Articles | Volume 36, issue 5
https://doi.org/10.5194/ejm-36-925-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-925-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Micro- to nano-sized solid inclusions in magnetite record skarn reactions
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain
José María González-Jiménez
Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC-UGR, Avda. de las Palmeras 4, 18100 Armilla, Granada, Spain
Lola Yesares
Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, C/ Jose Antonio Novais,12, Ciudad Universitaria, 28040 Madrid, Spain
Antonio Acosta-Vigil
Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC-UGR, Avda. de las Palmeras 4, 18100 Armilla, Granada, Spain
Jordi Llopís
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain
Fernando Gervilla
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain
Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC-UGR, Avda. de las Palmeras 4, 18100 Armilla, Granada, Spain
Related subject area
Ore deposits and mineral resources
First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland
Mineralogy and mineral chemistry of detrital platinum-group minerals and gold particles from the Elbe, Germany
Multistage fluorite mineralization in the southern Black Forest, Germany: evidence from rare earth element (REE) geochemistry
Vibrational spectroscopic study of three Mg–Ni mineral series in white and greenish clay infillings of the New Caledonian Ni-silicate ores
New data on gersdorffite and associated minerals from the Peloritani Mountains (Sicily, Italy)
A remarkable discovery of electrum on the island of Sylt, northern Germany, and its Scandinavian origin
Krisztián Szentpéteri, Kathryn Cutts, Stijn Glorie, Hugh O'Brien, Sari Lukkari, Radoslaw M. Michallik, and Alan Butcher
Eur. J. Mineral., 36, 433–448, https://doi.org/10.5194/ejm-36-433-2024, https://doi.org/10.5194/ejm-36-433-2024, 2024
Short summary
Short summary
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum (LCT) pegmatite from the Somero–Tammela pegmatite region. The age obtained was 1801 ± 53 Ma, which is consistent with zircon ages of 1815–1740 Ma obtained from the same pegmatite. We show the in situ Lu–Hf method is a fast way of obtaining reliable age dates from LCT pegmatites.
Malte Junge, Simon Goldmann, and Hermann Wotruba
Eur. J. Mineral., 35, 439–459, https://doi.org/10.5194/ejm-35-439-2023, https://doi.org/10.5194/ejm-35-439-2023, 2023
Short summary
Short summary
The analysis by electron microprobe of platinum-group minerals, gold and cinnabar particles from heavy mineral concentrates of the Elbe showed a broad compositional variation of Os–Rus–Irs–(Pt) alloys as well as Pts–Fe alloys. The comparison with the literature showed that different sources account for the heavy mineral concentrate. This compositional variation of the alloys is also of interest for other placers of platinum-group minerals worldwide.
Robin Hintzen, Wolfgang Werner, Michael Hauck, Reiner Klemd, and Lennart A. Fischer
Eur. J. Mineral., 35, 403–426, https://doi.org/10.5194/ejm-35-403-2023, https://doi.org/10.5194/ejm-35-403-2023, 2023
Short summary
Short summary
The diversity of chemical patterns in multi-stage fluorite mineralization from two neighbouring deposits in the Black Forest is investigated. From over 70 samples, 7 fluorite groups and 3 hydrothermal events are identified after chemical and mathematical classification. The relative chronology and features suggest different mineralization histories and source aquifers for both deposits despite their proximity. Genetic differences are likely controlled by different behaviours of their host rocks.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 743–763, https://doi.org/10.5194/ejm-33-743-2021, https://doi.org/10.5194/ejm-33-743-2021, 2021
Short summary
Short summary
The study presents and discusses mid- and near-infrared spectra of three Mg–Ni mineral series (serpentine-like and talc-like minerals, sepiolite) commonly found in reactivated faults and sequences of clay infillings of the New Caledonian Ni-silicate deposits. This spectroscopic study sheds light on the nature of the residual mineral phases found in the clay infillings (serpentine-like minerals) and reveals the aptitude of the newly formed minerals (talc-like minerals and sepiolite) to store Ni.
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Jochen Schlüter, Stephan Schuth, Raúl O. C. Fonseca, and Daniel Wendt
Eur. J. Mineral., 33, 373–387, https://doi.org/10.5194/ejm-33-373-2021, https://doi.org/10.5194/ejm-33-373-2021, 2021
Short summary
Short summary
On the west coast of the German North Sea island of Sylt, an electrum–quartz pebble weighing 10.4 g was discovered in a cliff of Saalian glaciogenic sediments. This is an unusually large and rare precious metal to find. Within our paper we document and characterize this discovery. An attempt to investigate its provenance points towards a southern Norwegian origin. This leads to the conclusion that ice advance events were involved in transporting this pebble from Norway to Germany.
