Articles | Volume 36, issue 6
https://doi.org/10.5194/ejm-36-943-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-943-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pressure–temperature–time and REE mineral evolution in low- to medium-grade polymetamorphic units (Austroalpine Unit, Eastern Alps)
Marianne Sophie Hollinetz
CORRESPONDING AUTHOR
Department of Geology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
Benjamin Huet
Division of Basic Geological Services, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
David A. Schneider
Department of Earth and Environmental Sciences, University of Ottawa, 150 Louis-Pasteur Private, Ottawa, K1N 6N5, Canada
Christopher R. M. McFarlane
Department of Earth Sciences, University of New Brunswick, 3 Bailey Drive, Fredericton, E3B 5A3, Canada
Ralf Schuster
Division of Geophysical and Applied Geological Services, GeoSphere Austria, Hohe Warte 38, 1030 Vienna, Austria
Gerd Rantitsch
Department Applied Geosciences and Geophysics, University of Leoben, Peter-Tunner-Straße 5, 8700 Leoben, Austria
Philip Schantl
Institute of Earth Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
Department of Petrology and Geochemistry, NAWI Graz Geocenter, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
Christoph Iglseder
Division of Basic Geological Services, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Martin Reiser
Division of Basic Geological Services, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Bernhard Grasemann
Department of Geology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
Related authors
No articles found.
A. Rogowitz, J. C. White, and B. Grasemann
Solid Earth, 7, 355–366, https://doi.org/10.5194/se-7-355-2016, https://doi.org/10.5194/se-7-355-2016, 2016
Short summary
Short summary
This paper discusses the processes resulting in extreme strain localization (gamma up to 1000) in an almost pure calcite marble located in Syros, Greece. We observed grain size reduction by bulging recrystallization, followed by the simultaneous activation of grain boundary sliding and a dislocation motion in conditions (high differential stress, high strain rate, low temperature) in which brittle deformation rather than ductile flow might be suspected.
Related subject area
Metamorphic petrology
The composition of metapelitic biotite, white mica, and chlorite: a review with implications for solid-solution models
Comparison between 2D and 3D microstructures and implications for metamorphic constraints using a chloritoid–garnet-bearing mica schist
Sedimentary protolith and high-P metamorphism of oxidized manganiferous quartzite from the Lanterman Range, northern Victoria Land, Antarctica
Metamorphic evolution of sillimanite gneiss in the high-pressure terrane of the Western Gneiss Region (Norway)
Halogen-bearing metasomatizing melt preserved in high-pressure (HP) eclogites of Pfaffenberg, Bohemian Massif
Île Dumet (Armorican Massif, France) and its glaucophane eclogites: the little sister of Île de Groix
Retrogression of ultrahigh-pressure eclogite, Western Gneiss Region, Norway
Electron backscatter diffraction analysis combined with NanoSIMS U–Pb isotope data reveal intra-grain plastic deformation in zircon and its effects on U–Pb age: examples from Himalayan eclogites, Pakistan
H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks
Very-low-grade phyllosilicates in the Aravis massif (Haute-Savoie, France) and the di-trioctahedral substitution in chlorite
Partial melting of amphibole–clinozoisite eclogite at the pressure maximum (eclogite type locality, Eastern Alps, Austria)
Petrological study of an eclogite-facies metagranite from the Champtoceaux Complex (La Picherais, Armorican Massif, France)
Corundum-bearing and spinel-bearing symplectites in ultrahigh-pressure eclogites record high-temperature overprint and partial melting during slab exhumation
Some thoughts about eclogites and related rocks
Metamorphic P–T paths of Archean granulite facies metasedimentary lithologies from the eastern Beartooth Mountains of the northern Wyoming Province, Montana, USA: constraints from quartz-in-garnet (QuiG) Raman elastic barometry, geothermobarometry, and thermodynamic modeling
Detrital garnet petrology challenges Paleoproterozoic ultrahigh-pressure metamorphism in western Greenland
Equilibrium and kinetic approaches to understand the occurrence of the uncommon chloritoid + biotite assemblage
Geochemistry and paleogeographic implications of Permo-Triassic metasedimentary cover from the Tauern Window (Eastern Alps)
Reaction progress of clay minerals and carbonaceous matter in a contact metamorphic aureole (Torres del Paine intrusion, Chile)
Partial melting of zoisite eclogite from the Sanddal area, North-East Greenland Caledonides
Benoît Dubacq and Jacob B. Forshaw
Eur. J. Mineral., 36, 657–685, https://doi.org/10.5194/ejm-36-657-2024, https://doi.org/10.5194/ejm-36-657-2024, 2024
Short summary
Short summary
This article reviews the crystal chemistry of chlorite, biotite, and white mica in metamorphosed sediments. These minerals have complex compositions because many atom exchanges may take place in their structure. Such exchanges include easily measured cations but also structurally bound H2O, notoriously hard to measure; iron oxidation; and vacancies. Consequently, formula units are often calculated from incomplete measurements and some exchanges may appear solely due to normalization issues.
Fabiola Caso, Alessandro Petroccia, Sara Nerone, Andrea Maffeis, Alberto Corno, and Michele Zucali
Eur. J. Mineral., 36, 381–395, https://doi.org/10.5194/ejm-36-381-2024, https://doi.org/10.5194/ejm-36-381-2024, 2024
Short summary
Short summary
Despite the fact that rock textures depend on the 3D spatial distribution of minerals, our tectono-metamorphic reconstructions are mostly based on a 2D visualisation (i.e. thin sections). For 2D a thin section scan has been combined with chemical X-ray maps, whereas for 3D the X-ray computerised axial microtomography (μCT) has been applied. This study corroborates the reliability of the thin section approach, still emphasising that 3D visualisation can help understand rock textures.
Taehwan Kim, Yoonsup Kim, Simone Tumiati, Daeyeong Kim, Keewook Yi, and Mi Jung Lee
Eur. J. Mineral., 36, 323–343, https://doi.org/10.5194/ejm-36-323-2024, https://doi.org/10.5194/ejm-36-323-2024, 2024
Short summary
Short summary
The manganese-rich siliceous metasediment in the Antarctic Ross orogen most likely originated from Mn-nodule-bearing chert deposited not earlier than ca. 546 Ma. Subduction-related metamorphism resulted in the production of highly oxidized assemblages involving Mn3+ and rare-earth-element-zoned epidote-group mineral and Mn2+-rich garnet. A reduced environment was responsible for the Mn olivine-bearing assemblages from silica-deficient composition.
