Articles | Volume 36, issue 5
https://doi.org/10.5194/ejm-36-813-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-813-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon-containing pyrite spherules: mineral biosignatures in black smokers?
Chloé Truong
CORRESPONDING AUTHOR
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Museum National d'Histoire Naturelle, CNRS, Paris, France
present address: Institut de Microbiologie de la Méditerranée (IMM), CNRS, Aix-Marseille Université (AMU), Marseille, France
Sylvain Bernard
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Museum National d'Histoire Naturelle, CNRS, Paris, France
François Baudin
Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Université, CNRS, Paris, France
Aurore Gorlas
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
François Guyot
CORRESPONDING AUTHOR
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Museum National d'Histoire Naturelle, CNRS, Paris, France
Institut Universitaire de France (IUF), Paris, France
Related authors
No articles found.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1875, https://doi.org/10.5194/egusphere-2024-1875, 2024
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need of careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Related subject area
Electron microscopy of minerals and rocks
Dauphiné twin in a deformed quartz: characterization by electron channelling contrast imaging and large-angle convergent-beam diffraction
Late metamorphic veins with dominant PS-15 polygonal serpentine in the Monte Avic ultramafite
Dislocation and disclination densities in experimentally deformed polycrystalline olivine
Appearance, study and a possible correction for boron: a phenomenon in ultra-soft X-ray measurements using a synthetic multilayer crystal and the EPMA
Weathering of stannite–kësterite [Cu2(Fe,Zn)SnS4] and the environmental mobility of the released elements
The hierarchical internal structure of labradorite
Automatic element and mineral detection in thin sections using hyperspectral transmittance imaging microscopy (HyperTIM)
Vanadium carbides in shungite
Multi-scale characterization of glaucophane from Chiavolino (Biella, Italy): implications for international regulations on elongate mineral particles
Investigating crystal orientation patterns of foraminiferal tests by electron backscatter diffraction analysis
Nobuyoshi Miyajima, Danielle Silva Souza, and Florian Heidelbach
Eur. J. Mineral., 36, 709–719, https://doi.org/10.5194/ejm-36-709-2024, https://doi.org/10.5194/ejm-36-709-2024, 2024
Short summary
Short summary
Dauphiné twin (DT) domains in a deformed quartz were visualized for the first time by using orientation-optimized electron channelling contrast imaging under Bragg conditions of the rhombohedral planes. The different contrast of a pair of DT domains in the backscattered electron images originates not from a misorientation between the two domains but from different diffraction intensities between positive and negative rhombohedral planes in quartz.
Luca Barale, Giancarlo Capitani, Paolo Castello, Roberto Compagnoni, Roberto Cossio, Gianluca Fiore, Linda Pastero, and Marcello Mellini
Eur. J. Mineral., 35, 347–360, https://doi.org/10.5194/ejm-35-347-2023, https://doi.org/10.5194/ejm-35-347-2023, 2023
Short summary
Short summary
The first occurrence of centimeter-thick PS-15 polygonal serpentine veins from ultramafics of Monte Avic, Val d'Aosta, is here reported. The combined mineralogical study led by three techniques with different resolutions has provided new analytical tools capable of recognizing the PS-15 polygonal serpentine. In particular, X-ray powder diffraction data (XRPD) and micro-Raman recognize polygonal serpentine more quickly and easily than transmission electron microscopy (TEM) but equally rigorously.
Sylvie Demouchy, Manuel Thieme, Fabrice Barou, Benoit Beausir, Vincent Taupin, and Patrick Cordier
Eur. J. Mineral., 35, 219–242, https://doi.org/10.5194/ejm-35-219-2023, https://doi.org/10.5194/ejm-35-219-2023, 2023
Short summary
Short summary
We report a comprehensive data set characterizing and quantifying two types of mineral defects in the most abundant mineral of Earth's upper mantle: olivine. Namely, we investigate translation defects of dislocation and rotation defects, called disclinations, in polycrystalline olivine deformed in uniaxial compression or torsion, at high temperature and pressure. The defects are identified via mapping of the crystallographic disorientation detected using electron backscatter diffraction.
Franziska Daniela Helena Wilke
Eur. J. Mineral., 35, 59–64, https://doi.org/10.5194/ejm-35-59-2023, https://doi.org/10.5194/ejm-35-59-2023, 2023
Short summary
Short summary
When detecting the light element boron in solid materials with, in part, considerably lower concentrations of boron than present in natural tourmalines by using the electron microprobe, irregularities become visible in the analyses. This was for the first time experienced in synthetic diamond that was contaminated with boron to achieve a blue color. With this work, one can check if boron analyses are reasonable, and if not, one can correct them.
Patrick Haase, Stefan Kiefer, Kilian Pollok, Petr Drahota, and Juraj Majzlan
Eur. J. Mineral., 34, 493–506, https://doi.org/10.5194/ejm-34-493-2022, https://doi.org/10.5194/ejm-34-493-2022, 2022
Short summary
Short summary
Stannite decomposition leads to the precipitation of an amorphous and metastable Sn–Fe–As-rich phase. With ageing, goethite and cassiterite crystallize from the precursor and mark the end of the weathering cycle. Other elements are lost in the initial stage of weathering (e.g. Zn, S) or after full oxidation of the sulfidic material (e.g. Cu, Ag). Electron microprobe (EMP) and transmission electron microscopy (TEM) analyses were performed to witness the mobility of the released elements.