Cited articles
Acosta-Vigil, A., Rubatto, D., and Bartoli, O.: Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain, Lithos, 210–211, 147–167, https://doi.org/10.1016/j.lithos.2014.08.018, 2014.
Ague, J. J. and Axler, J. A.: Interface coupled dissolution-reprecipitation in garnet from subducted granulites and ultrahigh-pressure rocks revealed by phosphorous, sodium, and titanium zonation, Am. Mineral, 101, 1696–1699, https://doi.org/10.2138/am-2016-5707, 2016.
Aleksandrov, S. M. (Ed.): Geochemistry of skarn and ore formation in dolomites, VSP, Utrecht, the Netherlands, 142 pp., ISBN 9067642819, 1998.
Axler, J. A. and Ague, J. J.: Oriented multiphase needles in garnet from ultrahigh-temperature granulites, Connecticut, USA, Am. Mineral., 100, 2254–2271, https://doi.org/10.2138/am-2015-5018, 2015.
Balanyá, J. C., García-Dueñas, V., Azañón, J. M., and Sánchez-Gómez, M.: Alternating contractional and extensional events in the Alpujarride nappes of the Alboran Domain (Betics, Gibraltar Arc), Tectonics, 16, 226–238, https://doi.org/10.1029/96TC03871, 1997.
Barich, A., Acosta-Vigil, A., Garrido, C. J., Cesare, B., Tajčmanová, L., and Bartoli, O.: Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): Implications for crustal anatexis, Lithos, 206–207, 303–320, 2014.
Bosi, F., Hålenius, U., and Skogby, H.: Crystal chemistry of the magnetite-ulvospinel series, Am. Mineral., 94, 181–189, https://doi.org/10.2138/am.2009.3002, 2009.
Brown, B. T. and Bailey, S. W.: Chlorite polytypism: I. Regular and semi-random one-layer structures, Am. Mineral., 47, 819–850, 1962.
Canil, D. and Lacourse, T.: Geothermometry using minor and trace elements in igneous and hydrothermal magnetite, Chem. Geol., 541, 119576, https://doi.org/10.1016/j.chemgeo.2020.119576, 2020.
Calvo, G., Rodríguez, O., Serrano Guevara, M. V., Tornos, F., Rodríguez Mejía, R., Velasco Roldán, F., Contreras, M., Ochoa, J., Milena, U., and Sapacayo, M.: El skarn magnésico de Pampa del Pongo: Un megayacimiento de hierro en la Cordillera de la Costa del sur del Perú, Bol. Soc. Geol. Perú, 107, 99–103, 2013.
Cepedal, A., Martıìn-Izard, A., Reguilón, R., Rodrıìguez-Pevida, L., Spiering, E., and González-Nistal, S.: Origin and evolution of the calcic and magnesian skarns hosting the El Valle-Boinás copper-gold deposit, Asturias (Spain), J. Geochem. Explor., 71, 119–151, https://doi.org/10.1016/S0375-6742(00)00149-7, 2000.
Chang, Z., Shu, Q., and Meinert, L.: Chapter 6: Skarn deposits of China, in: Special Publications of Society of Economic Geology, edited by: Chang, Z. and Goldfarb, R. J., China, 22, ISBN 9781629493107, 2019.
Chen, F., Deng, J., Wang, Q., Huizenga, J. M., Li, G., and Gu, Y.: LA-ICP-MS trace element analysis of magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes, Ore Geol. Rev., 117, 103309, https://doi.org/10.1016/j.oregeorev.2020.103309, 2020.
Ciobanu, C. L., Verdugo-Ihl, M. R., Slattery, A., Cook, N. J., Ehrig, K., Courtney-Davies, L., and Wade, B. P.: Silician magnetite: Si–Fe-nanoprecipitates and other mineral inclusions in magnetite from the Olympic Dam Deposit, South Australia, Minerals, 9, 311, https://doi.org/10.3390/min9050311, 2019.
Cuevas, J., Esteban, J. J., and Tubía, J. M.: Tectonic implications of the granite dyke swarm in the Ronda peridotites (Betic Cordilleras, Southern Spain), J. Geol. Soc. London, 163, 631–640, https://doi.org/10.1144/0016-764905-038, 2006.
Dare, S. A., Barnes, S. J., Beaudoin, G., Méric, J., Boutroy, E., and Potvin-Doucet, C.: Trace elements in magnetite as petrogenetic indicators, Miner. Deposita, 49, 785–796, https://doi.org/10.1007/s00126-014-0529-0, 2014.