Ane K. Engvik and Johannes Jakob
Eur. J. Mineral., 36, 345–360, https://doi.org/10.5194/ejm-36-345-2024, https://doi.org/10.5194/ejm-36-345-2024, 2024
Short summary
Short summary
The paper documents sillimanite gneiss in the Western Gneiss Region (WGR) and its presence, composition, formation and metamorphic evolution. Peak metamorphism is modelled to T = 750 °C and P around 0.6 GPa. Subsequent retrogression consumes garnet and shows mineral replacement and melt crystallization involving sillimanite, white mica, K-feldspar and quartz. The petrological evolution is in accordance with the investigated eclogites and HP granulites in the northwestern part of WGR.
Alessia Borghini, Silvio Ferrero, Patrick J. O'Brien, Bernd Wunder, Peter Tollan, Jarosław Majka, Rico Fuchs, and Kerstin Gresky
Eur. J. Mineral., 36, 279–300, https://doi.org/10.5194/ejm-36-279-2024, https://doi.org/10.5194/ejm-36-279-2024, 2024
Short summary
Short summary
We studied primary granitic and halogen-rich melt inclusions trapped in mantle rocks in the Bohemian Massif (Germany) in order to retrieve important information about the nature of the melt and the source rock. The melt was produced by the partial melting of metasediments during the deepest stages of subduction and interacted with the mantle. This work is an excellent example of transfer of crustal material, volatiles in particular, in the mantle during the subduction of the continental crust.
Gaston Godard, David C. Smith, Damien Jaujard, and Sidali Doukkari
Eur. J. Mineral., 36, 99–122, https://doi.org/10.5194/ejm-36-99-2024, https://doi.org/10.5194/ejm-36-99-2024, 2024
Short summary
Short summary
Petrological and mineralogical studies of mica schists, orthogneisses and glaucophane eclogites from Dumet Island (Armorican Massif, NW France) indicate that this occurrence, which has undergone high-pressure metamorphism up to 16 kbar and 620 °C, is similar to that of Groix Island. There are about 10 similar occurrences within the Ibero-Armorican Arc, forming a discontinuous high-pressure belt, but most of them have remained unnoticed due to a high degree of retrogression.
Dirk Spengler, Adam Włodek, Xin Zhong, Anselm Loges, and Simon J. Cuthbert
Eur. J. Mineral., 35, 1125–1147, https://doi.org/10.5194/ejm-35-1125-2023, https://doi.org/10.5194/ejm-35-1125-2023, 2023
Short summary
Short summary
Rock lenses from the diamond stability field (>120 km depth) within ordinary gneiss are enigmatic. Even more when these lenses form an alternating exposure pattern with ordinary lenses. We studied 10 lenses from W Norway and found that many of them have a hidden history. Tiny needles of quartz enclosed in old pyroxene cores are evidence for a rock origin at great depth. These needles survived the rocks' passage to the surface that variably obscured the mineral chemistry – the rocks' memory.
Hafiz U. Rehman, Takanori Kagoshima, Naoto Takahata, Yuji Sano, Fabrice Barou, David Mainprice, and Hiroshi Yamamoto
Eur. J. Mineral., 35, 1079–1090, https://doi.org/10.5194/ejm-35-1079-2023, https://doi.org/10.5194/ejm-35-1079-2023, 2023
Short summary
Short summary
Zircon preserves geologic rock history. Electron backscatter diffraction (EBSD) analysis is useful to visualize deformed domains in zircons. Zircons from the Himalayan high-pressure eclogites were analzyed for EBSD to identify intra-grain plastic deformation. The U–Pb isotope age dating, using Nano-SIMS, showed that plastic deformation likely affects the geochronological records. For geologically meaningful results, it is necessary to identify undisturbed domains in zircon via EBSD.
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste
Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, https://doi.org/10.5194/ejm-35-831-2023, 2023
Short summary
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Simon Schorn, Anna Rogowitz, and Christoph A. Hauzenberger
Eur. J. Mineral., 35, 715–735, https://doi.org/10.5194/ejm-35-715-2023, https://doi.org/10.5194/ejm-35-715-2023, 2023
Short summary
Short summary
We investigate rocks called eclogite, which are related to subduction and the collision of continents. Our samples show evidence of limited melting at high pressure corresponding to about 70 km depth, which may play an important role in the exhumation of these rocks and the differentiation of the crust. However, due to their composition and metamorphic evolution, melt production is limited, suggesting that similar rocks are unlikely to contribute strongly to subduction-related magmatism.
Thomas Gyomlai, Philippe Yamato, and Gaston Godard
Eur. J. Mineral., 35, 589–611, https://doi.org/10.5194/ejm-35-589-2023, https://doi.org/10.5194/ejm-35-589-2023, 2023
Short summary
Short summary
The La Picherais metagranite is a key example of undeformed high-pressure quartzofeldspathic rock from the Armorican Massif. Through petrological observations and thermodynamic modelling, this study determines that the metagranite was pressured above 1.7 GPa and the associated mafic lenses at ~ 2.1 GPa. This metagranite provides an opportunity to study the degree of transformation of quartzofeldspathic rocks at high pressure, which may have a significant impact on the dynamics of subduction.
Pan Tang and Shun Guo
Eur. J. Mineral., 35, 569–588, https://doi.org/10.5194/ejm-35-569-2023, https://doi.org/10.5194/ejm-35-569-2023, 2023
Short summary
Short summary
In this study, unusual corundum- and spinel-bearing symplectites after muscovite were found in ultrahigh-pressure eclogites from the Dabie terrane, China. The results indicate that these symplectites formed by the low-pressure partial melting of muscovite during slab exhumation. We stress that the occurrence of corundum- and spinel-bearing symplectites after muscovite in eclogites provides important implications for fluid and melt actions in exhumed slabs.
Michael Brown
Eur. J. Mineral., 35, 523–547, https://doi.org/10.5194/ejm-35-523-2023, https://doi.org/10.5194/ejm-35-523-2023, 2023
Short summary
Short summary
The past 40 years have been a golden age for eclogite studies, supported by an ever wider range of instrumentation and enhanced computational capabilities, linked with ongoing developments in the determination of the temperatures and pressures of metamorphism and the age of these rocks. These data have been used to investigate the spatiotemporal distribution of metamorphism and secular change but not without controversy in relation to the emergence of plate tectonics on Earth.
