Articles | Volume 36, issue 3
https://doi.org/10.5194/ejm-36-433-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-433-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland
Krisztián Szentpéteri
GTK – Mineral Potential Research Group (MTR), Espoo 02151, Finland
GTK – Mineral Potential Research Group (MTR), Espoo 02151, Finland
Stijn Glorie
Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
Hugh O'Brien
GTK – Circular Economy Group (KTR), Research Laboratory, Espoo 02151, Finland
Sari Lukkari
GTK – Circular Economy Group (KTR), Research Laboratory, Espoo 02151, Finland
Radoslaw M. Michallik
GTK – Circular Economy Group (KTR), Research Laboratory, Espoo 02151, Finland
Alan Butcher
GTK – Circular Economy Group (KTR), Research Laboratory, Espoo 02151, Finland
Related authors
No articles found.
Jon Engström, Kathryn Cutts, Stijn Glorie, Esa Heilimo, Ester M. Jolis, and Radoslaw M. Michallik
Solid Earth, 16, 97–117, https://doi.org/10.5194/se-16-97-2025, https://doi.org/10.5194/se-16-97-2025, 2025
Short summary
Short summary
This paper describes migmatites and associated rocks in SW Finland that have been studied using the new in situ garnet and apatite Lu–Hf geochronology method. The metamorphic constraints and age presented in this paper enhance our understanding of the geological evolution in SW Finland. The results reveal detailed temporal constraints for the tectonic evolution that can be linked to major events in adjacent tectonic blocks in both Finland and Sweden during the Svecofennian orogeny.
Alexander T. De Vries Van Leeuwen, Stijn Glorie, Martin Hand, Jacob Mulder, and Sarah E. Gilbert
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-29, https://doi.org/10.5194/gchron-2024-29, 2024
Revised manuscript accepted for GChron
Short summary
Short summary
In this contribution we demonstrate in situ monazite Lu–Hf dating and compare results with U–Th–Pb dating. We present data from monazite reference materials and complex samples to demonstrate the viability of this method. We show that in situ Lu–Hf dating of monazite can resolve multiple age populations and may find use where the U–Th–Pb system is compromised by Pb-loss, non-radiogenic Pb contamination, excess 206 Pb, low U contents, or a combination of these factors.
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024, https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Short summary
Radiometric dating methods, involving laser ablation as the sample introduction, require robust calibrations to reference materials with similar ablation properties to the analysed samples. In the case of the rubidium–strontium dating method, calibrations are often conducted to nano powder with different ablation characteristics than the crystalline minerals. We describe the limitations of this approach and recommend an alternative calibration method involving natural minerals.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, https://doi.org/10.5194/gchron-4-353-2022, 2022
Short summary
Short summary
The article demonstrates a new technique that can be used to determine the age of calcite crystallisation using the decay of 176Lu to 176Hf. The technique is novel because (a) Lu–Hf radiometric dating is rarely applied to calcite and (b) this is the first instance where analysis has been conducted by ablating the sample with a laser beam rather than bulk dissolution. By using laser ablation the original context of the sample is preserved.
Sara Raič, Ferenc Molnár, Nick Cook, Hugh O'Brien, and Yann Lahaye
Solid Earth, 13, 271–299, https://doi.org/10.5194/se-13-271-2022, https://doi.org/10.5194/se-13-271-2022, 2022
Short summary
Short summary
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only for gold but because of the occurrences of economically important concentrations of base metals, especially cobalt. In this study we are testing the vectoring capacities of pyrite trace element geochemistry, combined with lithogeochemical and sulfur isotopic data in the Raja gold–cobalt prospect (northern Finland), by using multivariate statistical data analysis.
