössbauer spectroscopy of calcic amphiboles, Am. Mineral., 64, 109–118, 1979.
Greenwood, N. N. and Gibb, T. C.: Mössbauer spectroscopy, Chapman and Hall. 658 pp., https://doi.org/10.1007/978-94-009-5697-1, Softcover ISBN 978-94-009-5699-5, 1971.
Haüy, R. J.: Traité de minéralogie, Vol 1, Chez Louis, Paris, 494 pp., 1801 (in French).
Hawthorne, F. C. and Della Ventura, G.: Short-range order in amphiboles, in: Amphiboles: Crystal chemistry, occurrence and health issues, edited by: Hawthorne, F. C., Oberti, R., Della Ventura, G., and Mottana, A., Rev. Mineral. Geochem., 67, 173–222, 2007.
Hawthorne, F. C. and Oberti, R.: Amphiboles: Crystal Chemistry, in: Amphiboles: Crystal chemistry, occurrence and health issues, edited by: Hawthorne, F. C., Oberti, R., Della Ventura, G., and Mottana, A., Rev. Mineral. Geochem., 67, 125–172, 2007.
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., and Welch, M. D.: Nomenclature of the amphibole supergroup, Am. Mineral., 97, 2031–2048, https://doi.org/10.2138/am.2012.4276, 2012.
Hirschmann, M., Evans, B. W., and Yang, H.: Composition and temperature dependence of Fe-Mg ordering in cummingtonite-grunerite as determined by X-ray diffraction, Am. Mineral., 79, 862–877, 1994.
Holland, T. J. B. and Redfern, S. A. T.: Unit cell refinement from powder diffraction data: the use of regression diagnostics, Mineral. Mag., 61, 65–77, 1997.
Holtstam, D., Andersson, U. B., Broman, C., and Mansfeld, J.: Origin of REE mineralization in the Bastnäs-type Fe-REE-(Cu-Mo-Bi-Au) deposits, Bergslagen, Sweden, Miner. Deposita, 49, 933–966, https://doi.org/10.1007/s00126-014-0553-0, 2014.
Igelström, L. J.: Hillängsite, nouveau minéral de la mine de fer de Hilläng, paroisse Ludvika, gouvernement de Dalarne (Suède), Bull. Minéral., 76, 232–234, 1884 (in French).
Janeczek, J.: Manganoan fayalite and products of its alteration from the Strzegom pegmatites, Poland, Mineral. Mag., 53, 315–325, 1989.
Jansson, N. F., Erismann, F., Lundstam, E., and Allen, R. L.: Evolution of the Paleoproterozoic volcanic-limestone-hydrothermal sediment succession and Zn–Pb–Ag and Fe-oxide deposits at Stollberg, Bergslagen, Sweden, Econ. Geol., 108, 309–335, https://doi.org/10.2113/econgeo.108.2.309, 2013.
Jochum, K. P., Willbold, M., Raczek, I., Stoll, B., and Herwig, K.: Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS, Geostand. Geoanalytical Res., 29, 285–302, https://doi.org/10.1111/j.1751-908X.2005.tb00901.x, 2005.
Kenngott, G. A.: Dannemorit (ein neuer Amphibol-Spath), Übersicht der Resultate mineralogischer Forschungen in den Jahren 1856 und 1857, edited by: Engelmann, W., 1856 (in German).
Leake, B. E.: Nomenclature of amphiboles, Am. Mineral., 63, 1023–1052, 1978.
Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., and Guo, Y.: Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names, Mineral. Mag., 61, 295–310, 1997.
Leißner, L.: Crystal chemistry of amphiboles studied by Raman spectroscopy, MSc thesis, Mineralogisch-Petrographisches Institut-Universität Hamburg, Hamburg, Germany, 45 pp., https://www.geo.uni-hamburg.de/mineralogie/masterarbeiten/leissner-msc-thesis.pdf (last access: 19 November 2024), 2014.
Mancini, F., Alviola, R., Marshall, B., Satoh, H., and Papunen, H.: The manganese silicate rocks of the early Proterozoic Vittinki Group, southwestern Finland: Metamorphic grade and genetic interpretations, Can. Mineral., 38, 1103–1124, https://doi.org/10.2113/gscanmin.38.5.1103, 2000.
Mandarino, J. A.: The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study, Can. Mineral., 45, 1307–1324, 2007.
Mason, B.: Manganese silicate minerals from Broken hill, New South Wales, Aust. J. Earth Sci., 20, 397–404, 1973.
Melcher, F.: Genesis of chemical sediments in Birimian greenstone belts: evidence from gondites and related manganese-bearing rocks from northern Ghana, Mineral. Mag., 59, 229–251, 1995.
Merli, M., Ungaretti, L., and Oberti, R.: Leverage analysis and structure refinement of minerals, Am. Mineral., 85, 532–542, 2000.
Mücke, A.: The Nigerian manganese-rich iron-formations and their host rocks – from sedimentation to metamorphism, J. Afr. Earth Sci., 41, 407–436, https://doi.org/10.1016/j.jafrearsci.2005.07.003, 2005.
Myslan, P., Stevko, M., and Mikus, T.: Mineralogy and genetic aspects of the metamorphosed manganese mineralization at the Julius ore occurrence near Betliar (Gemeric Unit, Western Carpathians, Slovakia), J. Geosci., 68, 313–332, https://doi.org/10.3190/jgeosci.384, 2023.
Nambu, M., Tanida, K., and Kitamura, T.: Chemical composition of manganese- bearing amphibole from Japan and its classification, Mineral. J., 14, 98–116, 1980 (in Japanese).
Oberti, R., Hawthorne, F. C., and Raudsepp, M.: The behaviour of Mn in amphiboles: Mn in synthetic fluor-edenite and synthetic fluor-pargasite, Eur. J. Mineral., 9, 115–122, 1997.