Larry Tuttle and Darrell J. Henry
Eur. J. Mineral., 35, 499–522, https://doi.org/10.5194/ejm-35-499-2023, https://doi.org/10.5194/ejm-35-499-2023, 2023
Short summary
Short summary
Quartz inclusions in garnet are used to constrain the metamorphic pressure–temperature history of multiple ~2.8 Ga metasedimentary rocks from Montana, USA. Inclusion studies along with mineral and whole rock chemistry suggests that the rocks of interest experienced a clockwise metamorphic P–T history that included isobaric heating to peak metamorphic temperatures once inclusions were entrapped. These findings place fundamental constraints on the P–T evolution of this important geologic setting.
Jan Schönig, Carsten Benner, Guido Meinhold, Hilmar von Eynatten, and N. Keno Lünsdorf
Eur. J. Mineral., 35, 479–498, https://doi.org/10.5194/ejm-35-479-2023, https://doi.org/10.5194/ejm-35-479-2023, 2023
Short summary
Short summary
When and how modern-style plate tectonics initiated is a matter of debate. Although the earliest unequivocal evidence for ultrahigh-pressure metamorphism is Neoproterozoic, similar processes have been proposed for Paleoproterozoic rocks of western Greenland. We intensely screened the area by studying detrital heavy minerals, garnet chemistry, and mineral inclusion assemblages in garnet. Our results raise considerable doubts on the existence of Paleoproterozoic ultrahigh-pressure rocks.
Sara Nerone, Chiara Groppo, and Franco Rolfo
Eur. J. Mineral., 35, 305–320, https://doi.org/10.5194/ejm-35-305-2023, https://doi.org/10.5194/ejm-35-305-2023, 2023
Short summary
Short summary
The coexistence of chloritoid and biotite in medium-pressure Barrovian terranes is uncommon, with chloritoid usually occurring at lower temperatures than biotite. A petrologic approach using equilibrium thermodynamic modelling points out how metapelites can attain H2O-undersaturated conditions even at medium pressure and amphibolite-facies conditions and consequently can be affected by kinetic barriers, which need to be taken into account.
Gerhard Franz, Martin Kutzschbach, Eleanor J. Berryman, Anette Meixner, Anselm Loges, and Dina Schultze
Eur. J. Mineral., 33, 401–423, https://doi.org/10.5194/ejm-33-401-2021, https://doi.org/10.5194/ejm-33-401-2021, 2021
Short summary
Short summary
Metamorphic rocks contain information about their original rocks and thus provide insight into the earlier stages of a region of interest. Here, we used the whole-rock chemical composition and stable boron isotopes of a suite of rocks from the Alps (Italy–Austria), which were deposited in a restricted intramontane basin before the Alpine orogeny. It is possible to reconstruct the depositional conditions for these sediments, which are now common metamorphic rocks such as schists and gneisses.
Annette Süssenberger, Susanne Theodora Schmidt, Florian H. Schmidt, and Manuel F. G. Weinkauf
Eur. J. Mineral., 32, 653–671, https://doi.org/10.5194/ejm-32-653-2020, https://doi.org/10.5194/ejm-32-653-2020, 2020
Wentao Cao, Jane A. Gilotti, and Hans-Joachim Massonne
Eur. J. Mineral., 32, 405–425, https://doi.org/10.5194/ejm-32-405-2020, https://doi.org/10.5194/ejm-32-405-2020, 2020
Short summary
Short summary
Zoisite eclogites from the Sanddal area, North-East Greenland, contain numerous textures, such as cusps and neoblasts, which are interpreted as melt-related textures. Mineral chemistry and thermodynamic modeling demonstrate that they were partially melted through the breakdown of hydrous minerals, phengite, paragonite and zoisite. Pressure–temperature phase diagrams show that the eclogites reached a maximum depth of ∼70 km and were partially melted near that depth and during exhumation.
Cited articles
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y. and Pasero, M.: Recommended nomenclature of epidote-group minerals, Eur. J. Mineral., 18, 551–567, https://doi.org/10.1127/0935-1221/2006/0018-0551, 2006.
Bestel, M., Gawronski, T., Abart, R., and Rhede, D.: Compositional zoning of garnet porphyroblasts from the polymetamorphic Wölz Complex, Eastern Alps, Miner. Petrol., 97, 173–188, https://doi.org/10.1007/s00710-009-0084-z, 2009.
Bollinger, L. and Janots, E.: Evidence for Mio-Pliocene retrograde monazite in the Lesser Himalaya, far western Nepal, Eur. J. Mineral., 18, 289–297, https://doi.org/10.1127/0935-1221/2006/0018-0289, 2006.
Bojar, H. P., Bojar, A. V., Mogessie, A., Fritz, H., and Thalhammer, O. A. R.: Evolution of veins and sub-economic ore at Strassegg, Paleozoic of Graz, Eastern Alps, Austria: evidence for local fluid transport during metamorphism, Chem. Geol., 175, 757–777, https://doi.org/10.1016/S0009-2541(00)00342-9, 2001.
Boston, K. R., Rubatto, D., Hermann, J., Engi, M., and Amelin, Y.: Geochronology of accessory allanite and monazite in the Barrovian metamorphic sequence of the Central Alps, Switzerland, Lithos, 286, 502–518, https://doi.org/10.1016/j.lithos.2017.06.025, 2017.
Broska, I., Williams, C. T., Janák, M., and Nagy, G.: Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia, Lithos, 82, 71–83, https://doi.org/10.1016/j.lithos.2004.12.007, 2005.
Budzyn, B., Harlov, D. E., Williams, M. L., and Jercinovic, M. J.: Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition, Am. Mineral., 96, 1547–1567, https://doi.org/10.2138/am.2011.3741, 2011.
Catlos, E. J., Gilley, L. D., and Harrison, T. M.: Interpretation of monazite ages obtained via in situ analysis, Chem. Geol., 188, 193–215, https://doi.org/10.1016/S0009-2541(02)00099-2, 2002.
Cenki-Tok, B., Oliot, E., Rubatto, D., Berger, A., Engi, M., Janots, E., Thomsen, T. B., Manzotti, P., Regis, D., Spandler, C., and Robyr, M.: Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: Mechanical and chemical behavior of allanite during mylonitization, Lithos, 125, 40–50, https://doi.org/10.1016/j.lithos.2011.01.005, 2011.