Deditius, A. P., Reich, M., Simon, A. C., Suvorova, A., Knipping, J., Roberts, M. P., Rubanov, S., Dood, A., and Saunder, M.: Nanogeochemistry of hydrothermal magnetite, Contrib. Mineral. Petr., 173, 1–20, https://doi.org/10.1007/s00410-018-1474-1, 2018.
Díaz-Alvarado, J., González-Menéndez, L., Hidas, K., Azor, A., and Pedrera, A.: Tectono-metamorphic interaction of upper mantle peridotites and lower crustal units during continental rifting in the western Betic Cordillera, Gondwana Res., 132, 193–219, https://doi.org/10.1016/j.gr.2024.03.018, 2024.
Dropp, G.: A general equation for estimating Fe3 concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 51, 431–435, https://doi.org/10.1180/minmag.1987.051.361.10, 1987.
Dupuis, C. and Beaudoin, G.: Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types, Mineral. Deposita, 46, 319–335, https://doi.org/10.1007/s00126-011-0334-y, 2011.
Egeler, C. G. and Simon, O. J.: Orogenic evolution of the Betic Zone (Betic Cordilleras, Spain), with emphasis on the nappe structures, Geol. Mijnbouw, 48, 296–305, 1969.
Einaudi, M. T., Meinert, L. D., and Newberry, R. J.: Skarn deposits, in: SEG Economic Geology 75th Anniversary Volume, edited by: Skinner, J. B., Economic Geology Publishing Company, 317–339, https://doi.org/10.5382/AV75.11, 1981.
Esteban, J. J., Sánchez-Rodríguez, L., Seward, D., Cuevas, J., and Tubía, J. M.: The late thermal history of the Ronda area, southern Spain, Tectonophysics, 389, 81–92, https://doi.org/10.1016/j.tecto.2004.07.050, 2004.
Esteban, J. J., Cuevas, J., Tubía, J. M., Liati, A., Seward, D., and Gebauer, D.: Timing and origin of zircon-bearing chlorite schists in the Ronda peridotites (Betic Cordilleras, Southern Spain), Lithos, 99, 121–135, https://doi.org/10.1016/j.lithos.2007.06.006, 2007.
Esteban, J. J., Cuevas, J., Vegas, N., and Tubía, J. M.: Deformation and kinematics in a melt-bearing shear zone from the Western Betic Cordilleras (Southern Spain), J. Struct. Geol., 30, 380–393, https://doi.org/10.1016/j.jsg.2007.11.010, 2008.
Esteban, J. J., Cuevas, J., Tubía, J. M., Sergeev, S., and Larionov, A.: A revised Aquitanian age for the emplacement of the Ronda peridotites (Betic Cordilleras, southern Spain), Geol. Mag., 148, 183–187, https://doi.org/10.1017/S0016756810000737, 2010.
Falini, G., Foresti, E., Gazzano, M., Gualtieri, A. F., Leoni, M., Lesci, I. G., and Roveri, N.: Tubular-shaped stoichiometric chrysotile nanocrystals, Chem.-Eur. J., 10, 3043–3049, 2004.
Fitros, M., Tombros, S. F., Kokkalas, S., Kilias, S. P., Perraki, M., Skliros, V., Simon, X. C., Papaspyropoulos, K., Avgouropoulos, G., Williams-Jones, A. E., Zhai, D., and Hatzipanagiotou, K.: REE-enriched skarns in collisional settings: The example of Xanthi's Fe-skarn, Rhodope Metallogenetic Massif, Northern Greece, Lithos, 370, 105638, https://doi.org/10.1016/j.lithos.2020.105638, 2020.
Fournier, R. O.: The behavior of silica in hydrothermal solutions, in: Geology and Geochemistry of Epithermal Systems, edited by: Berger, B. R. and Bethke, P. M., Rev. Econ. Geol., 2, https://doi.org/10.5382/Rev.02.03, 1985.
Frost, B. R. and Lindsley, D. H.: Occurrence of iron-titanium oxides in igneous rocks, Rev. Mineral. Geochem., 25, 433–468, 1991.
Garrido, C. J. and Bodinier, J.-L.: Diversity of Mafic Rocks in the Ronda Peridotite: Evidence for Pervasive Melt–Rock Reaction during Heating of Subcontinental Lithosphere by Upwelling Asthenosphere, J. Petrol., 40, 729–754, https://doi.org/10.1093/petroj/40.5.729, 1999.
