Articles | Volume 36, issue 5
https://doi.org/10.5194/ejm-36-749-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-36-749-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
When detection and quantification of mineral fibres in natural raw materials are at their limit – the case of a clay from the Gomsiqe–Puka mining area (Albania)
Alessandro F. Gualtieri
CORRESPONDING AUTHOR
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
Simona Marchetti Dori
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
Daniele Malferrari
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
Tommaso Giovanardi
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
Riccardo Fantini
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
Francesco Colombo
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
Mattia Sisti
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
Rossella Arletti
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
Maria Cristina Gamberini
Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
Eleonora Braschi
C.N.R. – I.G.G. – U.O.S., Florence, 50121, Italy
Andrea Orlando
C.N.R. – I.G.G. – U.O.S., Florence, 50121, Italy
Enrico Mugnaioli
Earth Sciences Department, University of Pisa, Pisa, 56126, Italy
CISUP, University of Pisa, Pisa, 56126, Italy
Related authors
Giovanni B. Andreozzi, Dario Di Giuseppe, Alessandro F. Gualtieri, Valentina Scognamiglio, Laura Fornasini, Danilo Bersani, Tommaso Giovanardi, Federico Lugli, and Federico Pezzotta
Eur. J. Mineral., 37, 437–453, https://doi.org/10.5194/ejm-37-437-2025, https://doi.org/10.5194/ejm-37-437-2025, 2025
Short summary
Short summary
An unusual tourmaline was studied using a multi-analytical approach. The sample comes from a granitic pegmatite on the island of Elba and consists of three generations of tourmaline: green prismatic tourmaline, a dark fibrous cap, and colourless acicular single crystals. The most likely scenario for its formation involves the miarolitic cavity fracturing due to mechanical shock, the subsequent circulation of the highly reactive cavity fluids, and the leaching of accessory biotite in the surrounding pegmatite.
Giovanni B. Andreozzi, Dario Di Giuseppe, Alessandro F. Gualtieri, Valentina Scognamiglio, Laura Fornasini, Danilo Bersani, Tommaso Giovanardi, Federico Lugli, and Federico Pezzotta
Eur. J. Mineral., 37, 437–453, https://doi.org/10.5194/ejm-37-437-2025, https://doi.org/10.5194/ejm-37-437-2025, 2025
Short summary
Short summary
An unusual tourmaline was studied using a multi-analytical approach. The sample comes from a granitic pegmatite on the island of Elba and consists of three generations of tourmaline: green prismatic tourmaline, a dark fibrous cap, and colourless acicular single crystals. The most likely scenario for its formation involves the miarolitic cavity fracturing due to mechanical shock, the subsequent circulation of the highly reactive cavity fluids, and the leaching of accessory biotite in the surrounding pegmatite.
Edoardo Sanità, Maria Di Rosa, and Enrico Mugnaioli
Eur. J. Mineral., 37, 343–352, https://doi.org/10.5194/ejm-37-343-2025, https://doi.org/10.5194/ejm-37-343-2025, 2025
Short summary
Short summary
The purpose of this paper is to present new perspectives on the pressure estimate of submicrometric white mica using energy-dispersive X-ray spectroscopy performed by a transmission electron microscope. This technique aims to explore the mineral chemistry of single grains whose dimensions do not allow for analysis by microprobe. The validation of this procedure opens a wide range of applications hitherto untested due to instrumental incompatibility with mineral phases smaller than 5 µm.