Coggon, R., and Holland, T. J. B.: Mixing properties of phengitic micas and revised garnet-phengite thermobarometers, J. Metamorph. Geol., 20, 683–696, https://doi.org/10.1046/j.1525-1314.2002.00395.x, 2002.
Dallmeyer, R. D., Handler, R., Neubauer, F., and Fritz, H.: Sequence of thrusting within a thick-skinned tectonic wedge: Evidence from 40Ar/39Ar and Rb-Sr ages from the Austroalpine nappe complex of the Eastern Alps, J. Geol., 106, 71–86, https://doi.org/10.1086/516008, 1998.
De Capitani, C. and Petrakakis, K.: The computation of equilibrium assemblage diagrams with Theriak/Domino software, Am. Mineral., 95, 1006–1016, https://doi.org/10.2138/am.2010.3354, 2010.
Evans, T. P.: A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: Implications for isopleth thermobarometry, J. Metamorph. Geol., 22, 547–557, https://doi.org/10.1111/j.1525-1314.2004.00532.x, 2004.
Feenstra, A., Ockenga, E., Rhede, D., and Wiedenbeck, M.: Li-rich zincostaurolite and its decompression-related breakdown products in a diaspore-bearing metabauxite from East Samos (Greece): An EMP and SIMS study, Am. Mineral., 88, 789–805, https://doi.org/10.2138/am-2003-5-608, 2003.
Finger, F., Broska, I., Roberts, M. P., and Schermaier, A.: Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps, Am. Mineral., 83, 248–258, https://doi.org/10.2138/am-1998-3-408, 1998.
Finger, F., Krenn, E., Schulz, B., Harlov, D., and Schiller, D.: “Satellite monazites” in polymetamorphic basement rocks of the Alps: Their origin and petrological significance, Am. Mineral., 101, 1094–1103, https://doi.org/10.2138/am-2016-5477, 2016.
Flügel, H. W. and Hubmann, B.: Das Paläozoikum von Graz: Stratigraphie und Bibliographie. Schriftreihe der Erdwissenschaftlichen Kommission (Vol. 13), Österreichische Akademie der Wissenschaften, Wien, 118 pp., ISBN 3-7001-2859-2, 2000.
Foster, G. and Parrish, R. R.: Metamorphic monazite and the generation of PTt paths, Geol. Soc. Spec. Publ., 220, 25–47, https://doi.org/10.1144/GSL.SP.2003.220.01.02, 2003.
Fritz, H.: Kinematics and geochronology of Early Cretaceous thrusting in the northwestern Paleozoic of Graz (Eastern Alps), Geodin. Acta, 2, 53–62, https://doi.org/10.1080/09853111.1988.11105156, 1988.
Fritz, H.: Stratigraphie, Fazies und Tektonik im nordwestlichen Grazer Paläozoikum (Ostalpen), Jb. Geol. B.-A., 134, 227–255, 1991.
Froitzheim, N., Conti, P. T., and Van Daalen, M.: Late Cretaceous, synorogenic, low-angle normal faulting along the Schlinig fault (Switzerland, Italy, Austria) and its significance for the tectonics of the Eastern Alps, Tectonophysics, 280, 267–293, https://doi.org/10.1016/S0040-1951(97)00037-1, 1997.
Froitzheim, N., Plašienka, D., and Schuster, R.: Alpine tectonics of the Alps and Western Carpathians, The Geology of Central Europe Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., Geological Society of London, 1141–1232, https://doi.org/10.1144/CEV2P.6, 2008.
Fügenschuh, B., Mancktelow, N. S., and Seward, D.: Cretaceous to Neogene cooling and exhumation history of the Oetztal-Stubai basement complex, eastern Alps: A structural and fission track study, Tectonics, 19, 905–918, https://doi.org/10.1029/2000TC900014, 2000.
Fuhrman, M. L. and Lindsley, D. H.: Ternary-feldspar modeling and thermometry, Am. Mineral., 73, 201–215, 1988.
Gaidies, F., Abart, R., De Capitani, C., Schuster, R., Connolly, J. A. D., and Reusser, E.: Characterization of polymetamorphism in the Austroalpine basement east of the Tauern Window using garnet isopleth thermobarometry, J. Metamorph. Geol., 24, 451–475, https://doi.org/10.1111/j.1525-1314.2006.00648.x, 2006.
Gaidies, F., Krenn, E., De Capitani, C., and Abart, R.: Coupling forward modelling of garnet growth with monazite geochronology: an application to the Rappold Complex (Austroalpine crystalline basement), J. Metamorph. Geol., 26, 775–793, https://doi.org/10.1111/j.1525-1314.2008.00787.x, 2008a.
Gaidies, F., De Capitani, C., Abart, R., and Schuster, R.: Prograde garnet growth along complex P–T–t paths: results from numerical experiments on polyphase garnet from the Wölz Complex (Austroalpine basement), Contrib. Mineral. Petr., 155, 673–688, https://doi.org/10.1007/s00410-007-0264-y, 2008b.
Gasser, D., Stüwe, K., and Fritz, H.: Internal structural geometry of the Paleozoic of Graz, Int. J. Earth. Sci., 99, 1067–1081, https://doi.org/10.1007/s00531-009-0446-0, 2010.
Gasser, D., Bruand, E., Rubatto, D., and Stüwe, K.: The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: an example from the Chugach Metamorphic Complex, southern Alaska, Lithos, 134, 108–122, https://doi.org/10.1016/j.lithos.2011.12.003, 2012.
Grand'Homme, A., Janots, E., Seydoux-Guillaume, A. M., Guillaume, D., Bosse, V., and Magnin, V.: Partial resetting of the U-Th-Pb systems in experimentally altered monazite: Nanoscale evidence of incomplete replacement, Geology, 44, 431–434, https://doi.org/10.1130/G37770.1, 2016.
Grand'Homme, A., Janots, E., Seydoux-Guillaume, A.-M., Guillaume, D., Magnin, V., Hövelmann, J., Höschen, C., and Boiron, M. C.: Mass transport and fractionation during monazite alteration by anisotropic replacement, Chem. Geol., 484, 51–68, https://doi.org/10.1016/j.chemgeo.2017.10.008, 2018.
Gratz, R. and Heinrich, W.: Monazite-xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO4-YPO4, Am. Mineral., 82, 772–780, https://doi.org/10.2138/am-1997-7-816, 1997.