Emilia Götz, Hans-Joachim Kleebe, and Ute Kolb
Eur. J. Mineral., 34, 393–410, https://doi.org/10.5194/ejm-34-393-2022, https://doi.org/10.5194/ejm-34-393-2022, 2022
Short summary
Short summary
Labradorite displays various structural features which have received attention in science for a long time. In this paper an electron microscopy study was performed investigating the hierarchical structure and connecting its features over several orders of magnitude. In addition, the atomic structure was solved with three-dimensional electron diffraction, showing results comparable to X-ray diffraction data and demonstrating the potential of the method to solve complicated crystal structures.
Helge L. C. Daempfling, Christian Mielke, Nicole Koellner, Melanie Lorenz, Christian Rogass, Uwe Altenberger, Daniel E. Harlov, and Michael Knoper
Eur. J. Mineral., 34, 275–284, https://doi.org/10.5194/ejm-34-275-2022, https://doi.org/10.5194/ejm-34-275-2022, 2022
Short summary
Short summary
In this study we present a novel method for the automatic detection of minerals and elements using hyperspectral transmittance imaging microscopy measurements of complete thin sections (HyperTIM).
Vladimir V. Kovalevski and Igor A. Moshnikov
Eur. J. Mineral., 34, 131–141, https://doi.org/10.5194/ejm-34-131-2022, https://doi.org/10.5194/ejm-34-131-2022, 2022
Short summary
Short summary
Vanadium carbides in shungite are shown to be present in several forms, which reflects the distinctive conditions of their formation. An ordered carbon film revealed on the vanadium carbide particles could protect the particles from transformations for a long time. The parageneses of vanadium carbide and roscoelite occur, indicating that roscoelite in shungite rocks may be a secondary mineral formed upon vanadium carbide decomposition.
Ruggero Vigliaturo, Sabrina M. Elkassas, Giancarlo Della Ventura, Günther J. Redhammer, Francisco Ruiz-Zepeda, Michael J. O'Shea, Goran Dražić, and Reto Gieré
Eur. J. Mineral., 33, 77–112, https://doi.org/10.5194/ejm-33-77-2021, https://doi.org/10.5194/ejm-33-77-2021, 2021
Stephanie Pabich, Christian Vollmer, and Nikolaus Gussone
Eur. J. Mineral., 32, 613–622, https://doi.org/10.5194/ejm-32-613-2020, https://doi.org/10.5194/ejm-32-613-2020, 2020
Short summary
Short summary
Electron backscatter diffraction (EBSD) is a powerful tool to visualize and differentiate between foraminiferal test structures, by providing information on crystal orientation and crystal sizes. This can be used to trace diagenetic recrystallization, altering geochemical proxy signals. The sediment samples from a core from the equatorial Pacific used here, spanning the last 45 Myr, showed no evidence for foraminiferal recrystallization, highlighting the suitability as geochemical proxy archive.
Cited articles
Amend, J. P., McCollom, T. M., Hentscher, M., and Bach, W.: Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types, Geochim. Cosmochim. Ac., 75, 5736–5748, https://doi.org/10.1016/j.gca.2011.07.041, 2011.
Baumgartner, R. J., Hu, S., Van Kranendonk, M. J., and Verrall, M.: Taphonomy of microorganisms and microbial microtextures at sulfidic hydrothermal vents: A case study from the Roman Ruins black smokers, Eastern Manus Basin, Geobiology, 20, 479–497, https://doi.org/10.1111/gbi.12490, 2022.
Baumgartner, R. J., Teece, B. L., Rasmussen, B., Muhling, J., Rickard, W. D., Pejcic, B., Hu, S., Bourdet, J., Caruso, S., Van Kranendonk, M. J., and Grice, K.: Exceptional preservation of organic matter and iron-organic colloidal mineralization in hydrothermal black smoker-type sulfide mineralization from the Paleoarchean seafloor, Chem. Geol., 618, 121296, https://doi.org/10.1016/j.chemgeo.2022.121296, 2023.
Beaulieu, S. E., Baker, E. T., and German, C. R.: Where are the undiscovered hydrothermal vents on oceanic spreading ridges?, Deep-Sea Res. Pt. II, 121, 202–212, https://doi.org/10.1016/j.dsr2.2015.05.001, 2015.
Becker, K.: Pre-drilling observations of conductive heat flow at the TAG active mound using DSV Alvin, Proc. ODP. Init. Repts, 158, 23–29, 1996.
Belkhou, R., Stanescu, S., Swaraj, S., Besson, A., Ledoux, M., Hajlaoui, M., and Dalle, D.: HERMES: a soft X-ray beamline dedicated to X-ray microscopy, J. Synchrotron. Radiat., 22, 968–979, https://doi.org/10.1107/S1600577515007778, 2015.