Garrido, C. J., Gueydan, F., Booth-Rea, G., Precigout, J., Hidas, K., Padron-Navarta, J. A., and Marchesi, C.: Garnet lherzolite and garnet-spinel mylonite in the Ronda peridotite: Vestiges of Oligocene backarc mantle lithospheric extension in the western Mediterranean, Geology, 39, 927–930, https://doi.org/10.1130/G31760.1, 2011.
Gervilla, F., González-Jiménez, J.M., Hidas, K., Marchesi, C., and Piña, R. (Eds.): Geology and metallogeny of the upper mantle rocks from the Serranía de Ronda, Monography of the Spanish Mineralogical Society, 122 pp., ISBN 9878415588306, 2019.
Goldsmith, J. R., Graf, D. L., and Heard, H. C.: Lattice constants of the calcium magnesium carbonates, Am. Mineral., 46, 453–459, 1961.
González-Jiménez, J. M., Villaseca, C., Griffin, W. L., Belousova, E. A., Konc, Z., Ancochea, E., O'Reilly, S. Y., Pearson, N. J., Garrido, C. J., and Gervilla, F.: The architecture of the European-Mediterranean lithosphere: A synthesis of the Re-Os evidence, Geology, 41, 547–550, https://doi.org/10.1130/G34003.1, 2013a.
González-Jiménez, J. M., Marchesi, C., Griffin, W. L., Gutiérrez-Narbona, R., Lorand, J.-P., O'Reilly, S. Y., Garrido, C. J., Gervilla, F., Pearson, N. J., and Hidas, K.: Transfer of Os isotopic signatures from peridotite to chromitite in the subcontinental mantle: Insights from in situ analysis of platinum-group and base-metal minerals (Ojén peridotite massif, southern Spain), Lithos, 164–167, 74–85, https://doi.org/10.1016/j.lithos.2012.07.009, 2013b.
González-Jiménez, J. M., Marchesi, C., Griffin, W. L., Gervilla, F., Belousova, E. A., Garrido, C. J., Romero, R., Talavera, C., Leisen, M., O'Reilly, S. Y., Barra, F., and Martin, L.: Zircon recycling and crystallization during formation of chromite- and Ni-arsenide ores in the subcontinental lithospheric mantle (Serranía de Ronda, Spain), Ore Geol. Rev., 90, 193–209, https://doi.org/10.1016/j.oregeorev.2017.02.012, 2017.
Gonzalez-Perez, I., González-Jiménez, J. M., Gervilla, F., Fanlo, I., Tornos, F., Colás, V., Arranz, E., Hanchar, J., Abad-Ortega, M. D. M, Moreno-Abril, A. J., Carrión, M., and Noval, S.: Genesis and evolution of the San Manuel iron skarn deposit (Betic Cordillera, SW Spain), Ore Geol. Rev., 141, 104657, https://doi.org/10.1016/j.oregeorev.2021.104657, 2022.
González-Pérez, I., Fanlo, I., Ares, G., Gervilla, F., González-Jiménez, J. M., Acosta-Vigil, A., and Arranz, E.: The Unconventional Peridotite-Related Mg-Fe-B Skarn of the El Robledal, SE Spain, Minerals, 13, 300, https://doi.org/10.3390/min13030300, 2023.
Guo, X., Zhou, T., Wang, F., Fan, Y., Fu, P., and Kong, F.: Distribution of Co, Se, Cd, In, Re and other critical metals in sulfide ores from a porphyry-skarn system: A case study of Chengmenshan Cu deposit, Jiangxi, China, Ore Geol. Rev., 158, 105520, https://doi.org/10.1016/j.oregeorev.2023.105520, 2023.
Hidas, K., Booth-Rea, G., Garrido, C. J., Martínez-Martínez, J. M., Padrón-Navarta, J. A., Konc, Z., Giaconia, F., Frets, E., and Marchesi, C.: Backarc basin inversion and subcontinental mantle emplacement in the crust: kilometer-scale folding and shearing at the base of the proto-Alborán lithospheric mantle (Betic Cordillera, southern Spain), J. Geol. Soc. London, 170, 47–55, https://doi.org/10.1144/jgs2011-151, 2013.
Hidas, K., Varas-Reus, M. I., Garrido, C. J., Marchesi, C., Acosta-Vigil, A., Padrón-Navarta, J. A., Targuisti, K., and Konc, Z.: Hyperextension of continental to oceanic-like lithosphere: The record of late gabbros in the shallow subcontinental lithospheric mantle of the westernmost Mediterranean, Tectonophysics, 650, 65–79, https://doi.org/10.1016/j.tecto.2015.03.011, 2015.