Griesmeier, G. E., Schuster, R., and Grasemann, B.: Major fault zones in the Austroalpine units of the Kreuzeck Mountains south of the Tauern Window (Eastern Alps, Austria), Swiss, J. Geosci., 112, 39–53, https://doi.org/10.1007/s00015-018-0328-1, 2019.
Habler, G. and Thöni, M.: Preservation of Permo–Triassic low-pressure assemblages in the Cretaceous high-pressure metamorphic Saualpe crystalline basement (Eastern Alps, Austria), J. Metamorph. Geol., 19, 679–697, https://doi.org/10.1046/j.0263-4929.2001.00338.x, 2001.
Habler, G., Thöni, M., and Sölva, H.: Tracing the high pressure stage in the polymetamorphic Texel Complex (Austroalpine basement unit, Eastern Alps): P–T–t–d constraints, Miner. Petrol., 88, 269–296, https://doi.org/10.1007/s00710-006-0143-7, 2006.
Habler, G., Thöni, M., and Grasemann, B.: Cretaceous metamorphism in the Austroalpine Matsch Unit (Eastern Alps): the interrelation between deformation and chemical equilibration processes, Miner. Petrol., 97, 149–171, https://doi.org/10.1007/s00710-009-0094-x, 2009.
Harlov, D. E., Wirth, R., and Hetherington, C. J.: Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer, Contrib. Mineral. Petr., 162, 329–348, https://doi.org/10.1007/s00410-010-0599-7, 2011.
Henrichs, I. A., Chew, D. M., O'Sullivan, G. J., Mark, C., McKenna, C., and Guyett, P.: Trace element (Mn-Sr-Y-Th-REE) and U-Pb isotope systematics of metapelitic apatite during progressive greenschist-to amphibolite-facies Barrovian metamorphism, Geochem. Geophy. Geosy., 20, 4103–4129, https://doi.org/10.1029/2019GC008359, 2019.
Henry, D. J., Guidotti, C. V., and Thomson, J. A.: The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms, Am. Mineral., 90, 316–328, https://doi.org/10.2138/am.2005.1498, 2005.
Hentschel, F., Janots, E., Trepmann, C. A., Magnin, V., and Lanari, P.: Corona formation around monazite and xenotime during greenschist-facies metamorphism and deformation, Eur. J. Mineral., 32, 521–544, https://doi.org/10.5194/ejm-32-521-2020, 2020.
Hermann, J.: Allanite: thorium and light rare earth element carrier in subducted crust, Chem. Geol., 192, 289–306, https://doi.org/10.1016/S0009-2541(02)00222-X, 2002.
Hetherington, C. J., Harlov, D. E., and Budzyń, B.: Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition, Miner. Petrol., 99, 165–184, https://doi.org/10.1007/s00710-010-0110-1, 2010.
Holland, T. J. B. and Powell, R.: An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol., 29, 333–383, https://doi.org/10.1111/j.1525-1314.2010.00923.x, 2011.
Holland, T. J. B., Green, E. C. R., and Powell, R.: A thermodynamic model for feldspars in KAlSi3O8–NaAlSi3O8–CaAl2Si2O8 for mineral equilibrium calculations, J. Metamorph. Geol., 40, 587–600, https://doi.org/10.1111/jmg.12639, 2022.
Hollinetz, M. S., Schneider, D. A., McFarlane, C. R. M., Huet, B., Rantitsch, G., and Grasemann, B.: Bulk inclusion micro-zircon U–Pb geochronology: A new tool to date low-grade metamorphism, J. Metamorph. Geol., 40, 207–227, https://doi.org/10.1111/jmg.12624, 2022.
Hollinetz, M. S., McFarlane, C. R. M., Huet, B., and Schantl, P.: EPMA, LA-ICP-MS U-Pb and bulk rock composition datasets of metapelites from the Austroalpine Unit north of Graz, Tethys Research Data Repository, https://doi.org/10.24341/tethys.231, 2024.
Hölzer, K., Wolff, R., Hetzel, R., and Dunkl, I.: The Long-Lasting Exhumation History of the Ötztal-Stubai Complex (Eastern European Alps): New Constraints from Zircon (U–Th)/He Age-Elevation Profiles and Thermokinematic Modeling, Lithosphere, 174, 20 pp., https://doi.org/10.2113/2024/lithosphere_2023_174, 2024.
Hoschek, G.: Phase relations of the REE minerals florencite, allanite and monazite in quartzitic garnet–kyanite schist of the Eclogite Zone, Tauern Window, Austria, Eur. J. Mineral., 28, 735–750, https://doi.org/10.1127/ejm/2016/0028-2549, 2016.
Iglseder, C.: Lithostratigrafische und lithodemische Einheiten auf GK25 Blatt Radenthein-Ost, in: Arbeitstagung 2019 der Geologischen Bundesanstalt. Geologie des Kartenblattes GK25 Radenthein-Ost, edited by: Griesmeier, G. E. U. and Iglseder, C., 19–44, ISBN 978-973-610-873-0, 2019.
Janots, E., Negro, F., Brunet, F., Goffé, B., Engi, M., and Bouybaouène, M. L.: Evolution of the REE mineralogy in HP–LT metapelites of the Sebtide complex, Rif, Morocco: monazite stability and geochronology, Lithos, 87, 214–234, https://doi.org/10.1016/j.lithos.2005.06.008, 2006.
Janots, E., Brunet, F., Goffé, B., Poinssot, C., Burchard, M., and Cemič, L.: Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites, Contrib. Mineral. Petr., 154, 1–14, https://doi.org/10.1007/s00410-006-0176-2, 2007.
Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J. O., and Spandler, C.: Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610 C, J. Metamorph. Geol., 26, 509–526, https://doi.org/10.1111/j.1525-1314.2008.00774.x, 2008.
Janots, E., Engi, M., Rubatto, D., Berger, A., Gregory, C., and Rahn, M.: Metamorphic rates in collisional orogeny from in situ allanite and monazite dating, Geology, 37, 11–14, https://doi.org/10.1130/G25192A.1, 2009.
Janots, E., Berger, A., and Engi, M.: Physico-chemical control on the REE minerals in chloritoid-grade metasediments from a single outcrop (Central Alps, Switzerland), Lithos, 121, 1–11, https://doi.org/10.1016/j.lithos.2010.08.023, 2011.