Bernard, S., Benzerara, K., Beyssac, O., Brown Jr., G. E., Stamm, L. G., and Duringer, P.: Ultrastructural and chemical study of modern and fossil sporoderms by Scanning Transmission X-ray Microscopy (STXM), Rev. Palaeobot. Palyno., 156, 248–261, https://doi.org/10.1016/j.revpalbo.2008.09.002, 2009.
Blumenberg, M., Seifert, R., Petersen, S., and Michaelis, W.: Biosignatures present in a hydrothermal massive sulfide from the mid-Atlantic ridge, Geobiology, 5, 435–450, https://doi.org/10.1111/j.1472-4669.2007.00126.x, 2007.
Boyce, A. J., Coleman, M. L., and Russell, M. J.: Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland, Nature, 306, 545–550, https://doi.org/10.1038/306545a0, 1983.
Butler, I. B. and Nesbitt, R. W.: Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS), Earth Planet. Sc. Lett., 167, 335–345, https://doi.org/10.1016/S0012-821X(99)00038-2, 1999.
Cambon-Bonavita, M.-A.: BICOSE cruise, RV Pourquoi pas?, French Oceanographic Cruises, https://doi.org/10.17600/14000100, 2014.
Cambon-Bonavita, M.-A.:BICOSE 2 cruise, RV Pourquoi pas?, French Oceanographic Cruises, https://doi.org/10.17600/18000004, 2018.
Canales, J. P., Sohn, R. A., and Demartin, B. J.: Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26° 10′ N): Implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges, Geochem. Geophy. Geosy., 8, 1–18, https://doi.org/10.1029/2007GC001629, 2007.
Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H.: Submarine thermal springs on the Galapagos Rift, Science, 203, 1073–1083, https://doi.org/10.1126/science.203.4385.1073, 1979.
Cowen, J. P., Massoth, G. J., and Baker, E. T: Bacterial scavenging of Mn and Fe in a mid-to far-field hydrothermal particle plume, Nature, 322, 169–171, https://doi.org/10.1038/322169a0, 1986.
Cruse, A. M. and Seewald, J. S.: Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge, Geochi. Cosmochim. Ac., 70, 2073–2092, https://doi.org/10.1016/j.gca.2006.01.015, 2006.
Cugerone, A., Oliot, E., Munoz, M., Barou, F., Motto-Ros, V., and Cenki, B.: Plastic deformation and trace element mobility in sphalerite, Am. Mineral., in press, https://doi.org/10.2138/am-2023-9215, 2024.
De la Peña, F., Ostasevicius, T., Fauske, V. T., Burdet, P., Prestat, E., Jokubauskas, P., Nord, M., MacArthur, K. E., Sarahan, M., Johnstone, D. N., Taillon, J., Eljarrat, A., Migunov, V., Caron, J., Furnival, T., Mazzucco, S., Aarholt, T., Walls, M., Slater, T., Winkler, F., Martineau, B., Donval, G., McLeod, R., Hoglund, E. R., Alxneit, I., Hjorth, I., Henninen, T., Zagonel, L. F., and Garmannslund, A.: hyperspy/hyperspy: HyperSpy 1.3, Zenodo, https://doi.org/10.5281/zenodo.583693, 2018.
Demartin, B. J., Sohn, R. A., Pablo Canales, J., and Humphris, S. E.: Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge, Geology, 35, 711–714, https://doi.org/10.1130/G23718A.1, 2007.
De Yoreo, J. J., Gilbert, P., Sommerdijk, N., Penn, L., Whitelam, S., Joester, D., Zhang, H., Rimer, J., Narvotsky, A., Banfield, J., Wallace, A., Michel, M., Meldrum, F., Cölfen, H., and Dove, P.: Crystallization by particle attachment in synthetic, biogenic, and geologic environments, Science, 349, 498–508, https://doi.org/10.1126/science.aaa6760, 2015.
Dick, G. J. and Tebo, B. M.: Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume, Environ. Microbiol., 12, 1334–1347, https://doi.org/10.1111/j.1462-2920.2010.02177.x, 2010.
Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I., and Corliss, J. B.: Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data, Earth Planet. Sc. Lett., 46, 1–18, https://doi.org/10.1016/0012-821X(79)90061-X, 1979.
Elderfield, H. and Schultz, A.: Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean, Annu. Rev. Earth Planet. Sc., 24, 191–224, https://doi.org/10.1146/annurev.earth.24.1.191, 1996.
Eme, L., Tamarit, D., Caceres, E. F., Stairs, C. W., De Anda, V., Schon, M. E., Seitz, K. W., Dombrowski, N., Lewis, W. H., Homa, F., Saw, J. H., Lombard, J., Nunoura, T., Li, W.-J., Hua, Z.-S., Chen, L.-X., Banfield, J. F., St John, E., Reysenbach, A.-L., Stott, M. B., Schramm, A., Kjeldsen, K. U., Teske, A. P., Baker, B. J., and Ettema T. J. G.: Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes, Nature, 618, 992–999, https://doi.org/10.1038/s41586-023-06186-2, 2023.
Findlay, A. J.: Microbial impact on polysulfide dynamics in the environment, FEMS Microbiol. Lett., 363, fnw103, https://doi.org/10.1093/femsle/fnw103, 2016.