Hu, H., Lentz, D., Li, J.-W., McCarron, T., Zhao, X. F., and Hall, D.: Reequilibration processes in magnetite from iron skarn deposits, Econ. Geol., 110, 1–8, https://doi.org/10.2113/econgeo.110.1.1, 2015.
Huang, X. W. and Beaudoin, G.: Textures and chemical compositions of magnetite from iron oxide copper-gold (IOCG) and Kiruna-type iron oxide-apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes, Econ. Geol., 114, 953–979, https://doi.org/10.5382/econgeo.4651, 2019.
Huang, X. W. and Beaudoin, G.: Nanoinclusions in zoned magnetite from the Sossego IOCG deposit, Carajás, Brazil: Implication for mineral zoning and magnetite origin discrimination, Ore Geol. Rev., 139, 104453, https://doi.org/10.1016/j.oregeorev.2021.104453, 2021.
Huang, X. W., Boutroy, E., Makvandi, S., Beaudoin, G., Corriveau, L., and De Toni, A. F.: Trace element composition of iron oxides from IOCG and IOA deposits: Relationship to hydrothermal alteration and deposit subtypes, Miner. Deposita, 54, 525–552, https://doi.org/10.1007/s00126-018-0825-1, 2019.
Huang, X. W., Beaudoin, G., and Yang, Y.: A HR-TEM study on two generations of magnetite from the Alemao IOCG deposit, Carajás, Brazil: Implication for Fe-Cu mineralization, Ore Geol Rev., 146, 104934, https://doi.org/10.1016/j.oregeorev.2022.104934, 2022.
Ivanyuk, G. Y., Kalashnikov, A. O., Pakhomovsky, Y. A., Bazai, A. V., Goryainov, P. M., Mikhailova, J. A., Yakovenchuk, V. N., and Konopleva, N. G.: Subsolidus evolution of the magnetite-spinel-ulvöspinel solid solutions in the Kovdor phosphorite-carbonatite complex, NW Russia, Minerals, 7, 215, https://doi.org/10.3390/min7110215, 2017.
Jansson, N. F. and Allen, R. L.: Multistage ore formation at the Ryllshyttan marble and skarn-hosted Zn–Pb–Ag–(Cu) magnetite deposit, Bergslagen, Sweden, Ore Geol. Rev., 69, 217–242, https://doi.org/10.1016/j.oregeorev.2015.02.018, 2015.
Keller, D. S. and Ague, J. J.: Predicting and explaining crystallographic orientation relationships of exsolved precipitates in garnet using the edge-to-edge matching model, J. Metamorph. Geol., 40, 1189-1218, https://doi.org/10.1111/jmg.12662, 2022.
Knipping, J. L., Bilenker, L. D., Simon, A. C., Reich, M., Barra, F., Deditius, A. P., Wälle, M., Heinrich, C. A., Holtz, F., and Munizaga, R.: Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes, Geochim. Cosmochim. Ac., 171, 15–38, https://doi.org/10.1016/j.gca.2015.08.010, 2015.
Kuşcu, İ.: Skarns and Skarn Deposits of Turkey, in: Mineral Resources of Turkey, edited by: Pirajno, F., Ünlü, T., Dönmez, C., and Şahin, M., Modern Approaches in Solid Earth Sciences, 16, Springer, Cham, https://doi.org/10.1007/978-3-030-02950-0_7, 2019.
Lefebvre, M. G., Romer, R. L., Glodny, J., and Roscher, M.: Skarn formation and tin enrichment during regional metamorphism: the Hämmerlein polymetallic skarn deposit, Lithos, 348, 105171, https://doi.org/10.1016/j.lithos.2019.105171, 2019.
Lister, J. S. and Bailey, S. W.: Chlorite polytypism: IV. Regular two-layer structures, Am. Mineral., 52, 1614–1631, 1967.
Mao, J., Zhou, Y., Liu, H., Zhang, C., Fu, D., and Liu, B.: Metallogenic setting and ore genetic model for the Beiya porphyry-skarn polymetallic Au orefield, western Yunnan, China, Ore Geol. Rev., 86, 21–34, https://doi.org/10.1016/j.oregeorev.2017.02.003, 2017.
Marchesi, C., Griffin, W. L., Garrido, C. J., Bodinier, J. L., O'Reilly, S. Y., and Pearson, N. J.: Persistence of mantle lithospheric Re-Os signature during asthenospherization of the subcontinental lithospheric mantle: insights from in situ isotopic analysis of sulfides from the Ronda peridotite (Southern Spain), Contrib. Mineral. Petr., 159, 315–330, https://doi.org/10.1007/s00410-009-0429-y, 2010.