Jeřábek, P., Janák, M., Faryad, S. W., Finger, F., and Konečný, P.: Polymetamorphic evolution of pelitic schists and evidence for Permian low-pressure metamorphism in the Vepor Unit, West Carpathians, J. Metamorph. Geol., 26, 465–485, https://doi.org/10.1111/j.1525-1314.2008.00771.x, 2008.
Knoll, T., Huet, B., Schuster, R., Mali, H., Ntaflos, T., and Hauzenberger, C.: Lithium pegmatite of anatectic origin-A case study from the Austroalpine Unit Pegmatite Province (Eastern European Alps): geological data and geochemical model, Ore. Geol. Rev., 154, 105298, https://doi.org/10.1016/j.oregeorev.2023.105298, 2023.
Koroknai, B., Neubauer, F., Genser, J., and Topa, D.: Metamorphic and tectonic evolution of Austroalpine units at the western margin of the Gurktal nappe complex, Eastern Alps, Schweiz. Miner. Petrog., 79, 277–295, 1999.
Krenn, E. and Finger, F.: Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: Microprobe data and geochronological implications, Lithos, 95, 130–147, https://doi.org/10.1016/j.lithos.2006.07.007, 2007.
Krenn, K., Fritz, H., Mogessie, A., and Scharflechner, J.: Late Cretaceous exhumation history of an extensional extruding wedge (Graz Paleozoic Nappe Complex, Austria), Int. J. Earth. Sci., 97, 1331–1352, https://doi.org/10.1007/s00531-007-0221-z, 2008.
Livi, K. J., Ferry, J. M., Veblen, D. R., Frey, M., and Connolly, J. A.: Reactions and physical conditions during metamorphism of Liassic aluminous black shales and marls in central Switzerland, Eur. J. Mineral., 14, 647–672, 2002.
Lo Pò, D. and Braga, R.: Influence of ferric iron on phase equilibria in greenschist facies assemblages: The hematite-rich metasedimentary rocks from the Monti Pisani (Northern Apennines), J. Metamorph. Geol., 32, 371–387, https://doi.org/10.1111/jmg.12076, 2014.
Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G., and von Eynatten, H.: The thermal history of the Steinach Nappe (eastern Alps) during extension along the Brenner Normal Fault system indicated by organic maturation and zircon (U-Th)/He thermochronology, Austrian, J. Earth. Sci., 105, 17–25, 2012.
Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G., and von Eynatten, H.: Towards a higher comparability of geothermometric data obtained by Raman spectroscopy of carbonaceous material. Part 2: A revised geothermometer, Geostand. Geoanal. Res., 41, 593–612, https://doi.org/10.1111/ggr.12178, 2017.
Matura, A. and Schuster, R.: Geologische Karte der Republik Österreich 1:50 000, Blatt 135 Birkfeld, Verlag der Geologischen Bundesanstalt, Wien, https://doi.org/10.24341/tethys.58, 2014.
Maruyama, S., Liou, J. G., and Suzuki, K.: The peristerite gap in low-grade metamorphic rocks, Contrib. Mineral. Petr., 81, 268–276, https://doi.org/10.1007/BF00371681, 1982.
Miladinova, I., Froitzheim, N., Nagel, T. J., Janak, M., Fonseca, R. O., Sprung, P., and Münker, C.: Constraining the process of intracontinental subduction in the Austroalpine Nappes: Implications from petrology and Lu-Hf geochronology of eclogites, J. Metamorph. Geol., 40, 423–456, https://doi.org/10.1111/jmg.12634, 2022.
Montemagni, C., Zanchetta, S., Rocca, M., Villa, I. M., Morelli, C., Mair, V., and Zanchi, A.: Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-Alpine orogenic wedge (the Vinschgau Shear Zone, eastern Alps), Solid Earth, 14, 551–570, https://doi.org/10.5194/se-14-551-2023, 2023.
Nagy, G., Draganits, E., Demény, A., Pantó, G., and Arkai, P.: Genesis and transformations of monazite, florencite and rhabdophane during medium grade metamorphism: examples from the Sopron Hills, Eastern Alps, Chem. Geol., 191, 25–46, https://doi.org/10.1016/S0009-2541(02)00147-X, 2002.
Neubauer, F., Dallmeyer, R. D., Dunkl, I., and Schirnik, D.: Late Cretaceous exhumation of the metamorphic Gleinalm dome, Eastern Alps: kinematics, cooling history and sedimentary response in a sinistral wrench corridor, Tectonophysics, 242, 79–98, https://doi.org/10.1016/0040-1951(94)00154-2, 1995.
Neubauer, F., Genser, J., and Handler, R.: Tectonic Evolution of the western margin of the Gurktal nappe complex, Eastern Alps: Constraints from structural studies and 40Ar/39Ar white mica ages, Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 148, 240–241, 2003.
Neubauer, F., Fried, G., Genser, J., Handler, R., Mader, D., and Schneider, D.: Origin and tectonic evolution of the Eastern Alps deduced from dating of detrital white mica: a review, Austrian, J. Earth. Sci., 100, 8–23, 2007.
Neubauer, F., Liu, Y., Dong, Y., Chang, R., Genser, J., and Yuan, S.: Pre-Alpine tectonic evolution of the Eastern Alps: from prototethys to paleotethys, Earth-Sci. Rev., 226, 103923, https://doi.org/10.1016/j.earscirev.2022.103923, 2022.
Nosenzo, F., Manzotti, P., Poujol, M., Ballèvre, M., and Langlade, J.: A window into an older orogenic cycle: P–T conditions and timing of the pre-Alpine history of the Dora-Maira Massif (Western Alps), J. Metamorph. Geol., 40, 789–821, https://doi.org/10.1111/jmg.12646, 2022.
Piber, A., Tropper, P., and Mirwald, P. W.: The metamorphic evolution of the Patscherkofel Crystalline Complex (Tyrol, Eastern Alps, Austria), Austrian. J. Earth. Sci., 101, 27–35, 2008.
Plunder, A., Agard, P., Dubacq, B., Chopin, C., and Bellanger, M.: How continuous and precise is the record of P–T paths? Insights from combined thermobarometry and thermodynamic modelling into subduction dynamics (Schistes Lustrés, W. Alps), J. Metamorph. Geol., 30, 323–346, https://doi.org/10.1111/j.1525-1314.2011.00969.x, 2012.
Powell, R. and Holland, T. J. B.: On thermobarometry, J. Metamorph. Geol., 26, 155–179, https://doi.org/10.1111/j.1525-1314.2007.00756.x, 2008.
