Articles | Volume 37, issue 2
https://doi.org/10.5194/ejm-37-151-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-151-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analyzing petrographic characteristics and trace element distribution of high-purity quartz deposits from the Peshawar Basin, Pakistan: insights into processing and purification techniques
Ibrar Khan
State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
Xiaoyong Yang
CORRESPONDING AUTHOR
State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang 050031, China
College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, China
Mei Xia
CORRESPONDING AUTHOR
State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
Zhenhui Hou
State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
Related authors
No articles found.
Shaoyiqing Qu, Xiaoyong Yang, Mei Xia, Zhenhui Hou, and Yicun Wang
Eur. J. Mineral., 37, 953–970, https://doi.org/10.5194/ejm-37-953-2025, https://doi.org/10.5194/ejm-37-953-2025, 2025
Short summary
Short summary
This study compares trace elements with the Spruce Pine pegmatite deposits in the United States and the pegmatite deposits in East Qinling in China to explore which types of deposits have the potential to become high-purity quartz raw material deposits. In addition, we also carried out technical purification and economic evaluation of the collected samples, aiming to provide guidance on technical purification and trace element determination of high-purity quartz deposits.
Cited articles
Ahmad, I., Khan, S., Lapen, T., Burke, K., and Jehan, N.: Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of Northern Pakistan and their tectonic implications, J. Asian Earth Sci., 62, 414–424, https://doi.org/10.1016/j.jseaes.2012.10.025, 2013.
Aldabe, J., Santamaría, C., Elustondo, D., Lasheras, E., and Santamaría, J. M.: Application of microwave digestion and ICP-MS to simultaneous analysis of major and trace elements in aerosol samples collected on quartz filters, Analytical Methods, 5, 554–559, 2013.
Al-Maghrabi, M. N. H.: Improvement of low-grade silica sand deposits in Jeddah area, Journal of King Abdulaziz University: Engineering Sciences, 15, 113–128, 2004.
Ashraf, M. and Chaudary, M. N.: A discovery of carbonatite from Malakand, Geological Bulletin of Punjab University, 14, 91–94, 1977.
Belashev, B. Z. and Skamnitskaya, L. S.: Irradiation methods for removal of fluid inclusions from minerals, Materials and Geoenvironment, 56, 138–147, 2009.
Bibi, M., Wagreich, M., Iqbal, S., and Jan, I. U.: Regional sediment sources versus the Indus River system: The Plio-Pleistocene of the Peshawar basin (NW-Pakistan), Sediment. Geol., 389, 26–41, https://doi.org/10.1016/j.sedgeo.2019.05.010, 2019.
Blankenburg, H. J., Götze, J., and Schulz, H.: Quarzrohstoffe: mit 80 Tabellen, Deutscher Verlag für Grundstof-Findustrie: Leipzig-Stuttgart, Germany, 296 pp., ISBN 3342005432, 9783342005438, 1994.
Butt, K. A. and Shah, Z.: Discovery of blue beryl from Ilum granite and its implications on the genesis of emerald mineralization in Swat district, Geological Bulletin University of Peshawar, 18, 75–81, 1985.
Chen, L. H., Li, Q., and Jiang, T.: Comprehensive utilization of tailings in quartz vein-hosted gold deposits, Minerals, 12, 1481, https://doi.org/10.3390/min12121481, 2022.
Chen, S., Wang, X., Niu, Y., Sun, P., Duan, M., Xiao, Y., and Xue, Q.: Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS, Sci. Bull., 62, 277–289, 2017.
Cornwell, K.: Quaternary break-out flood sediments in the Peshawar Basin of Northern Pakistan, Geomorphology, 25, 225–248, https://doi.org/10.1016/S0169-555X(98)00061-0, 1998.
Dal, M. E., Tranell, G., Gaal, S., Raaness, O. S., Tang, K., and Arnberg, L.: Study of pellets and lumps as raw materials in silicon production from quartz and silicon carbide, Metall. Mater. Trans. B, 42, 939–950, https://doi.org/10.1007/s11663-011-9529-y, 2011.
Demir, C., Gülgonul, I., Bentli, I., and Çelik, M. S.: Differential separation of albite from microcline by monovalent salts in HF medium, Mining, Metallurgy & Exploration, 20, 120–124, https://doi.org/10.1007/BF03403143, 2003.
Ding, Y. Z., Lu, J. W., and Yin, W. Z.: Research on purifying low-grade quartz ore by flotation, Metal Mine, 5, 84–87, 2009.
Du, F., Li, J., Li, X., and Zhang, Z.: Improvement of iron removal from silica sand using ultrasound-assisted oxalic acid, Ultrason. Sonochem., 18, 389–393, https://doi.org/10.1016/j.ultsonch.2010.07.006, 2011.