Roberto Conconi, Marco Merlini, Patrizia Fumagalli, Enrico Mugnaioli, Luigi Folco, and Giancarlo Capitani
Eur. J. Mineral., 37, 233–247, https://doi.org/10.5194/ejm-37-233-2025, https://doi.org/10.5194/ejm-37-233-2025, 2025
Short summary
Short summary
The study of minerals at microscopic and nanoscopic scales is essential for understanding the processes behind their formation. Indeed, by examining minerals in such detail, it is possible to uncover the underlying mechanisms that govern mineral development, from crystal growth to chemical reactions, providing insights into broader geological and environmental processes. The understanding of these processes is especially crucial when minerals contain elements valuable to various industries.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Related subject area
Environmental and bio-mineralogy
Mineralogy of the human brain: a review
Thermodynamic and structural variations along the olivenite–libethenite solid solution
Sedimentary pyrite as a trap of organic matter: preliminary results from large-framboid observation
Chapmanite [Fe2Sb(Si2O5)O3(OH)]: thermodynamic properties and formation in low-temperature environments
Giulia Pia Servetto, Carissa Maria Root, Reto Gieré, and Ruggero Vigliaturo
Eur. J. Mineral., 37, 279–304, https://doi.org/10.5194/ejm-37-279-2025, https://doi.org/10.5194/ejm-37-279-2025, 2025
Short summary
Short summary
This review collects the most significant research on metal-based minerals in the brain, their relationship with neurological disorders, and their relationship with urban pollution. This review emphasizes the importance of medical mineralogy in investigating the effects of these minerals. Future research should focus on mineralogical characterization, evolution, and nanoscale to atomic-scale characterization of metal-based particles.
Juraj Majzlan, Alexandra Plumhoff, Martin Števko, Gwladys Steciuk, Jakub Plášil, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 35, 157–169, https://doi.org/10.5194/ejm-35-157-2023, https://doi.org/10.5194/ejm-35-157-2023, 2023
Short summary
Short summary
This research was done to understand how toxic elements, such as copper or arsenic, move through the environment. The data presented here can be used to model mobility of such elements and to improve remediation strategies at sites contaminated by mining.
Nicolas Tribovillard, Viviane Bout-Roumazeilles, Marion Delattre, Sandra Ventalon, and Abderrahmane Bensadok
Eur. J. Mineral., 34, 77–83, https://doi.org/10.5194/ejm-34-77-2022, https://doi.org/10.5194/ejm-34-77-2022, 2022
Short summary
Short summary
The studied succession of limestone and marls is enriched in pyrite framboids. The question is, could sulfate-reducing bacteria have been trapped in pyrite sarcophagi induced by their own metabolism? Our analysis reveals the presence of abundant organic matter. The typical morphology of framboids suggests the early fossilization of bacterial colonies by pyrite. If pyrite is a trap for organic molecules, then pyrite could be an underevaluated component of the C cycle.
Juraj Majzlan, Stefan Kiefer, Kristina Lilova, Tamilarasan Subramani, Alexandra Navrotsky, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 33, 357–371, https://doi.org/10.5194/ejm-33-357-2021, https://doi.org/10.5194/ejm-33-357-2021, 2021
Short summary
Short summary
Chapmanite is a seemingly rare mineral, a silicate of the elements iron and antimony. In this work, we evaluated how stable and how soluble this mineral is. The goal was to determine if this mineral can store the toxic element antimony. Our results show that it is possible, but its formation in nature is hindered and slow. Yet, in some special environments, it could store and keep antimony over longer time.
Cited articles
Ábalos, B., Puelles, P., and Ibarguchi, J. I. G.: Polyphase tectonic reworking of serpentinites and chlorite-tremolite-talc rocks (SW Spain) from the subduction forearc to intracontinental emplacement, J. Metamorph. Geol., 41, 491–523, 2022.
Apollaro, C., Fuoco, I., Vespasiano, G., De Rosa, R., Cofone, F., Miriello, D., and Bloise, A.: Geochemical and mineralogical characterization of tremolite asbestos contained in the Gimigliano-Mount Reventino Unit (Calabria, south Italy), J. Mediterranean Earth Sci., 10, 5–15, 2018.
Baietto, O.: Naturally Occurring Asbestos: the problem of quantification. Doctoral Dissertation Doctoral Program in Energy Engineering (31st Cycle), University of Torino, Italy, 2019.
Baietto, O., Diano, M., Zanetti, G., and Marini, P.: Grinding test on tremolite with fibrous and prismatic habit, Fibers, 7, 52, https://doi.org/10.3390/fib7060052, 2019.