Putiš, M., Korikovsky, S. P., Wallbrecher, E., Unzog, W., Olesen, N. Ø., and Fritz, H.: Evolution of an eclogitized continental fragment in the Eastern Alps (Sieggraben, Austria), J. Struct. Geol., 24, 339–357, https://doi.org/10.1016/S0191-8141(01)00071-2, 2002.
Pyle, J. M., Spear, F. S., Rudnick, R. L., and McDonough, W. F.: Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer, J. Petrol., 42, 2083–2107, https://doi.org/10.1093/petrology/42.11.2083, 2001.
Rantitsch, G., Iglseder, C., Schuster, R., Hollinetz, M. S., Huet, B., and Werdenich, M.: Organic metamorphism as a key for reconstructing tectonic processes: a case study from the Austroalpine unit (Eastern Alps), Int. J. Earth. Sci., 109, 2235–2253, https://doi.org/10.1007/s00531-020-01897-7, 2020.
Rantitsch, G., Sachsenhofer, R. F., Hasenhüttl, C., Russegger, B., and Rainer, T.: Thermal evolution of an extensional detachment as constrained by organic metamorphic data and thermal modeling: Graz Paleozoic Nappe Complex (Eastern Alps), Tectonophysics, 411, 57–72, https://doi.org/10.1016/j.tecto.2005.08.022, 2005.
Rasmussen, B. and Muhling, J. R.: Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism, Contrib. Mineral. Petr., 154, 675–689, https://doi.org/10.1007/s00410-007-0216-6, 2007.
Rasmussen, B. and Muhling, J. R.: Reactions destroying detrital monazite in greenschist-facies sandstones from the Witwatersrand basin, South Africa, Chem. Geol., 264, 311–327, https://doi.org/10.1016/j.chemgeo.2009.03.017, 2009.
Rasmussen, B., Fletcher, I. R., and McNaughton, N. J.: Dating low-grade metamorphic events by SHRIMP U-Pb analysis of monazite in shales, Geology, 29, 963–966, https://doi.org/10.1130/0091-7613(2001)029<0963:DLGMEB>2.0.CO;2, 2001.
Ratschbacher, L., Frisch, W., Neubauer, F., Schmid, S. M., and Neugebauer, J.: Extension in compressional orogenic belts: the eastern Alps, Geology, 17, 404–407, https://doi.org/10.1130/0091-7613(1989)017<0404:EICOBT>2.3.CO;2, 1989.
Reiser, M. K., Scheiber, T., Fügenschuh, B., and Burger, U.: Hydrological characterisation of lake Obernberg, Brenner Pass area, Tyrol, Austrian. J. Earth. Sci., 103, 43–57, 2010.
Ricchi, E., Bergemann, C. A., Gnos, E., Berger, A., Rubatto, D., and Whitehouse, M. J.: Constraining deformation phases in the Aar Massif and the Gotthard Nappe (Switzerland) using Th-Pb crystallization ages of fissure monazite-(Ce), Lithos, 342, 223–238, https://doi.org/10.1016/j.lithos.2019.04.014, 2019.
Rockenschaub, M., Kolenbrat, B., and Frank, W.: Geochronologische Daten aus dem Brennergebiet: Steinacher Decke, Brennermesozoikum, Ötz-Stubai-Kristallin, Innsbrucker Quarzphyllitkomplex, Tarntaler Mesozoikum, in: “Brenner”: Arbeitstagung 2003, Trins im Gschnitztal, 1.–5. September 2003: Geologische Kartenblätter 1:50.000 148 Brenner, edited by: Rockenschaub, M., 117–124, ISBN 3-85316-018-2, 2003.
Rudnick, R. L. and Gao, S.: Composition of the continental crust, in: Treatise on Geochemistry (Vol. 3), edited by: Holland, H. D. and Turekian, K. K., Elsevier–Pergamon, Oxford, 1–64, https://doi.org/10.1016/B0-08-043751-6/03016-4, 2003.
Schantl, P., Schuster, R., Krenn, K., and Hoinkes, G.: Polyphase metamorphism at the southeastern margin of the Graz Paleozoic and the underlying Austroalpine basement units, Austrian. J. Earth. Sci., 108, https://doi.org/10.17738/ajes.2015.0023, 2015.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic map and overall architecture of the Alpine orogeny, Eclogae. Geol. Helv., 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schulz, B. and Krause, J.: Electron probe petrochronology of polymetamorphic garnet micaschists in the lower nappe units of the Austroalpine Saualpe basement (Carinthia, Austria), Z. Dtsch. Ges. Geowiss., 172, 19 pp., https://doi.org/10.1127/zdgg/2021/0247, 2021.
Schuster, R. and Stüwe, K.: Permian metamorphic event in the Alps, Geology, 36, 603–606, https://doi.org/10.1130/G24703A.1, 2008.
Schuster, R. and Stüwe, K.: Geological and Tectonic Setting of Austria, in: Landscapes and Landforms of Austria, World Geomorphological Landscapes, edited by: Embleton-Hamann, C., Springer, Cham, https://doi.org/10.1007/978-3-030-92815-5_1, 2022.
Schuster, R., Scharbert, S., Abart, R., and Frank, W.: Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine-Southalpine realm, Mitt. Ges. Geol. Bergbaustud. Österr, 45, 111–141, 2001.
Schuster, R., Koller, F., Höck, V., Hoinkes, G., and Bousquet, R.: Explanatory notes to the map: Metamorphic structure the Alps: Metamorphic evolution of the Eastern Alps, Mitt. Österr. Miner. Ges., 149, 175–199, 2004.
Schorn, S. and Stüwe, K.: The Plankogel detachment of the Eastern Alps: petrological evidence for an orogen-scale extraction fault, J. Metamorph. Geol., 34, 147–166, https://doi.org/10.1111/jmg.12176, 2016.
Seydoux-Guillaume, A. M., Montel, J. M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J. L., Janots, E., and Wirth, R.: Low-temperature alteration of monazite: Fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers, Chem. Geol., 330, 140–158, https://doi.org/10.1016/j.chemgeo.2012.07.031, 2012.
Shaw, D. M.: Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry, Geol. Soc. Am. Bull., 67, 919–934, https://doi.org/10.1130/0016-7606(1956)67[919:GOPRPI]2.0.CO;2, 1956.