Englert, A. H., Rodrigues, R. T., and Rubio, J.: Dissolved air flotation (DAF) of fine quartz particles using an amine as collector, Int. J. Miner. Process., 90, 27–34, https://doi.org/10.1016/j.minpro.2008.10.001, 2009.
Frezzotti, M. L.: Silicate-melt inclusions in magmatic rocks: applications to petrology, Lithos, 55, 273–299, https://doi.org/10.1016/S0024-4937(00)00048-7, 2001.
Gemeinert, M., Gaber, M., Hager, I., Willfahrt, M., and Bortschuloun, D.: On correlation of gas-liquid-inclusion's properties and melting behaviour of different genetic quartzes for production of transparent fused silica, Neues Jahrbuch für Mineralogie. Abhandlungen, 165, 19–27, 1992.
Götze, J.: Chemistry, textures and physical properties of quartz—geological interpretation and technical application, Mineral. Mag., 73, 645–671, https://doi.org/10.1180/minmag.2009.073.4.645, 2009.
Götze, J.: Mineralogy, geochemistry and cathodoluminescence of authigenic quartz from different sedimentary rocks. Quartz: Deposits, Mineralogy and Analytics, Springer Berlin Heidelberg, Germany, 287–306, ISSBN 978-3-642-22160-6, 2012.
Götze, J., Plötze, M., Graupner, T., Hallbauer, D. K., and Bray, C. J.: Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography, Geochim. Cosmochim. Ac., 68, 3741–3759, https://doi.org/10.1016/j.gca.2004.01.003, 2004.
Götze, J., Pan, Y., and Müller, A.: Mineralogy and mineral chemistry of quartz: A review, Mineral. Mag., 85, 639–664, https://doi.org/10.1180/mgm.2021.72, 2021.
Harben, P. W.: The industrial minerals handy book: A guide to markets, specifications, & prices, 2nd edn., Industrial Minerals Division, Metal Bulletin, UK, 296 pp., http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6190195 (last access: 15 December 2024), 1995.
Harben, P. W.: The industrial mineral handy book: A guide to markets, specifications and prices, 4th edn., Industrial Mineral Information, Worcester Park, UK, 412 pp., ISBN 1904333044, 9781904333043, 2002.
Haus, R.: Processing: high demands on high purity, Industrial Minerals, 457, 62–69, 2005.
Haus, R., Prinz, S., and Priess, C.: Assessment of high purity quartz resources. Quartz: Deposits, Mineralogy and Analytics, Springer Berlin Heidelberg, Germany, 29–51, https://doi.org/10.1007/978-3-642-22161-3, 2012.
Jiang, X., Chen, J., Ban, B., Song, W., Chen, C., and Yang, X.: Application of competitive adsorption of ethylenediamine and polyetheramine in direct float of quartz from quartz-feldspar mixed minerals under neutral pH conditions, Miner. Eng., 188, 107850, https://doi.org/10.1016/j.mineng.2022.107850, 2022.
Kazmi, A. H. and Jan, M. Q.: Geology and tectonics of Pakistan, Graphic Publishers, Karachi, 528 pp., ISBN 969-8375-00-7, 1997.
Kempe, D. R. C.: The petrology of the Warsak alkaline granites, Pakistan, and their relationship to other alkaline rocks of the region, Geol. Mag., 110, 385–404, https://doi.org/10.1017/S0016756800036189, 1973.
Kempe, D. R. C. and Jan, M. Q.: An alkaline igneous province in the North-West Frontier province, West Pakistan, Geol. Mag., 107, 395–398, https://doi.org/10.1017/S0016756800056260, 1970.
Kempe, D. R. C. and Jan, M. Q.: The Peshawar plain alkaline igneous province, NW Pakistan, Special Issue, Geological Bulletin University of Peshawar, 13, 71–78, 1980.
Kitamura, R., Pilon, L., and Jonasz, M.: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature, Appl. Optics, 46, 8118–8133, https://doi.org/10.1364/AO.46.008118, 2007.
Kohobhange, S. P. K., Manoratne, C. H., Pitawala, H. M. T. G. A., and Rajapakse, R. M. G.: The effect of prolonged milling time on comminution of quartz, Powder Technol., 330, 266274, https://doi.org/10.1016/j.powtec.2018.02.033, 2018.
Larsen, E. and Kleiv, R. A.: Flotation of quartz from quartz-feldspar mixtures by the HF method, Miner. Eng., 98, 49–51, https://doi.org/10.1016/j.mineng.2016.07.021, 2016.
Li, F., Jiang, X., Zuo, Q., Li, J., Ban, B., and Chen, J.: Purification mechanism of quartz sand by combination of microwave heating and ultrasound assisted acid leaching treatment, Silicon, 13, 531–541, https://doi.org/10.1007/s12633-020-00457-7, 2021.