Ballirano, P., Andreozzi, G. B., and Belardi, G.: Crystal chemical and structural characterization of fibrous tremolite from Susa Valley, Italy, with comments on potential harmful effects on human health, Am. Mineral., 93, 1349–1355, 2008.
Belardi, G., Vignaroli, G., Trapasso, F., Pacella, A., and Passeri, D.: Detecting asbestos fibres and cleavage fragments produced after mechanical tests on ophiolite rocks. Clues for the asbestos hazard evaluation, J. Mediterranean Earth Sci., 10, 63–78, 2018.
Belluso, E. and Ferraris, G.: New data on balangeroite and carlosturanite from alpine serpentinites, Eur. J. Mineral., 3, 559–566, 1991.
Berman, D. W. and Kolk, A. J.: EPA 540-R-97–028 Superfund Method for the Determination of Asbestos in Soils and Bulk Materials, Prepared for the Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, 1997.
Bersani, D., Andò, S., Scrocco, L., Gentile, P., Salvioli-Mariani, E., Fornasini, L., and Lottici, P. P.: Composition of amphiboles in the tremolite–ferro–actinolite series by Raman Spectroscopy, Minerals, 9, 491, https://doi.org/10.3390/min9080491, 2019.
Bloise, A.: On the thermal breakdown of tremolite: a new method for distinguishing between asbestos and non-asbestos tremolite samples, J. Mater. Sci., 58, 8779–8795, 2023.
Bloise, A., Fornero, E., Belluso, E., Barrese, E., and Rinaudo, C.: Synthesis and characterization of tremolite asbestos fibres, Eur. J. Mineral., 20, 1027–1033, 2008.
Bloise, A., Catalano, M., Barrese, E., Gualtieri, A.F., Bursi Gandolfi, N., Capella, S., and Belluso, E.: TG/DSC study of the thermal behaviour of hazardous mineral fibres, J. Therm. Anal. Calorim., 123, 2225–2239, 2016.
Bloise, A., Catalano, M., Critelli, T., Apollaro, C., and Miriello, D.: Naturally occurring asbestos: potential for human exposure, San Severino Lucano (Basilicata, Southern Italy), Environ. Earth Sci., 76, 648, https://doi.org/10.1007/s12665-017-6995-9, 2017.
Bloise, A., Catalano, M., and Gualtieri, A. F.: Effect of grinding on chrysotile, amosite and crocidolite and implications for thermal treatment, Minerals, 8, 135, https://doi.org/10.1007/s12665-017-6995-9, 2018a.
Bloise, A., Kusiorowski, R., and Gualtieri, A. F.: The effect of grinding on tremolite asbestos and anthophyllite asbestos, Minerals, 8, https://doi.org/10.3390/min8040135, 2018b.
Cannat, M., Bideau, D., and Bougault, H.: Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15° 37' N and 16° 52' N, Earth Planet. Sc. Lett., 109, 87–106, 1992.
Décret 96-1133: Décret 96-1133 du 24 dècembre 1996 relatif à l'interdiction de l'amiante, pris en application du code du travail et du code de la consommation, 96–1133, 1996.
Di Giuseppe, D., Perchiazzi, N., Brunelli, D., Giovanardi, T., Nodari, L., Della Ventura, G., Malferrari, D., Marcia, M., and Gualtieri, A. F.: Occurrence and characterization of tremolite asbestos from the Mid Atlantic Ridge. Sci. Rep., 11, 6285, https://doi.org/10.1038/s41598-021-85576-w, 2021.
Dondi, M., Raimondo, M., and Zanelli, C.: Clays and bodies for ceramic tiles: Reappraisal and technological classification, Appl. Clay Sci., 96, 91–109, 2014.
EC 2006/1907: Regulation (EC) N. 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) N. 793/93 and Commission Regulation (EC) N. 1488/94 As Well As Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, 2006.
Ernst, W. G. and Liu, J.: Experimental phase-equilibrium study of Al-and Ti-contents of calcic amphibole in MORB–A semiquantitative thermobarometer, Am. Mineral., 83, 952–969, 1998.