Findlay, A. J., Gartman, A., MacDonald, D. J., Hanson, T. E., Shaw, T. J., and Luther III, G. W.: Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge, Geochim. Cosmochim. Ac., 142, 334–348, https://doi.org/10.1016/j.gca.2014.07.032, 2014.
Fouquet, Y. and Pelleter, E.: HERMINE cruise, RV Pourquoi pas?, French Oceanographic Cruises, https://doi.org/10.17600/17000200, 2017.
Fouquet, Y., Henry, K., Knott, R., and Cambon, P.: Geochemical section of the TAG hydrothermal mound, Oceanographic Literature Review, 45, 1356, ISSN 0967-0653, 1996.
Fulignati P., Clay Minerals in Hydrothermal Systems, Minerals 10, 919, https://doi.org/10.3390/min10100919, 2020.
Gartman, A., Findlay, A. J., and Luther III, G. W.: Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions, Chem. Geol., 366, 32–41, https://doi.org/10.1016/j.chemgeo.2013.12.013, 2014.
German, C. R. and Von Damm, K.: Hydrothermal processes, edited by: Holland, H. D. and Turekian, K. K., Treatise on Geochemistry, Elsevier, Oxford, 191–233, ISBN 0080437516, 9780080437514, 2006.
Gorlas, A., Marguet, E., Gill, S., Geslin, C., Guigner, J. M., Guyot, F., and Forterre, P.: Sulfur vesicles from Thermococcales: A possible role in sulfur detoxifying mechanisms, Biochimie, 118, 356–364, https://doi.org/10.1016/j.biochi.2015.07.026, 2015.
Gorlas, A., Jacquemot, P., Guigner, J. M., Gill, S., Forterre, P., and Guyot, F.: Greigite nanocrystals produced by hyperthermophilic archaea of Thermococcales order, PLoS One, 13, e0201549, https://doi.org/10.1371/journal.pone.0201549, 2018.
Gorlas, A., Mariotte, T., Morey, L., Truong, C., Bernard, S., Guigner, J.-M., Oberto, J., Baudin, F., Landrot, G., Baya, C., Le Pape, P., Morin, G., Forterre, P., and Guyot, F.: Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments?, Environ. Microbiol., 24, 626–642, https://doi.org/10.1111/1462-2920.15915, 2022.
Grant, H. L., Hannington, M. D., Petersen, S., Frische, M., and Fuchs, S. H.: Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite, Chem. Geol., 498, 45–71, https://doi.org/10.1016/j.chemgeo.2018.08.019, 2018.
Hannington, M., Jamieson, J., Monecke, T., Petersen, S., and Beaulieu, S.: The abundance of seafloor massive sulfide deposits, Geology, 39, 1155–1158, https://doi.org/10.1130/G32468.1, 2011.
Haymon, R. M.: Growth history of hydrothermal black smoker chimneys, Nature, 301, 695–698, https://doi.org/10.1038/301695a0, 1983.
Haymon, R. M. and Kastner, M.: The formation of high temperature clay minerals from basalt alteration during hydrothermal discharge on the East Pacific Rise axis at 21 N, Geochim. Cosmochim. Ac., 50, 1933–1939, https://doi.org/10.1016/0016-7037(86)90249-8, 1986.
Heinen, W. and Lauwers, A. M.: Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment, Origins Life Evol. B., 26, 131–150, https://doi.org/10.1007/BF01809852, 1996.
Hekinian, R., Fevrier, M., Bischoff, J. L., Picot, P., and Shanks, W. C.: Sulfide deposits from the East Pacific Rise near 21 N, Science, 207, 1433–1444, https://doi.org/10.1126/science.207.4438.1433, 1980.
Holden, J. F. and Adams, M. W.: Microbe–metal interactions in marine hydrothermal environments, Curr. Opin. Chem. Biol., 7, 160–165, https://doi.org/10.1016/S1367-5931(03)00026-7, 2003.
Houghton, J. L. and Seyfried Jr., W. E.: An experimental and theoretical approach to determining linkages between geochemical variability and microbial biodiversity in seafloor hydrothermal chimneys, Geobiology, 8, 457–470, https://doi.org/10.1111/j.1472-4669.2010.00255.x, 2010.
Hu, S. Y., Barnes, S. J., Glenn, A. M., Pagès, A., Parr, J., MacRae, C., and Binns, R.: Growth history of sphalerite in a modern sea floor hydrothermal chimney revealed by electron backscattered diffraction, Econ. Geol., 114, 165–176, https://doi.org/10.5382/econgeo.2019.4626, 2019.
Hu, S. Y., Barnes, S. J., Pagès, A., Parr, J., Binns, R., Verrall, M., Quadir, Z., Rickard, W., Liu, W., Fougerouse, D., Grice, K., Schonevald, L., Ryan, C., and Paterson, D.: Life on the edge: microbial biomineralization in an arsenic-and lead-rich deep-sea hydrothermal vent, Chem. Geol., 533, 119438, https://doi.org/10.1016/j.chemgeo.2019.119438, 2020.
Huber, C. and Wachtershauser, G.: Activated acetic acid by carbon fixation on (Fe, Ni) S under primordial conditions, Science, 276, 245–247, https://doi.org/10.1126/science.276.5310.245, 1997.