Liang, Q., Jing, H., and Gregoire, D. C.: Determination of trace elements in granites by inductively coupled plasma mass spectrometry, Talanta, 51, 507–513, 2000.
Lin, M., Pei, Z., Li, Y., Liu, Y., Wei, Z., and Lei, S.: Separation mechanism of lattice-bound trace elements from quartz by KCl-doping calcination and pressure leaching, Miner. Eng., 125, 42–49, https://doi.org/10.1016/j.mineng.2018.05.029, 2018.
Lin, M., Liu, Z., Wei, Y., Liu, B., Meng, Y., Qiu, H., Lei, S., Zhang, X., and Li, Y.: A critical review on the mineralogy and processing for high-grade quartz, Mining, Metallurgy & Exploration, 37, 1627–1639, https://doi.org/10.1007/s42461-020-00247-0, 2020.
Moore, P.: High-purity quartz, Industrial Minerals, 455, 53–57, 2005.
Müller, A., Ihlen, P. M., Wanvik, J. E., and Flem, B.: High-purity quartz mineralization in kyanite quartzites, Norway, Miner. Deposita, 42, 523–535, https://doi.org/10.1007/s00126-007-0124-8, 2007.
Müller, A., Wanvik, J. E., and Ihlen, P. M.: Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. Quartz: Deposits, Mineralogy and Analytics, Springer Berlin Heidelberg, Germany, 71–118, https://doi.org/10.1007/978-3-642-22161-3_4, 2012.
Pan, X., Li, S., Li, Y., Guo, P., Zhao, X., and Cai, Y.: Resource, characteristic, purification and application of quartz: a review, Miner. Eng., 183, 107600, https://doi.org/10.1016/j.mineng.2022.107600, 2022.
Passchier, C. W. and Trouw, R. A.: Microtectonics, Springer Science & Business Media, Verlag, Berlin, 366, https://doi.org/10.1007/3-540-29359-0, 2005.
Peçanha, E. R., de Albuquerque, M. D., Simão, R. A., de Salles, L. F. L., and de Mello, M. M. B.: Interaction forces between colloidal starch and quartz and hematite particles in mineral flotation, Colloid. Surface. A, 562, 79–85, https://doi.org/10.1016/j.colsurfa.2018.11.026, 2019.
Pogue, K. R., Wardlaw, B. R., Harris, A. G., and Hussain, A.: Paleozoic and Mesozoic stratigraphy of the Peshawar basin, Pakistan: Correlations and implications, Geol. Soc. Am. Bull., 104, 915–927, https://doi.org/10.1130/0016-7606(1992)104<0915:PAMSOT>2.3.CO;2, 1992.
Sajid, M., Arif, M., and Shah, M. T.: Petrogenesis of granites from the Utla area of Gadoon, north-west Pakistan: Implications from petrography and geochemistry, J. Earth Sci., 25, 445–459, https://doi.org/10.1007/s12583-014-0435-5, 2014.
Shah, S. A., Shao, Y., Zhang, Y., Zhao, H., and Zhao, L.: Texture and Trace Element Geochemistry of Quartz: A Review, Minerals, 12, 1042, https://doi.org/10.3390/min12081042, 2022.
Shams, F. A.: The geology of the Mansehra-Amb state area, northern West Pakistan, Geological Bulletin of Punjab University, Lahore Pakistan, 8, https://pu.edu.pk/images/journal/geology/pdf/1971-8.pdf (last access: 3 March 2025), 1969.
Shimoiizaka, J., Nakatsuka, K., and Katayanagi, T.: Separation of feldspar from quartz by a new flotation process, World Mining and Metals Technology, Port City Press Baltimore, New York, 1, 423–438,https://onetunnel.org/documents/separation-of-feldspar-from-quartz-by-a-new-flotation-process (last access: 25 December 2024), 1976.
Su, Y., Zhou, Y., Huang, W., and Gu, Z.: Study on reaction kinetics between silica glasses and hydrofluoric acid, Journal Chinese Ceramic Society, 32, 287–293, https://doi.org/10.3321/j.issn:0454-5648.2004.03.016, 2004.
Tuncuk, A. and Akcil, A.: Iron removal in production of purified quartz by hydrometallurgical process, Int. J. Miner. Process., 153, 44–50, https://doi.org/10.1016/j.minpro.2016.05.021, 2016.
Vatalis, K., Charalampides, G., Platias, S., and Benetis, N. P.: Market developments and industrial innovative applications of high-purity quartz refines, Proc. Econ. Financ., 14, 624–633, https://doi.org/10.1016/S2212-5671(15)00688-7, 2014.