Skrzypek, E., Bosse, V., Kawakami, T., Martelat, J. E., and Štípská, P.: Transient allanite replacement and prograde to retrograde monazite (re) crystallization in medium-grade metasedimentary rocks from the Orlica-Śnieżnik Dome (Czech Republic/Poland): textural and geochronological arguments, Chem. Geol., 449, 41–57, https://doi.org/10.1016/j.chemgeo.2016.11.033, 2017.
Skrzypek, E., Kato, T., Kawakami, T., Sakata, S., Hattori, K., Hirata, T., and Ikeda, T.: Monazite behaviour and time-scale of metamorphic processes along a low-pressure/high-temperature field gradient (Ryoke Belt, SW Japan), J. Petrol., 59, 1109–1144, https://doi.org/10.1093/petrology/egy056, 2018.
Sölva, H., Grasemann, B., Thöni, M., Thiede, R., and Habler, G.: The Schneeberg normal fault zone: normal faulting associated with Cretaceous SE-directed extrusion in the Eastern Alps (Italy/Austria), Tectonophysics, 401, 143–166, https://doi.org/10.1016/j.tecto.2005.02.005, 2005.
Spear, F. S.: Monazite–allanite phase relations in metapelites, Chem. Geol., 279, 55–62, https://doi.org/10.1016/j.chemgeo.2010.10.004, 2010.
Spear, F. S. and Pyle, J. M.: Theoretical modeling of monazite growth in a low-Ca metapelite, Chem. Geol., 273, 111–119, https://doi.org/10.1016/j.chemgeo.2010.02.016, 2010.
Stumpf, S., Skrzypek, E., and Stüwe, K.: Dating prograde metamorphism: U–Pb geochronology of allanite and REE-rich epidote in the Eastern Alps, Contrib. Mineral. Petr., 179, 63, https://doi.org/10.1007/s00410-024-02130-3, 2024.
Stüwe, K. and Schuster, R.: Initiation of subduction in the Alps: Continent or ocean?, Geology, 38, 175–178, https://doi.org/10.1130/G30528.1, 2010.
Thöni, M.: Dating eclogite-facies metamorphism in the Eastern Alps–approaches, results, interpretations: a review, Miner. Petrol., 88, 123–148, https://doi.org/10.1007/s00710-006-0153-5, 2006.
Thöni, M., Miller, C., Blichert-Toft, J., Whitehouse, M. J., Konzett, J., and Zanetti, A.: Timing of high-pressure metamorphism and exhumation of the eclogite type-locality (Kupplerbrunn–Prickler Halt, Saualpe, south-eastern Austria): constraints from correlations of the Sm–Nd, Lu–Hf, U–Pb and Rb–Sr isotopic systems, J. Metamorph. Geol., 26, 561–581, https://doi.org/10.1111/j.1525-1314.2008.00778.x, 2008.
Tropper, P. and Recheis, A.: Garnet zoning as a window into the metamorphic evolution of a crystalline complex: the northern and central Austroalpine Ötztal-Complex as a polymorphic example, Mitteilungen der Österreichischen Geologischen Gesellschaft, 94, 27–53, 2003.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vermeesch, P.: Unifying the U–Pb and Th–Pb methods: joint isochron regression and common Pb correction, Geochronology, 2, 119–131, https://doi.org/10.5194/gchron-2-119-2020, 2020.
von Raumer, J. F. and Neubauer, F.: Late Precambrian and Palaeozoic evolution of the Alpine basement–an overview, in: Pre-Mesozoic geology in the Alps, edited by: von Raumer, J. F. and Neubauer, F., Springer, Berlin, Heidelberg, 625–639, https://doi.org/10.1007/978-3-642-84640-3_37, 1993.
Wagreich, M. and Decker, K.: Sedimentary tectonics and subsidence modelling of the type Upper Cretaceous Gosau basin (Northern Calcareous Alps, Austria), Int. J. Earth. Sci., 90, 714–726, https://doi.org/10.1007/s005310000181, 2001.
Wawrzenitz, N., Krohe, A., Rhede, D., and Romer, R. L.: Dating rock deformation with monazite: The impact of dissolution precipitation creep, Lithos, 134, 52–74, https://doi.org/10.1016/j.lithos.2011.11.025, 2012.
White, R. W., Powell, R., and Johnson, T. E.: The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese-bearing minerals, J. Metamorph. Geol., 32, 809–828, https://doi.org/10.1111/jmg.12095, 2014.
Whitney, D. L. and Evans, B. W.: Abbreviations for names of rock-forming minerals, Am. Mineral., 95, 185–187, 2010.
Williams, M. L., Jercinovic, M. J., Harlov, D. E., Budzyń, B., and Hetherington, C. J.: Resetting monazite ages during fluid-related alteration, Chem. Geol., 283, 218–225, https://doi.org/10.1016/j.chemgeo.2011.01.019, 2011.
Wing, B. A., Ferry, J. M., and Harrison, T. M.: Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology, Contrib. Mineral. Petr., 145, 228–250, https://doi.org/10.1007/s00410-003-0446-1, 2003.
Wölfler, A., Wolff, R., Hampel, A., Hetzel, R., and Dunkl, I.: Phases of enhanced exhumation during the cretaceous and cenozoic orogenies in the Eastern European Alps: new insights from thermochronological data and thermokinematic modeling, Tectonics, 42, e2022TC007698, https://doi.org/10.1029/2022TC007698, 2023.
Wu, C. M. and Chen, H. X.: Revised Ti-in-biotite geothermometer for ilmenite-or rutile-bearing crustal metapelites, Sci. Bull., 60, 116–121, https://doi.org/10.1007/s11434-014-0674-y, 2015.
Yardley, B. W. D. and Baltatzis, E.: Retrogression of staurolite schists and the sources of infiltrating fluids during metamorphism, Contrib. Mineral. Petr., 89, 59–68, https://doi.org/10.1007/BF01177591, 1985.
Short summary
In situ U–Th–Pb dating of allanite and monazite provides a robust record of polymetamorphism in greenschist facies metapelites in the Austroalpine Unit. Variations in bulk rock Ca, Al and Na contents produced a wide range of REE-mineral-phase relationships and microstructures, making them excellent geochronometers in complex tectonic settings. Our new pressure, temperature, time and deformation data reveal Permian metamorphism and a major crustal-scale Cretaceous detachment.
In situ U–Th–Pb dating of allanite and monazite provides a robust record of polymetamorphism in...