Humphris, S. E. and Kleinrock, M. C.: Detailed morphology of the TAG active hydrothermal mound: Insights into its formation and growth, Geophys. Res. Lett., 23, 3443–3446, https://doi.org/10.1029/96GL03079, 1996.
Jannasch, H. W.: Microbial interactions with hydrothermal fluids, Geoph. Monog. Series, 91, 273–296, https://doi.org/10.1029/GM091p0273, 1995.
Juniper, S. K., Bird, D. F., Summit, M., Vong, M. P., and Baker, E. T.: Bacterial and viral abundances in hydrothermal event plumes over northern Gorda Ridge, Deep-Sea Res. Pt. II, 45, 2739–2749, https://doi.org/10.1016/S0967-0645(98)00091-5, 1998.
Konn, C., Donval, J. P., Guyader, V., Germain, Y., Alix, A. S., Roussel, E., and Rouxel, O.: Extending the dataset of fluid geochemistry of the Menez Gwen, Lucky Strike, Rainbow, TAG and Snake Pit hydrothermal vent fields: Investigation of temporal stability and organic contribution, Deep-Sea Res. Pt. I, 179, 103630, https://doi.org/10.1016/j.dsr.2021.103630, 2022.
Kvenvolden, K. A. and Simoneit, B. R.: Hydrothermally derived petroleum: Examples from Guaymas Basin, Gulf of California, and Escanaba Trough, Northeast Pacific Ocean, AAPG Bull., 74, 223–237, 1990.
Lafitte, M., Maury, R., and Perseil, E. A. : Analyse mineralogique de cheminees a sulfures de la dorsale Est Pacifique (13 N), Miner. Deposita, 19, 274–282, https://doi.org/10.1007/BF00204380, 1984.
Lalou, C., Thompson, G., Rona, P. A., Brichet, E., and Jehanno, C.: Chronology of selected hydrothermal Mn oxide deposits from the transatlantic geotraverse “TAG” area, Mid-Atlantic Ridge 26° N, Geochim. Cosmochim. Ac., 50, 1737–1743, 1986.
Lalou, C., Reyss, J. L., Brichet, E., Arnold, M., Thompson, G., Fouquet, Y., and Rona, P. A.: New age data for Mid-Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited, J. Geophys. Res.-Sol. Ea., 98, 9705–9713, https://doi.org/10.1029/92JB01898, 1993.
Lalou, C., Reyss, J. L., Brichet, E., Rona, P. A., and Thompson, G.: Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26° N, J. Geophys. Res.-Sol. Ea., 100, 17855–17862, https://doi.org/10.1029/95JB01858, 1995.
Langmuir, C., Humphris, S., Fornari, D., VanDover, C., VonDamm, K., Tivey, M., Colodner, D., Charlou, J.-L., Desonie, D., Wilson, C., Fouquet, Y., Klinkhammer, G., and Bougault, H.: Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37 degrees N on the Mid-Atlantic Ridge, Earth Planet Sc. Lett., 148, 69–91, https://doi.org/10.1016/S0012-821X(97)00027-7, 1997.
Le Guillou, C., Bernard, S., De la Pena, F., and Le Brech, Y.: XANES-based quantification of carbon functional group concentrations, Anal. Chem., 90, 8379–8386, https://doi.org/10.1021/acs.analchem.8b00689, 2018.
Li, J., Benzerara, K., Bernard, S., and Beyssac, O.: The link between biomineralization and fossilization of bacteria: insights from field and experimental studies, Chem. Geol., 359, 49–69, https://doi.org/10.1016/j.chemgeo.2013.09.013, 2013.
Li, J., Bernard, S., Benzerara, K., Beyssac, O., Allard, T., Cosmidis, J., and Moussou, J.: Impact of biomineralization on the preservation of microorganisms during fossilization: An experimental perspective, Earth Planet. Sc. Lett., 400, 113–122, https://doi.org/10.1016/j.epsl.2014.05.031, 2014.
Lin, T., Ver Eecke, H., Breves, E., Dyar, M., Jamieson, J., Hannington, M., Dahle, H., Bishop, J., Lane, M., Butterfield, D., Kelley, D., Lilley, M., Baross, J., and Holden, J.: Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour segment, Juan de Fuca ridge, Geochem. Geophy. Geosy., 17, 300–323, https://doi.org/10.1002/2015GC006091, 2016.
Luther III, G. W., Church, T. M., Scudlark, J. R., and Cosman, M.: Inorganic and organic sulfur cycling in salt-marsh pore waters, Science, 232, 746–749, https://doi.org/10.1126/science.232.4751.746, 1986.
MacLeod, F., Kindler, G. S., Wong, H. L., Chen, R., and Burns, B. P.: Asgard archaea: diversity, function, and evolutionary implications in a range of microbiomes, AIMS Microbiology, 48, 48–61, https://doi.org/10.3934/microbiol.2019.1.48, 2019.
Mansor, M.: Isotopic and Trace Metal Geochemistry of Calcite, Gypsum, and Pyrite as Proxies for Ancient Life and Environments, The Pennsylvania State University ProQuest Dissertations & Theses, 10629089, 2017.