Marchesi, C., Garrido, C. J., Bosch, D., Bodinier J.L., Hidas, K., Padrón-Navarta, J. A., and Gervilla, F.: A Late Oligocene suprasubduction setting in the westernmost Mediterranean revealed by intrusive pyroxenite dikes in the Ronda peridotite (southern Spain), J. Geol., 120, 237–247, https://doi.org/10.1086/663875, 2012.
Marincea, S. and Dumitraş, D-G.: Contrasting types of boron-bearing deposits in magnesian skarns from Romania, Ore Geol. Rev., 112, 102952, https://doi.org/10.1016/j.oregeorev.2019.102952, 2019.
Mazzoli, S. and Algarra, A. M.: Deformation partitioning during transpressional emplacement of a “mantle extrusion wedge”: the Ronda peridotites, western Betic Cordillera, Spain, J. Geol. Soc. London, 168, 373–382, https://doi.org/10.1144/0016-76492010-126, 2011.
Mazzoli, S., Martín-Algarra, A., Reddy, S. M., Sánchez-Vizcaíno, V. L., Fedele, L., and Noviello, A.: The evolution of the footwall to the Ronda subcontinental mantle peridotites: insights from the Nieves Unit (western Betic Cordillera), J. Geol. Soc. London, 170, 385–402, https://doi.org/10.1144/jgs2012-105, 2013.
Meinert, L. D., Dipple, G. M., and Nicolescu, S.: World skarn deposits, Society of Economic Geologists, https://doi.org/10.5382/AV100.11, 2005.
Mellini, M.: The crystal structure of lizardite 1 T: hydrogen bonds and polytypism, Am. Mineral., 67, 587–598, 1982.
Moncada, D., Mutchler, S., Nieto, A., Reynolds, T. J., Rimstidt, J. D., and Bodnar, R. J.: Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration, J. Geochem. Explor., 114, 20–35, https://doi.org/10.1016/j.gexplo.2011.12.001, 2012.
Nadoll, P., Angerer, T., Mauk, J. L., French, D., and Walshe, J.: The chemistry of hydrothermal magnetite: A review, Ore Geol Rev., 61, 1–32, https://doi.org/10.1016/j.oregeorev.2013.12.013, 2014.
Nakagiri, N., Manghnani, M. H., Ming, L. C., and Kimura, S.: Crystal structure of magnetite under pressure, Phys. Chem. Miner., 13, 238–244, 1986.
Navarro-Vilá, F. and Tubía, J. M.: Essai d'une nouvelle differentiation des Nappes Alpujarrides dans le secteur occidental des Cordillères Bétiques (Andalousie, Espagne), CR Académie des Sciences, Paris, 296 (série II), 111–114, 1983.
Obata, M.: The Ronda peridotite-garnet-lherzolite, spinel-lherzolite, and plagioclase-lherzolite facies and the PT trajectories of a high-temperature mantle Intrusion, J. Petrol., 21, 533–572, 1980.
O'Hanley, D. S. and Dyar, M. D.: The composition of lizardite 1T and the formation of magnetite in serpentinites, Am. Mineral., 78, 391-404, 1993.
Peterson, R. C., Lager, G. A., and Hitterman, R. L.: A time-of-flight neutron powder diffraction study of MgAl2O4 at temperatures up to 1273 K, Am. Mineral., 76, 1455–1458, 1991.
Platt, J. P., Behr, W. M., Johanesen, K., and Williams, J. R.: The Betic-Rif arc and its orogenic hinterland: a review, Annu. Rev. Earth. Pl. Sc., 41, 313–357, https://doi.org/10.1146/annurev-earth-050212-123951, 2013.
Pouchou, J. L. and Pichoir, F.: Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”, in: Electron probe quantitation, edited by: Heinrich, K. F. J. and Newbury, D. E., Springer, Boston, MA, 31–75, https://doi.org/10.1007/978-1-4899-2617-3_4, 1991.
Pouchou, J. L. and Pichoir, F.: Electron probe X-ray microanalysis applied to thin surface films and stratified specimens, Scanning Microscopy, 7, 12, 1993.
Precigout, J., Gueydan, F., Gapais, D., Garrido, C. J., and Essaifi, A.: Strain localisation in the subcontinental mantle — a ductile alternative to the brittle mantle, Tectonophysics, 445, 318–336, https://doi.org/10.1016/j.tecto.2007.09.002, 2007.