Related subject area
Ore deposits and mineral resources
Analyzing petrographic characteristics and trace element distribution of high-purity quartz deposits from the Peshawar Basin, Pakistan: insights into processing and purification techniques
Tungsten solubility and speciation in hydrothermal solutions revealed by in situ X-ray absorption spectroscopy
Insights from the compositional evolution of a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Minas Gerais, Brazil
Micro- to nano-sized solid inclusions in magnetite record skarn reactions
Mineralogy and mineral chemistry of detrital platinum-group minerals and gold particles from the Elbe, Germany
Multistage fluorite mineralization in the southern Black Forest, Germany: evidence from rare earth element (REE) geochemistry
Vibrational spectroscopic study of three Mg–Ni mineral series in white and greenish clay infillings of the New Caledonian Ni-silicate ores
New data on gersdorffite and associated minerals from the Peloritani Mountains (Sicily, Italy)
A remarkable discovery of electrum on the island of Sylt, northern Germany, and its Scandinavian origin
Ibrar Khan, Xiaoyong Yang, Mei Xia, and Zhenhui Hou
Eur. J. Mineral., 37, 151–167, https://doi.org/10.5194/ejm-37-151-2025, https://doi.org/10.5194/ejm-37-151-2025, 2025
Short summary
Short summary
This study evaluated quartz vein ore from the Peshawar Basin, Pakistan, for producing high-purity quartz sand. Samples were purified and the analysis revealed fluid inclusions as main impurities. Post-purification, the quartz sand showed minimal inclusions and high SiO2 content (99.997–99.999 wt %). Impurity elements like Li and Al were significantly reduced. The refined quartz sands are deemed suitable for high-purity quartz products used in industrial applications.
Manuela Borchert, Maria A. Kokh, Marion Louvel, Elena F. Bazarkina, Anselm Loges, Edmund Welter, Denis Testemale, Rami Al Abed, Stephan Klemme, and Max Wilke
Eur. J. Mineral., 37, 111–130, https://doi.org/10.5194/ejm-37-111-2025, https://doi.org/10.5194/ejm-37-111-2025, 2025
Short summary
Short summary
Tungsten (W) concentrations in fluids in equilibrium with crystalline tungsten oxide are used to improve constraints of thermodynamic parameters for W solubility. W species in the hydrothermal fluids are further characterized by X-ray spectroscopy. Improved thermodynamic properties for a set of W fluid species are provided that cover a wide range of fluid compositions, necessary for understanding and describing the complex processes of W enrichment and mineralization in hydrothermal systems.
Giovanni B. Andreozzi, Claudia Gori, Henrik Skogby, Ulf Hålenius, Alessandra Altieri, and Ferdinando Bosi
Eur. J. Mineral., 37, 1–12, https://doi.org/10.5194/ejm-37-1-2025, https://doi.org/10.5194/ejm-37-1-2025, 2025
Short summary
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
Igor González-Pérez, José María González-Jiménez, Lola Yesares, Antonio Acosta-Vigil, Jordi Llopís, and Fernando Gervilla
Eur. J. Mineral., 36, 925–941, https://doi.org/10.5194/ejm-36-925-2024, https://doi.org/10.5194/ejm-36-925-2024, 2024
Short summary
Short summary
This study examines solid nano-inclusions in magnetite from the La Víbora magnesian skarn, Spain, revealing insights into mineral formation. We found two types of inclusions: representing fossilized skarn reactions and precipitated from supersaturated fluids. Nano-inclusions provide valuable clues about the Fe mineralization event, highlighting the significance of nano-inclusions in understanding geological processes and resource exploration.
Malte Junge, Simon Goldmann, and Hermann Wotruba
Eur. J. Mineral., 35, 439–459, https://doi.org/10.5194/ejm-35-439-2023, https://doi.org/10.5194/ejm-35-439-2023, 2023
Short summary
Short summary
The analysis by electron microprobe of platinum-group minerals, gold and cinnabar particles from heavy mineral concentrates of the Elbe showed a broad compositional variation of Os–Rus–Irs–(Pt) alloys as well as Pts–Fe alloys. The comparison with the literature showed that different sources account for the heavy mineral concentrate. This compositional variation of the alloys is also of interest for other placers of platinum-group minerals worldwide.
Robin Hintzen, Wolfgang Werner, Michael Hauck, Reiner Klemd, and Lennart A. Fischer
Eur. J. Mineral., 35, 403–426, https://doi.org/10.5194/ejm-35-403-2023, https://doi.org/10.5194/ejm-35-403-2023, 2023
Short summary
Short summary
The diversity of chemical patterns in multi-stage fluorite mineralization from two neighbouring deposits in the Black Forest is investigated. From over 70 samples, 7 fluorite groups and 3 hydrothermal events are identified after chemical and mathematical classification. The relative chronology and features suggest different mineralization histories and source aquifers for both deposits despite their proximity. Genetic differences are likely controlled by different behaviours of their host rocks.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 743–763, https://doi.org/10.5194/ejm-33-743-2021, https://doi.org/10.5194/ejm-33-743-2021, 2021
Short summary
Short summary
The study presents and discusses mid- and near-infrared spectra of three Mg–Ni mineral series (serpentine-like and talc-like minerals, sepiolite) commonly found in reactivated faults and sequences of clay infillings of the New Caledonian Ni-silicate deposits. This spectroscopic study sheds light on the nature of the residual mineral phases found in the clay infillings (serpentine-like minerals) and reveals the aptitude of the newly formed minerals (talc-like minerals and sepiolite) to store Ni.