Oberti, R., Hawthorne, F. C., Cannillo, E., and Cámara, F.: Long-range order in amphiboles, in: Amphiboles: Crystal chemistry, occurrence and health issues, edited by: Hawthorne, F. C., Oberti, R., Della Ventura, G., and Mottana, A., Rev. Mineral. Geochem., 67, 125–172, 2007.
Oberti, R., Boiocchi, M., Hawthorne, F. C., Ciriotti, M. E., Revheim, O., and Bracco, R.: Clino-suenoite, a newly approved magnesium-iron-manganese amphibole from Valmalenco, Sondrio, Italy, Mineral. Mag., 82, 189–198, https://doi.org/10.1180/minmag.2017.081.034, 2018.
Ohlsson, L. G.: Prospekteringsrapport GRB 078, Geologiska kartbladet 12F Ludvika 4d, Geological Survey of Sweden, 13 pp., 1979 (in Swedish).
Prescher, C., McCammon, C., and Dubrovinsky, L.: MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources, J. Appl. Cryst., 45, 329–331, https://doi.org/10.1107/S0021889812004979, 2012.
Ripa, M.: The mineral chemistry of hydrothermally altered and metamorphosed wall-rocks at the Stollberg Fe-Pb-Zn-Mn (-Ag) deposit, Bergslagen, Sweden, Miner. Deposita, 29, 180–188, 1994.
Robinson, K., Gibbs, G. V., and Ribbe, P. H.: Quadratic elongation: a quantitative measure of distortion in coordination polyhedra, Science, 172, 567–570, 1971.
Schumacher, J. C.: Metamorphic amphiboles: composition and coexistence, in: Amphiboles: Crystal chemistry, occurrence and health issues, edited by: Hawthorne, F. C., Oberti, R., Della Ventura, G., and Mottana, A., Rev. Mineral. Geochem., 67, 359–416, 2007.
Skublov, S. and Drugova, G.: Patterns of trace-element distribution in calcic amphiboles as a function of metamorphic grade, Can. Mineral., 41, 383–392, 2003.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 32, 751–767, 1976.
Sheldrick, G. M.: Crystal Structure Refinement with SHELXL, Acta Cryst., C71, 3–8, 2015.
Sueno, S., Matsuura, S., Bunno, M., and Kurosawa, M.: Occurrence and crystal chemical features of protoferro-anthophyllite and protomangano-ferro-anthophyllite from Cheyenne Canyon and Cheyenne Mountain, USA and Hirukawa-mura, Suisho-yama, and Yokone-yama, Japan, J. Miner. Petrol. Sci., 97, 127–136, https://doi.org/10.2465/jmps.97.127, 2002.
Vassileva, R. D. and Bonev, I. K.: Manganoan amphiboles from the skarn-ore Pb-Zn deposits in the Madan District, Central Rhodopes, Bulgaria, Bulgarian Academy of Science, Geochemistry, Miner. Petrol., 38, 45–53, 2001.
Weibull, M.: Några manganmineral från Vester-Silfberget i Dalarne, Geol. Fören. Stock. Förhandl., 6, 499–509, https://doi.org/10.1080/11035898309444094, 1883 (in Swedish).
Williams, P., Hatert, F., Pasero, M., and Mills, S.: IMA Commission on New Minerals, Nomenclature and Classification (CNMNC), Newsletter 16. New minerals and nomenclature modifications approved in 2013, Mineral. Mag., 77, 2695–2709, 2013.
Wilson, S. A.: G-probe 20 summary report: International Association of Geoanalysts G-probe 20 Report, https://www.geoanalyst.org/wp-content/uploads/2021/02/GP-20-report.pdf (last access: 19 November 2024), 2018.
Wu, S., Wörner, G., Jochum, K.P., Stoll, B., Simon, K., and Kronz, A.: The preparation and preliminary characterisation of three synthetic andesite reference glass materials (ARM-1, ARM-2, ARM-3) for in situ microanalysis, Geostand. Geoanalytical Res., 43, 567–584, https://doi.org/10.1111/ggr.12301, 2019.
Yang, H., Hazen, R. M., Prewitt, C. T., Finger, L. W., Lu, R., and Hemley, R. J.: High-pressure single-crystal X-ray diffraction and infrared spectroscopic studies of the C2/m-P21/m phase transition in cummingtonite, Am. Mineral., 83, 288–299, 1998.
Yong, T., Dera, P., and Zhang, D.: Single-crystal X-ray diffraction of grunerite up to 25.6 GPa: a new high-pressure clinoamphibole polymorph, Phys. Chem. Miner., 46, 215–227, https://doi.org/10.1007/s00269-018-0999-1, 2019.
Yoshimura, T. and Momoi, H.: Dannemorite from Zomeki, Yamaguchi Prefecture. The science reports of the Faculty of Science, Kyushu University, Geology, 5, 99–110, 1961 (in Japanese).
Zhang, L. and Hafner, S. S.: Gamma resonance of 57Fe in grunerite at high pressures, Am. Mineral., 77, 474–479, 1992.
Short summary
The mineral clino-ferro-suenoite, with the chemical formula ◻Mn2Fe2+5Si8O22(OH)2, was historically named “dannemorite” or “manganogrunerite” and is a member of the amphibole supergroup. It is now formally approved by the International Mineralogical Association. It occurs in iron–manganese-bearing rock from the Hilläng mines, Dalarna, Sweden, and is associated with the minerals fayalite, spessartine, ferro-actinolite, calcite, magnetite and pyrite. It formed by replacement of Mn-bearing fayalite.
The mineral clino-ferro-suenoite, with the chemical formula ◻Mn2Fe2+5Si8O22(OH)2, was...