Földvári, M.: Handbook of thermogravimetric system of minerals and its use in geological practice, Occasional papers of the Geological Institute of Hungary, Geological Inst. of Hungary, Budapest, ISBN 978-963-671-288-4, 2011.
Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S., and Abrahams, J. P.: 3D electron diffraction: the nanocrystallography revolution, ACS Central Sci., 5, 1315–1329, 2019.
Gesetz 162/1993: Gesetz zu dem Übereinkommen Nr. 162 der Internationalen Arbeitsorganisation vom 24. Juni 1986 über Sicherheit bei der Verwendung von Asbest, 1993.
Gualtieri, A. F. and Tartaglia, A.: Thermal decomposition of asbestos and recycling in traditional ceramics, J. Eur. Ceram. Soc., 20, 1409–1418, 2000.
Gualtieri, A. F., Gandolfi, N. B., Pollastri, S., Rinaldi, R., Sala, O., Martinelli, G., Paoli, T., Bacci, F., Viani, A., and Vigliaturo, R.: Assessment of the potential hazard represented by natural raw materials containing mineral fibres–The case of the feldspar from Orani, Sardinia (Italy), J. Hazard. Mater., 350, 76–87, 2018a.
Gualtieri, A. F., Pollastri, S., Bursi Gandolfi, N., and Gualtieri, M. L.: In vitro acellular dissolution of mineral fibres: A comparative study, Sci. Rep., 8, 7071, https://doi.org/10.1038/s41598-018-25531-4, 2018b.
Gualtieri, A. F., Lassinantti Gualtieri, M., Scognamiglio, V., and Di Giuseppe, D.: Human health hazards associated with asbestos in building materials, Ecological and health effects of building materials, Springer, 297–325, https://doi.org/10.1007/978-3-030-76073-1_16, 2022.
Gualtieri, A. F., Leoncini, M., Fantone, S., Di Valerio, S., Tossetta, G., Procopio, A. D., Marzioni, D., Pugnaloni, A., Bassi, A. M., Almonti, A., Mirata, S., Vernazza, S., Tirendi, S., Marengo, B., Traverso, N., Passalacqua, M., Scarfì, S., Raneri, S., Fornasini, L., Bersani, D., Ballirano, P., Pacella, A., Bloise, A., Ottaviani, M. F., Mattioli, M., Giordani, M., Della Ventura, G., and Perchiazzi, N.: PRIN 2017 Fibres-A Multidisciplinary Mineralogical, Crystal-Chemical and Biological Project. What have we learned after four years of research?, Per. Min., 92, 143–158, 2023a.
Gualtieri, A. F., Malferrari, D., Di Giuseppe, D., Scognamiglio, V., Sala, O., Gualtieri Lassinanntti, M., Bersani, D., Fornasini, L., and Mugnaioli, E.: There is plenty of asbestos at the bottom. The case of magnesite raw material contaminated with asbestos fibres, Sci. Total Environ., 898, 166275, https://doi.org/10.1016/j.scitotenv.2023.166275, 2023b.
Guggenheim, S. and Koster Van Groos, A. F. K.: Baseline Studies of the Clay Minerals Society Source Clays: Thermal Analysis, Clay. Clay Miner., 49, 433–443, 2001.
Hawthorne, F. C. and Grundy, H. D.: The crystal chemistry of the amphiboles: IV. X-ray and neutron refinements of the crystal structure of tremolite, Can. Mineral. 14, 334–345, 1976.
Hoeck, V., Koller, F., Meisel, T., Onuzi, K., and Kneringer, E.: The Jurassic South Albanian ophiolites: MOR- vs. SSZ-type ophiolites, Lithos, 65, 143–164, 2002.
Huang, E., Chen, C. H., Huang, T., Lin, E. H., and Xu, J. A.: Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes, Am. Mineral., 85, 473–479, 2000.
Hytönen, K. and Ojanperä, P.: Four tremolites from carbonate rocks of Finland, B. Geol. Soc. Finland, 48, 63–69, 1976.
Iyer, K., Austrheim, H., John, T., and Jamtveit, B.: Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway, Chem. Geol., 249, 66–90, 2008.