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Jochen Schlüter, Stephan Schuth, Raúl O. C. Fonseca, and Daniel Wendt
Eur. J. Mineral., 33, 373–387, https://doi.org/10.5194/ejm-33-373-2021, https://doi.org/10.5194/ejm-33-373-2021, 2021
Short summary
Short summary
On the west coast of the German North Sea island of Sylt, an electrum–quartz pebble weighing 10.4 g was discovered in a cliff of Saalian glaciogenic sediments. This is an unusually large and rare precious metal to find. Within our paper we document and characterize this discovery. An attempt to investigate its provenance points towards a southern Norwegian origin. This leads to the conclusion that ice advance events were involved in transporting this pebble from Norway to Germany.
Cited articles
Aurola, E.: On the pegmatites in the Torro Area, Southwestern Finland, Bulletin de la Commission Geologique de Finlande, No. 206, 35 pp., https://tupa.gtk.fi/julkaisu/bulletin/bt_206.pdf (last access: 28 May 2024), 1963.
Alviola, R.: The granitic pegmatites of the Somero-Tammela area, in: Symposium Precambrian granitoids. Petrogenesis, geochemistry and metallogeny, 14–17 August 1989, Helsinki, Finland, Excursion C1: Late orogenic and synorogenic Svecofennian granitoids and associated pegmatites of southern Finland. Geol. Surv. Finl, Guidb., 26, 16–25, https://tupa.gtk.fi/julkaisu/opas/op_026.pdf (last access: 28 May 2024), 1989.
Alviola, R.: Tutkimustyöselostus Tammelan kunnassa, valtausalueella Kietyönmäki 1, kaiv. rek, No. 3991/1, suoritetuista teollisuusmineraalitutkimuksista, Geol. Surv. Finl., Rep., no. M06/2024/-93/1/85, 7 pp., 1993 (in Finnish).
Alviola, R.: Pegmatiittien malmipotentiaalista Suomessa, Geol. Surv. Finl, Rep., no.: M10/03/1/85, 5 pp., 2003 (in Finnish).
Alviola, R., Mänttäri, I., Mäkitie, H., and Vaasjoki, M.: Svecofennian rare.element granitic pegmatites of the ostrobothnia region, western finland; their metamorphic environment and time of intrusion, in: Svecofennian granitic pegmatites (1.86–1.79 Ga) and quartz monzonite (1.87 Ga), and their metamorphic environment in the Seinäjoki region, western Finland, edited by: Mäkiite, H., Geol. Surv. Finl. Special Paper, 30, 9–29, 2001.
Anderson, O. M., Lentz, D. R, Mcfalrlae C. R. M., and Falc, H.: A geological, geochemical and textural study of a LCT pegmatite: implications for the magmatic versus metasomatic origin of Nb–Ta mineralization in the Moose II pegmatite, Northwest Territories, Canada, J. Geosci., 58, 299–320, 2013.
Breaks, F. W. and Tindle, A. G.: Rare-Metal Exploration Potential of the Separation Lake Area: an Emerging Target for Bikita-Type Mineralization in the Superior Province of NW Ontario, OGS, OFR 5966, 27 pp., 1997.
Bradley, D. C., McCauley, A. D., and Stillings, L. M.: Mineral-deposit model for lithium-caesium-tantalum pegmatites, USGS Sci. Investig. Rep., 2010-5070-O, 48 pp., 2017.
Černý, P.: Characteristics of pegmatite deposits of tantalum, in: Lanthanides, tantalum and niobium, edited by: Möller, P., Černý, P., Saupé, F., Springer, Berlin Heidelberg New York, 195 pp., https://doi.org/10.1007/978-3-642-87262-4_8, 1989.