Mansor, M., Berti, D., Hochella Jr, M. F., Murayama, M., and Xu, J.: Phase, morphology, elemental composition, and formation mechanisms of biogenic and abiogenic Fe-Cu-sulfide nanoparticles: A comparative study on their occurrences under anoxic conditions, Am. Mineral., 104, 703–717, https://doi.org/10.2138/am-2019-6848, 2019.
Marin-Carbonne, J., Remusat, L., Sforna, M. C., Thomazo, C., Cartigny, P., and Philippot, P.: Sulfur isotope's signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction, Geobiology, 16, 121–138, https://doi.org/10.1111/gbi.12275, 2018.
Marin-Carbonne, J., Busigny, V., Miot, J., Rollion-Bard, C., Muller, E., Drabon, N., and Philippot, P.: In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction, Geobiology, 18, 306–325, https://doi.org/10.1111/gbi.12385, 2020.
Marin-Carbonne, J., Decraene, M. N., Havas, R., Remusat, L., Pasquier, V., Alléon, J., and Thomazo, C.: Early precipitated micropyrite in microbialites: a time capsule of microbial sulfur cycling, Geochem. Perspect. Lett. 21, 7–12, https://doi.org/10.7185/geochemlet.2209, 2022.
McCollom, T. M. and Seewald, J. S.: Abiotic synthesis of organic compounds in deep-sea hydrothermal environments, Chemi. Rev., 107, 382–401, https://doi.org/10.1021/cr0503660, 2007.
McCollom, T. M., Lollar, B. S., Lacrampe-Couloume, G., and Seewald, J. S.: The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions, Geochim. Cosmochim. Ac., 74, 2717–2740, https://doi.org/10.1016/j.gca.2010.02.008, 2010.
Meier, D., Pjevac, P., Bach, W., Markert, S., Schweder, T., Jamieson, J., Petersen, S., Amann, R., and Meyerdierks, A: Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses, Environmen. Microbiol., 21, 682–701, https://doi.org/10.1111/1462-2920.14514, 2019.
Murowchick, J. B. and Barnes, H. L.: Effects of temperature and degree of supersaturation on pyrite morphology, Am. Mineral., 72, 1241–1250, ISSN 1945-3027, 1987.
Nabeh, N., Brokaw, C., and Picard, A.: Quantification of organic carbon sequestered by biogenic iron sulfide minerals in long-term anoxic laboratory incubations, Front. Microbiol., 13, 662219, https://doi.org/10.3389/fmicb.2022.662219, 2022.
Nielsen, M. H., Li, D., Zhang, H., Aloni, S., Han, Y-J., Frandsen, C., Seto, J., Banfield, J. F., Cölfen, H., and De Yoreo, J. J.: Investigating processes of nanocrystal formation and transformation via liquid cell TEM, Microsc. Microanal. 20, 425–436, https://doi.org/10.1017/S1431927614000294, 2014.
Pelleter, E. and Cathalot, C.: HERMINE2 cruise, RV Pourquoi pas?, French Oceanographic Cruises, https://doi.org/10.17600/18001851, 2022.
Pontbriand, C. W. and Sohn, R. A.: Microearthquake evidence for reaction-driven cracking within the Trans-Atlantic Geotraverse active hydrothermal deposit, J. Geophys. Res.-Sol. Ea., 119, 822–839, https://doi.org/10.1002/2013JB010110, 2014.
Rodrigues-Oliveira, T., Wollweber, F., Ponce-Toledo, R. I., Xu, J., Rittmann, S. K. R., Klingl, A., Pilhofer, M., and Schleper, C.: Actin cytoskeleton and complex cell architecture in an Asgard archaeon, Nature, 613, 332–339, https://doi.org/10.1038/s41586-022-05550-y, 2023.
Rona, P. A.: TAG hydrothermal field: Mid-Atlantic Ridge crest at latitude 26 N, J. Geol. Soc. London, 137, 385–402, 1980.
Rona, P. A., Thompson, G., Mottl, M. J., Karson, J. A., Jenkins, W. J., Graham, D., Mallette, M., Von Damm, K., and Edmond, J. M.: Hydrothermal Activity at the Trans-Atlantic Geotraverse Hydrothermal Field, Mid-Atlantic Ridge Crest at 26° N, J. Geophys. Res., 89, 11365–11377, https://doi.org/10.1029/JB089iB13p11365, 1984.
Rona, P. A., Klinkhammer, G., Nelsen, T. A., Trefry, J. H., and Elderfield, H.: Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge, Nature, 321, 33–37, https://doi.org/10.1038/321033a0, 1986.
Rona, P. A., Hannington, M. D., Raman, C. V., Thompson, G., Tivey, M. K., Humphris, S. E., Lalou, C., and Petersen, S.: Active and relict seafloor hydrothermal mineralization at the TAG hydrothermal field Mid-Atlantic Ridge, Econ. Geol., 18, 1989–2017, https://doi.org/10.2113/gsecongeo.88.8.1989, 1993.
Runge, E. A., Mansor, M., Kappler, A., and Duda, J.-P.: Microbial biosignatures in ancient deep-sea hydrothermal sulfides, Geobiology, 21, 355–377, https://doi.org/10.1111/gbi.12539, 2022.