ISO (International Standard Organization): Air quality. Bulk materials. Part 1: Sampling and qualitative determination of asbestos in commercial bulk materials 22262-1, Geneva, Switzerland, 2012.
ISO (International Standard Organization): Air quality. Bulk materials. Part 2: Sampling and qualitative determination of asbestos in commercial bulk materials 22262-2, Geneva, Switzerland, 2014.
ISO (International Standard Organization): Ambient air determination of numerical concentration of inorganic fibrous particles scanning electron microscopy method 14966, Geneva, Switzerland, 2019.
Italian Ministry of Health: Decreto Ministero Sanità Normative e metodologie tecniche di applicazione dell'art. 6, comma 3, dell'art. 12, comma 2, della legge 27 marzo 1992, n. 257, relativa alla cessazione dell'impiego dell'amianto, 6 settembre 1994 (in Italian).
Karipi, S., Tsikouras, B., and Hatzipanagiotou, K.: The petrogenesis and tectonic setting of ultramafic rocks from Iti and Kallidromon Mountains, continental cental Greece: Vestiges of the Pindos Ocean, Can. Mineral., 44, 267–287, 2006.
Krzemnicki, M. S.: Diopside needles as inclusions in demantoid garnet from Russia: A Raman microspectrometric study, Gems Gemol., 35, 192–195, 1999.
Külah, T., Kadir, S., Erkoyun, H., Huggett, J., and Atabey, E.: Occurrence of Fibrous Chrysotile and Tremolite in the Çankiri and Ankara Regions, Central Anatolia, Turkey, Clay. Clay Miner., 66, 146–172, 2018.
L'vov, B. V. and Ugolkov, V. L.: Kinetics and mechanism of dehydration of kaolinite, muscovite and talc analyzed thermogravimetrically by the third-law method, J. Therm. Anal. Calorim., 82, 15–22, 2005.
Mackenzie, R. C.: Differential Thermal Analysis, Academic Press, edited by: Mackenzie R. C., London and New York, 1970.
Malferrari, D., Di Giuseppe, D., Scognamiglio, V., and Gualtieri, A.: Commercial brucite, a worldwide used raw material deemed safe, can be contaminated by asbestos, Per. Min., 90, 317–324, 2021.
Malinconico, S., Paglietti, F., Serranti, S., Bonifazi, G., and Lonigro, I.: Asbestos in soil and water: A review of analytical techniques and methods, J. Hazard. Mater., 436, 129083, https://doi.org/10.1016/j.jhazmat.2022.129083, 2022.
Mugnaioli, E., Gorelik, T., and Kolb, U.: “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique, Ultramicroscopy, 109, 758–765, 2009.
National Institute for Occupational Safety and Health (NIOSH): Criteria for a Recommended Standard for Occupational Exposure to Asbestos, Federal Register, 1972.
Nicolas, A., Meshi, A., Boudier, F., Jousselin, D., and Muceku, B.: Mylonites in ophiolite of Mirdita (Albania): Oceanic detachment shear zone, Geosphere, 13, 136–154, 2017.
Nozaka, T. and Fryer, P.: Alteration of the Oceanic Lower Crust at a Slow-spreading Axis: Insight from Vein-related Zoned Halos in Olivine Gabbro from Atlantis Massif, Mid-Atlantic Ridge, J. Petrol., 52, 643–664, 2011.
Pacella, A., Andreozzi, G. B., Ballirano, P., and Gianfagna, A.: Crystal chemical and structural characterization of fibrous tremolite from Ala di Stura (Lanzo Valley, Italy), Period. Mineral., 77, 51–62, 2008.
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G., and Klementová, M.: Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0, Acta Crystallogr. B, 75, 512–522, 2019.
Rinaudo, C. and Croce, A.: Micro-raman spectroscopy, a powerful technique allowing sure identification and complete characterization of asbestiform minerals, Appl. Sci., 9, 3092, https://doi.org/10.3390/app9153092, 2019.