Černý, P.: Rare-element granitic pegmatites, Part I: Anatomy and internal evolution of pegmatite deposits, Geoscience Canada (Ore Deposit Models series), 18, 49–67, 1991.
Černý, P.: Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research, Appl. Geochem., 7, 393–416, 1992.
Černý, P. and Ferguson, R. B.: The Tanco pegmatite at Bernic Lake, Manitoba; IV, Petalite and spodumene relations, Can. Mineral., 11, 660–678, 1972.
Černý, P., Goad, B. E., Hawthorne, F. C., and Chapman, R.: Fractionation trends of the Nb- and Ta- bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba, Am. Mineral., 71, 501–517, 1986.
Černý, P., Novak, M., and Chapman, R.: Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Marsikov. northern Moravia, Czechoslovakia, Can. Mineral., 30, 699–718, 1992a.
Černý, P., Ercit, T. S., and Wise, M. A.: The tantalite-tapiolite gap: natural assemblages versus experimental data, Can. Mineral., 30, 587–596, 1992b.
Charoy, B., Noronha, F., and Lima, A.: Spodumene–petalite–eucryptite: Mutual relationships and pattern of alteration in Li-rich aplite–pegmatite dykes from northern Portugal, Can. Mineral., 39, 729–746, 2001.
Chischi, J., Oskierski, H. C., Alhadad, M. F., Deditius, A., Senanayake, G., Roberts, M. P., and Dlugogorski, B. Z.: Alteration of Spodumene to Muscovite and Cookeite – Implications for the Fate of Lithium and Iron, Goldschmidt 2021 Abstract, https://conf.goldschmidt.info/goldschmidt/2021/meetingapp.cgi/Paper/4626 (last access: 28 May 2024), 2021.
Dias, F., Lima, A., and Roda-Robles, E.: Mutual relationships between spodumene and petalite from the Iberian Massif pegmatites: More than PT changes?, Can. Mineral., 57, 731–732, 2019.
Eilu, P.: Overview on Gold Deposits in Finland in Mineral Deposits of Finland, edited by: Maier, W. D., O'Brien, H., and Lahtinen, R., Mineral Deposits of Finland, Elsevier, Amsterdam, 377–403, 2015.
Eilu, P., Ahtola, T., Äikäs, O., Halkoaho, T., Heikura, P., Hulkki, H., Iljina, M., Juopperi, H., Karinen, T., Kärkkäinen, N., Konnunaho, J., Kontinen, A., Kontoniemi, O., Korkiakoski, E., Korsakova, M., Kuivasaari, T., Kyläkoski, M., Makkonen, H., Niiranen, T., Nikander, J., Nykänen, V., Perdahl, J.-A., Pohjolainen, E., Räsänen, J., Sorjonen-Ward, P., Tiainen, M., Tontti, M., Torppa, A., and Västi, K.: Metallogenic areas in Finland, Geological Survey of Finland, Special Paper 53, 207–342, https://tupa.gtk.fi/julkaisu/specialpaper/sp_053_pages_207_342.pdf (last access: 28 May 2024), 2012.
Glorie, S., Mulder, J., Hand, M., Fabris, A., Simpson, A., and Gilbert, S.: Laser ablation (in situ) Lu-Hf dating of magmatic fluorite and hydrothermal fluorite-bearing veins, Geosci. Front., 14, 101629, https://doi.org/10.1016/j.gsf.2023.101629, 2023.
Kuusela, J., Ahtola, T., Koistinen, E., Seppänen, H., Hatakka, T., and Lohva, J.: Report of investigations on the Rapasaaret lithium pegmatite deposit in Kaustinen-Kokkola, Western Finland, Geol. Surv. Finl., Rep., 42/2011, 65 pp., https://tupa.gtk.fi/raportti/arkisto/42_2011.pdf (last access: 28 May 2024), 2011.
Leväniemi, H.: Lithium Pegmatite Prospectivity Modelling in Somero-Tammela Area, Southern Finland, Geol. Surv. Finl., Rep., 151/2013, 20 pp., https://tupa.gtk.fi/raportti/arkisto/151_2013.pdf (last access: 28 May 2024), 2013.
Li, Y. and Vermeesch, P.: Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers, Geochronology, 3, 415–420, https://doi.org/10.5194/gchron-3-415-2021, 2021.