Putnis, A.: An introduction to mineral sciences, Cambridge University Press, ISBN: 9781139170383, 1992.
Putnis, A.: Mineral replacement reactions: from macroscopic observations to microscopic mechanisms, Mineral. Mag., 66, 689–708, 2002.
Putnis, A.: Mineral replacement reactions, Rev. Miner. Geochem., 70, 87–124, https://doi.org/10.2138/rmg.2009.70.3, 2009.
Reisberg, L. and Lorand, J. P.: Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs, Nature, 376, 159–162, https://doi.org/10.1038/376159a0, 1995.
Rice, J. M.: Contact metamorphism of impure dolomitic limestone in the Boulder aureole, Montana, Contrib, Mineral. Petr., 59, 237–259, 1977.
Sánchez-Navas, A., Martín-Algarra, A., Blanco-Quintero, I., and Garcia-Casco, A.: Pre-Alpine prograde evolution of the Upper Alpujarride (Betic-Rif belt) reveals a Paleotethys-related collision, Int. Geol. Rev., 66, 405–438, https://doi.org/10.1080/00206814.2023.2246546, 2024.
Sánchez-Rodríguez, L. and Gebauer, D.: Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by Early Miocene subduction metamorphism and emplacement into the middle crust: U–Pb sensitive high-resolution ion microprobe dating of zircon, Tectonophysics, 316, 19–44, https://doi.org/10.1016/S0040-1951(99)00256-5, 2000.
Sanz de Galdeano, C.: Discussion on the differentiation of tectonic units in the Alpujarride Complex (Betic Cordillera), Estudios Geológicos, 79, e151, https://doi.org/10.3989/egeol.44907.627, 2023.
Sanz de Galdeano, C. and Ruiz Cruz, M. D.: Late Palaeozoic to Triassic formations unconformably deposited over the Ronda peridotites (Betic Cordilleras): Evidence for their Variscan time of crustal emplacement, Estudios Geológicos, 72, e043, https://doi.org/10.3989/egeol.42046.368, 2016.
Sack, R. O. and Ghiorso, M. S.: Chromian spinel as petrogenetic indicators: thermodynamics and petrological applications, Am. Mineral., 76, 827–847, 1991a.
Sack, R. O. and Ghiorso, M. S.: An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels, Contrib. Mineral. Petr., 106, 474–505, 1991b.
Sieber, M. J., Brink, F. J., Leys, C., King, P. L., and Henley, R. W.: Prograde and retrograde metasomatic reactions in mineralised magnesium-silicate skarn in the Cu-Au Ertsberg East Skarn System, Ertsberg, Papua Province, Indonesia, Ore Geol. Rev., 125, 103697, https://doi.org/10.1016/j.oregeorev.2020.103697, 2020.
Soloviev, S. G., Kryazhev, S. G., Dvurechenskaya, S. S., Kryazhev, V. S., Emkuzhev, M. S., and Bortnikov, N. S.: The superlarge Tyrnyauz skarn W-Mo and stockwork Mo (-W) to Au (-Mo, W, Bi, Te) deposit in the Northern Caucasus, Russia: Geology, geochemistry, mineralization, and fluid inclusion characteristics, Ore Geol. Rev., 138, 104384, https://doi.org/10.1016/j.oregeorev.2021.104384, 2021.
Tan, W., Liu, P., He, H., Wang, C. Y., and Liang, X.: Mineralogy and origin of exsolution in Ti-rich magnetite from different magmatic Fe-Ti oxide-bearing intrusions, Can. Mineral., 54, 539–553, https://doi.org/10.3749/canmin.1400069, 2016.
Tubía, J. M. and Cuevas, J.: High-temperature emplacement of the Los Reales peridotite nappe (Betic Cordillera, Spain), J. Struct. Geol., 8, 473–482, https://doi.org/10.1016/0191-8141(86)90064-7, 1986.
Tubía, J. M., Cuevas, J. M., and Ibarguchi, J. I. G.: Sequential development of the metamorphic aureole beneath the Ronda peridotites and its bearing on the tectonic evolution of the Betic Cordillera, Tectonophysics, 279, 227–252, https://doi.org/10.1016/S0040-1951(97)00124-8, 1997.
Tubía, J. M., Cuevas, J., and Esteban, J. J.: Localization of deformation and kinematic shift during the hot emplacement of the Ronda peridotites (Betic Cordilleras, southern Spain), J. Struct. Geol., 50, 148–160, https://doi.org/10.1016/j.jsg.2012.06.010, 2013.