Wang, J. Y.: Global high purity quartz deposits: Resources distribution and exploitation status, Acta Petrologica et Mineralogica, 40, 131–141, https://doi.org/10.3969/j.issn.1000-6524.2021.01.012, 2021.
Wang, L.: Concept of high purity quartz and classification of its raw materials, Conservation and Utilization of Mineral Resources, 42, 55–63, https://doi.org/10.13779/j.cnki.issn1001-0076.2022.05.009, 2022.
Webster, J. D.: Melt inclusions in plutonic rocks. Mineralogical Association of Canada, Short Course Series, 36, Montreal, Canada, 248 pp., https://doi.org/10.2113/gsecongeo.101.6.1313, 2006.
Xia, M., Sun, C., Yang, X., and Chen, J.: Assessment of Gold-Bearing Quartz Vein as a Potential High-Purity Quartz Resource: Evidence from Mineralogy, Geochemistry, and Technological Purification, Minerals, 13, 261, https://doi.org/10.3390/min13020261, 2023.
Xia, M., Yang, X., and Hou, Z.: Preparation of high-purity quartz sand by vein quartz purification and characteristics: A case study of Pakistan vein quartz, Minerals, 14, 727, https://doi.org/10.3390/min14070727, 2024.
Xie, Y., Xia, M., Yang, X., Khan, I., and Hou, Z.: Research on 4N8 High-Purity Quartz Purification Technology Prepared Using Vein Quartz from Pakistan, Minerals, 14, 1049, https://doi.org/10.3390/min14101049, 2024.
Yang, C., Li, S., Yang, R., Bai, J., and Guo, Z.: Recovery of silicon powder from kerf loss slurry waste using superconducting high gradient magnetic separation technology, J. Mater. Cycles Waste, 20, 937–945, https://doi.org/10.1007/s10163-017-0656-7, 2017.
Yang, L., Li, X., Li, W., Yan, X., and Zhang H.: Intensification of interfacial adsorption of dodecylamine onto quartz by ultrasonic method, Sep. Purif. Technol., 227, 115701, https://doi.org/10.1016/j.apsusc.2019.145012, 2019.
Yang, L., Li, W., Li, X., Yan, X., and Zhang, H.: Effect of the turbulent flow pattern on the interaction between dodecylamine and quartz, Appl. Surf. Sci., 507, 145012, https://doi.org/10.1016/j.apsusc.2019.145012, 2020.
Yin, W., Wang, D., Drelich, J., Yang, B., Li, D., Zhu, Z., and Yao, J.: Reverse flotation separation of hematite from quartz assisted with magnetic seeding aggregation, Miner. Eng., 139, 105873, https://doi.org/10.1016/j.mineng.2019.105873, 2019.
Zhang, R., Tang, C., Ni, W., Yuan, J., Zhou, Y., and Liu, X.: Research status and challenges of high-purity quartz processing technology from a mineralogical perspective in China, Minerals, 13, 1505, https://doi.org/10.3390/min13121505, 2023.
Zhang, W., Hu, Z., Liu, Y., Chen, L., Chen, H., Li, M., and Gao, S.: Reassessment of decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS, Geostandard. Geoanal. Res., 36, 271–289, 2012.
Zhong, L. L., Lei, S. M., Wang, E. W., Pei, Z. Y., Li, L., and Yang, Y. Y.: Research on removal impurities from vein quartz sand with complexing agents, Appl. Mech. Mater., 454, 194–199, https://doi.org/10.4028/www.scientific.net/AMM.454.194, 2014.
Zhong, T., Yu, W., Shen, C., and Wu, X.: Research on preparation and characterisation of high-purity silica sands by purification of quartz vein ore from Dabie mountain, Silicon, 14, 4723–4729, https://doi.org/10.1007/s12633-021-01217-x, 2021.
Zhu, Y. B., Peng, Y. J., and Gao, H. M.: Research on mineral processing of coastal quartz sand mine, Journal of Wuhan Polytechnic University, 21, 37–39, 1999.
Zuo, Q., Liu, J., and Chen, J.: Study on calcination and quenching-acid leaching of Fengyang quartz sand for deep purification and its kinetics, Conservation and Utilization of Mineral Resources, 42, 75–81, https://doi.org/10.13779/j.cnki.issn1001-0076.2022.07.013, 2022.
Short summary
This study evaluated quartz vein ore from the Peshawar Basin, Pakistan, for producing high-purity quartz sand. Samples were purified and the analysis revealed fluid inclusions as main impurities. Post-purification, the quartz sand showed minimal inclusions and high SiO2 content (99.997–99.999 wt %). Impurity elements like Li and Al were significantly reduced. The refined quartz sands are deemed suitable for high-purity quartz products used in industrial applications.
This study evaluated quartz vein ore from the Peshawar Basin, Pakistan, for producing...