Russell, M. J., Daniel, R. M., Hall, A. J., and Sherringham, J. A.: A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life, J. Mol. Evol., 39, 231–243, https://doi.org/10.1007/BF00160147, 1994.
Schiffbauer, J. and Xiao, S.: Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: A new view of complexity in early Eukaryotic organisms, PALAIOS, 24, 616–626, https://doi.org/10.2110/palo.2009.p09-003r, 2009.
Schrenk, M., Kelley, D., Delaney, J., and Baross, J.: Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney, Appl. Environ. Microb., 69, 3580–3592, https://doi.org/10.1128/AEM.69.6.3580-3592.2003, 2003.
Schwarzenbach, G. and Fischer, A.: Die acidität der Sulfane und die Zusammensetzung wässeriger Polysulfidlösungen, Helv. Chim. Acta, 169, 1365–1390, https://doi.org/10.1002/hlca.19600430521, 1960.
Scott, R. B., Rona, P. A., Mc Gregor, B. A., and Scott, M. R.: The TAG Hydrothermal Field, Nature, 251, 301–302, https://doi.org/10.1038/251301a0, 1974.
Sheik, C. S., Anantharaman, K., Breier, J. A., Sylvan, J. B., Edwards, K. J., and Dick, G. J.: Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin, ISME J., 9, 1434–1445, https://doi.org/10.1038/ismej.2014.228, 2015.
Simoneit, B. R. T.: Aqueous high-temperature and high-pressure organic geochemistry of hydrothermal vent systems, Geochim. Cosmochim. Ac. 57, 3231–3243, https://doi.org/10.1016/0016-7037(93)90536-6, 1993.
Spang, A., Saw, J. H., Jørgensen, S. L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A. E., van Eijk, R., Schleper, C., Guy, L., and Ettema, T. J. G.: Complex archaea that bridge the gap between prokaryotes and eukaryotes, Nature, 521, 173–179, https://doi.org/10.1038/nature14447, 2015.
Šrot, V. Š., Rečnik, A., Scheu, C., Šturm, S., and Mirtič, B.: Stacking faults and twin boundaries in sphalerite crystals from the Trepca mines in Kosovo, Am. Mineral., 88, 1809–1816, https://doi.org/10.2138/am-2003-11-1222, 2003.
Stein, C. and Stein, S.: Constraints on hydrothermal Heat-Flux through the oceanic lithosphere from global heat-flow, J. Geophys. Res., 99, 3081–3095, https://doi.org/10.1029/93JB02222, 1994.
Steudel, R.: Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes, Ind. Eng. Chem. Res., 35, 1417–1423, https://doi.org/10.1021/ie950558t, 1996.
Swaraj, S., Stanescu, S., Rioult, M., Besson, A., and Hitchcock, A. P.: Performance of the HERMES beamline at the carbon K-edge, J. Phys. Conf. Ser., 849, 012046, https://doi.org/10.1088/1742-6596/849/1/012046, 2017.
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., and Horikoshi, K.: Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation, P. Natl. Acad. Sci. USA, 105, 10949–10954, https://doi.org/10.1073/pnas.0712334105, 2008.
Templeton, A., Knowles, E., Eldridge, D., Arey, B., Dohnalkova, A., Webb, S., Bailey, B., Tebo, B., and Staudigel, H.: A seafloor microbial biome hosted within incipient ferromanganese crusts, Nat. Geosci., 2, 872–876, https://doi.org/10.1038/ngeo696, 2009.
Tivey, M.: The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: insights from modelling transport and reaction, Geochim. Cosmochim. Ac., 59, 1933–1949, https://doi.org/10.1016/0016-7037(95)00118-2, 1995.
Tivey, M. K. and Delaney, J. R.: Growth of large sulfide structures on the endeavour segment of the Juan de Fuca Ridge, Earth Planet. Sc. Lett., 77, 303–317, https://doi.org/10.1016/0012-821X(86)90142-1, 1986.
Tivey, M. A., Bradley, A. M., Joyce T. M., and Kadko D: Insights into tide-related variability at seafloor hydrothermal vents from time-series temperature measurements, Earth Planet. Sc. Lett., 202, 693–707, https://doi.org/10.1016/S0012-821X(02)00801-4, 2002.
Tivey, M. A., Schouten, H., and Kleinrock, M. C.: A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at 26° N: Implications for the tectonic evolution of the TAG segment, J. Geophys. Res.-Sol. Ea., 108, 1–13, https://doi.org/10.1029/2002JB001967, 2003.
Thompson, G., Mottl, M. J., and Rona, P. A.: Morphology, Mineralogy and Chemistry of Hydrothermal Deposits from the TAG Area, 26° N Mid-Atlantic Ridge, Chem. Geol., 49, 243–257, https://doi.org/10.1016/0009-2541(85)90159-7, 1985.
Thompson, G., Humphris, S. E., Schroeder, B., and Sulanowska, M.: Active Vents and Massive Sulfides at 26° N (TAG) and 23° N (Snake Pit) on the Mid-Atlantic Ridge, Can. Mineral., 26, 697–711, 1988.