Van der Wal, D. and Vissers, R. L. M.: Uplift and emplacement of upper mantle rocks in the western Mediterranean, Geology, 21, 1119–1122, https://doi.org/10.1130/0091-7613(1993)021<1119:UAEOUM>2.3.CO;2, 1993.
Van der Wal, D. and Vissers, R. L. M.: Structural Petrology of the Ronda Peridotite, SW Spain: Deformation History, J. Petrol, 37, 23–43, https://doi.org/10.1093/petrology/37.1.23, 1996.
Vissers, R. L. M., Platt, J. P., and Van der Wal, D.: Late orogenic extension of the Betic Cordillera and the Alboran Domain: A lithospheric view, Tectonics, 14, 786–803, https://doi.org/10.1029/95TC00086, 1995.
Walker, J. R. and Bish, D. L.: Application of Rietveld refinement techniques to a disordered II b Mg-chamosite, Clay. Clay Miner., 40, 319–322, 1992.
Watson, E. B.: Surface enrichment and trace-element uptake during crystal growth, Geochim. Cosmochim. Ac., 60, 5013–5020, https://doi.org/10.1016/S0016-7037(96)00299-2, 1996.
Watson, E. B., Lanzillo, N. A., and Nayak, S. K.: The Growth Entrapment Model (GEM): New Insights from Molecular-Scale Simulations of Ti in Quartz, in: AGU Fall Meeting Abstracts, San Francisco, California, 5–9 December 2011, PP51E-04, 2011.
Xie, G. Q., Mao, J. W., Richards, J. P., Han, Y. X., and Fu, B.: Distal Au deposits associated with Cu–Au skarn mineralization in the Fengshan area, eastern China, Econ. Geol., 114, 127–142, https://doi.org/10.5382/econgeo.2019.4623, 2019.
Xie, Q. H., Zhang, Z. C., Jin, Z. L., Santosh, M., Liu, H., Wang, K. Y., Zhao, P. L., and He, H. H.: The high-grade Fe skarn deposit of Jinling, North China Craton: insights into hydrothermal iron mineralization, Ore Geol. Rev., 138, 104395, https://doi.org/10.1016/j.oregeorev.2021.104395, 2021.
Yin, S., Wirth, R., Ma, C., and Xu, J.: The role of mineral nanoparticles at a fluid-magnetite interface: Implications for trace-element uptake in hydrothermal systems, Am. Mineral., 104, 1180–1188, https://doi.org/10.2138/am-2019-6996, 2019.
Yund, R. A. and McCallister, R. H.: Kinetics and mechanisms of exsolution, Chem. Geol., 6, 5–30, https://doi.org/10.1016/0009-2541(70)90002-1, 1970.
Zhang, Z., Du, Y., and Zhang, J.: Alteration, mineralization, and genesis of the zoned Tongshan skarn-type copper deposit, Anhui, China, Ore Geol. Rev., 53, 489–503, https://doi.org/10.1016/j.oregeorev.2013.02.009, 2013.
Zhang, Z. C., Hou, T., Santosh, M., Li, H. M., Li, J. W., Zhang, Z. H., Song, X. Y., and Wang, M.: Spatio-temporal distribution and tectonic settings of the major iron deposits in China, An overview, Ore Geol Rev., 57, 247–263, https://doi.org/10.1016/j.oregeorev.2013.08.021, 2014.
Zhao, W. W. and Zhou, M. F.: In-situ LA–ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China, Ore Geol Rev., 65, 872–883, https://doi.org/10.1016/j.oregeorev.2014.09.019, 2015.
Zhao, W. W., Zhou, M.-F., Li, Y. H. M., Zhao, Z., and Gao, J.-F.: Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China, J. Asian Earth Sci., 137, 109–140, https://doi.org/10.1016/j.jseaes.2016.12.047, 2017.
Zheng, H., Chen, H., Wu, C., Jiang, H., Gao, C., Kang, Q., Yang, C., Wang, D., and Lai, C.-K.: Genesis of the supergiant Huayangchuan carbonatite-hosted uranium-polymetallic deposit in the Qinling Orogen, Central China, Gondwana Res., 86, 250–265, https://doi.org/10.1016/j.gr.2020.05.016, 2020.
Short summary
This study examines solid nano-inclusions in magnetite from the La Víbora magnesian skarn, Spain, revealing insights into mineral formation. We found two types of inclusions: representing fossilized skarn reactions and precipitated from supersaturated fluids. Nano-inclusions provide valuable clues about the Fe mineralization event, highlighting the significance of nano-inclusions in understanding geological processes and resource exploration.
This study examines solid nano-inclusions in magnetite from the La Víbora magnesian skarn,...