Rutstein, M. S. and Yund, R. A.: Unit-cell parameters of synthetic diopside-hedenbergite solid solutions, Am. Mineral., 54, 238–245, 1969.
Saccani, E. and Tassinari, R.: The role of MORB and SSZ magma-types in the formation of Jurassic ultramafic cumulates in the Mirdita ophiolites (Albania) as deduced from chromian spinel and olivine chemistry, Ofioliti, 40, 37–56, 2015.
Salamatipour, A., Mohanty, S. K., Pietrofesa, R. A., Vann, D. R., Christofidou-Solomidou, M., and Willenbring, J. K.: Asbestos fiber preparation methods affect fiber toxicity, Environ. Sci. Technol. Lett., 3, 270–274, 2016.
Schneider, T., Jørgensen, O., Davies, L. S., Buchanan, D., Burdett, G., Tempelman, J., Puledda, S., and Paoletti, L.: Development of a method for the determination of low contents of asbestos fibres in bulk material, Analyst, 123, 1393–1400, 1998.
Siegrist Jr., H. G. and Wylie, A. G.: Characterizing and discriminating the shape of asbestos particles, Environ. Res., 23, 348–361, 1980.
Spurny, K. R., Stöber, W., Opiela, H., and Weiss, G.: On the problem of milling and ultrasonic treatment of asbestos and glass fibers in biological and analytical applications, Am. Ind. Hyg. Assoc. J., 41, 198–203, 1980.
Stripp, G. R., Field, M., Schumacher, J. C., Sparks, R. S. J., and Cressey, G.: Post-emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa, J. Metamorph. Geol., 24, 515–534, 2006.
Taufiq-Yap, Y. H., Nur-Faizal, A. R., Sivasangar, S., Hussein, M. Z., and Aishah, A.: Modification of Malaysian dolomite using mechanochemical treatment via different media for oil palm fronds gasification: Potential of Malaysian dolomite as a gasification catalysts, Int. J. Energ. Res., 38, 1008–1015, 2014.
Thompson, R. M. and Downs, R. T.: The crystal structure of diopside at pressure to 10 GPa, Am. Mineral., 93, 177–186, 2008.
Tribaudino, M., Mantovani, L., Bersani, D., and Lottici, P. P.: Raman spectroscopy of (Ca, Mg) MgSi2O6 clinopyroxenes, Am. Mineral., 97, 1339–1347, 2012.
Verkouteren, J. R. and Wylie, A. G.: The tremolite-actinolite-ferro–actinolite series: Systematic relationships among cell parameters, composition, optical properties, and habit, and evidence of discontinuities, Am. Mineral., 85, 1239–1254, 2000.
Wang, A., Jolliff, B. L., Haskin, L. A., Kuebler, K. E., and Viskupic, K. M.: Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy, Am. Mineral., 86, 790–806, 2001.
Wesołowski, M.: Thermal decomposition of talc: A review, Thermochim. Acta, 78, 395–421, 1984.
World Health Organization (WHO): Asbestos and Other Natural Mineral Fibres. Environmental Health Criteria, 53. World Health Organization: Geneva, Switzerland, p. 194, 1986.
Wylie, A. G. and Schweitzer, P.: The effects of sample preparation and measuring techniques on the shape and shape characterization of mineral particles: the case of wollastonite, Environ. Res., 27, 52–73, 1982.
Zhao, M. S., Chen, Y. X., and Zheng, Y. F.: Geochemical evidence for forearc metasomatism of peridotite in the Xigaze ophiolite during subduction initiation in Neo-Tethyan Ocean, south to Tibet, Lithos, 380–381, 2021.
Short summary
This work deals with a challenging case of a commercial clay from Gomsiqe–Puka (Albania) contaminated by mineral fibres. Detection and quantification of asbestos in this material push the boundaries of current experimental methods. Using TEM, micro-Raman spectroscopy, and EPMA, we identified the presence of asbestos tremolite, along with a rare fibrous variety of diopside. The impact of milling on the detection and quantification of mineral fibres was also evaluated.
This work deals with a challenging case of a commercial clay from Gomsiqe–Puka (Albania)...