Truong, C., Bernard, S., Le Pape, P., Morin, G., Baya, C., Merrot, P., Gorlas, A., and Guoyt, F.: Production of carbon-containing pyrite spherules induced by hyperthermophilic Thermococcales: a biosignature?, Front. Microbiol., 14, 1–15, https://doi.org/10.3389/fmicb.2023.1145781, 2023.
Vladimirov, M. G., Ryzhkov, Y. F., Alekseev, V. A., Bogdanovskaya, V. A., Otroshchenko, V. A., and Kritsky, M. S.: Electrochemical Reduction of Carbon Dioxide on Pyrite as a Pathway for Abiogenic Formation of Organic Molecules, Origins Life Evol. B., 34, 347–360, https://doi.org/10.1023/B:ORIG.0000029883.18365.af, 2004.
Von Damm, K. L.: Hydrothermal vent fluids, chemistry of. Elements of Physical Oceanography: A derivative of the Encyclopedia of Ocean Sciences, edited by: Steele, J. H., Thorpe, S. A., and Turekian, K. K., 81–88, ISBN-10 0080964850, 2001.
Wächtershäuser, G.: Evolution of the first metabolic cycles, P. Nat. Acad. Sci. USA, 87, 200–204, https://doi.org/10.1073/pnas.87.1.200, 1990.
Wang, J., Morin, C., Li, L., Hitchcock, A. P., Scholl, A., and Doran, A.: Radiation damage in soft X-ray microscopy, J. Electron Spectrosc., 170, 25–36, https://doi.org/10.1016/j.elspec.2008.01.002, 2009.
Wang, S., Li, C., Li, B., Dang, Y., Ye, J., Zhu, Z., Zhang, L., and Shi, X.: Constraints on fluid evolution and growth processes of black smoker chimneys by pyrite geochemistry: A case study of the Tongguan hydrothermal field, South Mid-Atlantic Ridge, Ore Geol. Rev., 140, 104410, https://doi.org/10.1016/j.oregeorev.2021.104410, 2022.
Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., and Martin, W. F.: The physiology and habitat of the last universal common ancestor, Nat. Microbiol., 1, 16116, https://doi.org/10.1038/nmicrobiol.2016.116, 2016.
Wheat, C., Jannasch, W., Plant, J., Moyer, C, Sansone, F., and McMurtry, G.: Continuous sampling of hydrothermal fluids from Loihi Sea mount after the 1996 event, J. Geophys. Res., 105, 19353–19367, https://doi.org/10.1029/2000JB900088, 2000.
White, S. N., Humphris, S. E., and Kleinrock, M. C.: New observations on the distribution of past and present hydrothermal activity in the TAG area of the Mid-Atlantic Ridge (26° 08'N), Mar. Geophys. Res., 20, 41–56, https://doi.org/10.1023/A:1004376229719, 1998.
Winn, C., Karl, D., and Massoth, G.: Microorganisms in deep-sea hydrothermal plumes, Nature, 320, 744–746, https://doi.org/10.1038/320744a0, 1986.
Wirth, R.: Colonization of black smokers by hyperthermophilic microorganisms, Trends Microbiol., 25, 92–99, https://doi.org/10.1016/j.tim.2016.11.002, 2017.
Wirth, R., Luckner, M., and Wanner, G.: Validation of a hypothesis: colonization of black smokers by hyperthermophilic microorganisms, Front. Microbiol., 9, 524, https://doi.org/10.3389/fmicb.2018.00524, 2018.
Xu, J., Murayama, M., Roco, C. M., Veeramani, H., Michel, F. M., Rimstidt, J. D., Winkler, C., and Hochella, Jr. M. F.: Highly-defective nanocrystals of ZnS formed via dissimilatory bacterial sulfate reduction: A comparative study with their abiogenic analogues, Geochim. Cosmochim. Ac., 180, 1–14, https://doi.org/10.1016/j.gca.2016.02.007, 2016.
Yücel, M., Gartman, A., Chan, C. S., and Luther, G. W.: Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean, Nat. Geosci., 4, 367–371, https://doi.org/10.1038/ngeo1148, 2011.
Yücel, M., Sevgen, S., and Le Bris, N.: Soluble, colloidal, and particulate iron across the hydrothermal vent mixing zones in broken spur and rainbow, mid-atlantic ridge, Front. Microbiol., 12, 631885, https://doi.org/10.3389/fmicb.2021.631885, 2021.
Zhu, W., Tivey, M. K., Gittings, H., and Craddock, P. R.: Permeability-porosity relationships in seafloor vent deposits: Dependence on pore evolution processes. J. Geophys. Res.-Solid Ea., 112, 1–15, https://doi.org/10.1029/2006JB004716, 2007.
Short summary
Known as black smokers, sulfur-rich hydrothermal vents expel hot metal-rich water (~ 400°C). These extreme environments host micro-organisms capable of living at over 100°C. But to date, we do not know whether these microorganisms influence the formation of hydrothermal vents. The comparative study of minerals along the chimney wall is an essential step in determining whether microorganisms may have colonized and influenced mineral formation in certain parts of the chimney.
Known as black smokers, sulfur-rich hydrothermal vents expel hot metal-rich water (~ 400°C)....