Lima, A. and Dias, F.: Spodumene and Quartz Intergrowth – Textural and Genesis Point of View, Geophys. Res. Abstr., EGU General Assembly 2019, Vienna, Austria, Vol. 21, EGU2019-13404, https://meetingorganizer.copernicus.org/EGU2019/EGU2019-13404.pdf (last access: 28 May 2024), 2019.
Lindroos, A., Romer, R. L., Ehlers, C., and Alviola, R.: Late-orogenic Svecofennian deformation in SW Finland constrained by pegmatite emplacement ages, Terra Nova, 8, 567–574, https://doi.org/10.1111/j.1365-3121.1996.tb00786.x, 1996.
London, D.: Experimental phase equilibria in the system LiAlSiO4–SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites, Am. Mineral., 69, 995–1004, 1984.
London, D.: Pegmatites, Can. Mineral. Spec. Publ., Québec, QC, Canada, 10, 340 pp., ISBN 9780921294474, 2008.
Lyalina, L. M., Selivanova, E. A., and Hatert, F.: Nomenclature of the triphylite group of minerals, Eur. J. Mineral., 35, 427–437, https://doi.org/10.5194/ejm-35-427-2023, 2023.
Hernández-Filiberto, L., Roda-Robles, E., Simmons, W. B., and Webber, K. L.: Garnet as Indicator of Pegmatite Evolution: The Case Study of Pegmatites from the Oxford Pegmatite Field (Maine, USA), Minerals, 11, 802–810, https://doi.org/10.3390/min11080802, 2021.
Mäkinen, E.: Die Granitpegmatite von Tammela in Finnland und ihire Minerale, Bulletin de la Commission Geologique de Finlande No. 35 (BGSF), 101 pp., https://tupa.gtk.fi/julkaisu/bulletin/bt_035.pdf (last access: 28 May 2024), 1913.
Martins, T. C.: Multidisciplinary study of pegmatites and associated Li and Sn-Nb-Ta mineralisation from the Barroso-Alvão region, PhD Thesis, Faculty of Sciences, University of Porto, 269 pp., https://repositorio-aberto.up.pt/handle/10216/83857 (last access: 28 May 2024), 2009.
Moretz, L., Heimann, A., Bitner, J., Wise, M., Rodrigues Soares, D., and Mousinho, F. A.: The composition of garnet as indicator of rare metal (Li) mineralization in granitic pegmatites, Proceeding of the 6th International Symposium on Granitic Pegmatites, New Hampshire and Maine, USA, 26 May–2 June, 94–95, 2013.
Müller, A., Kaersley, A., Spratt, J., and Seltmann, R.: Petrogenetic implications of magmatic garnet in granitic pegmatites from southern Norway, Can. Mineral., 50, 1095–1115, 2012.
Nebel, O., Morel, M. L. A., and Vroon, P. Z.: Isotope dilution determinations of Lu, Hf, Zr, Ta and W, and Hf isotope compositions of NIST SRM 610 and 612 glass wafers, Geostand. Geoanal. Res., 33, 487–499, https://doi.org/10.1111/j.1751-908X.2009.00032.x, 2009.
Norris, A. and Danyushevsky, L.: Towards estimating the complete uncertainty budget of quantified results measured by LA-ICP-MS, Goldschimdt Boston, https://goldschmidtabstracts.info/2018/1894.pdf (last access: 28 May 2024), 2018.
Pan, Y. and Breaks, F. W.: Rare earth elements in fluorapatite, separation lake area, Ontario: evidence for S-type granite – rare element pegmatite linkage, Can. Mineral., 35, 659–671, 1997.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite: Freeware for the visualisation and processing of mass spectrometric data, J. Anal. Atom. Spectrom., 26, 2508–2518, https://doi.org/10.1039/c1ja10172b, 2011.
Paul, B., Paton, C., Norris, A., Woodhead, J., Hellstrom, J., Hergt, J., and Greig, A.: CellSpace: A module for creating spatially registered laser ablation images within the Iolite freeware environment, J. Anal. Atom. Spectrom., 27, 700–706, https://doi.org/10.1039/c2ja10383d, 2012.
Petrus, J. A., Chew, D. M., Leybourne, M. I., and Kamber, B. S.: A new approach to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) using the flexible map interrogation tool “Monocle”, Chem. Geol., 463, 76–93, 2017.
Pouchou, J. L. and Pichoir, F.: Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP”, in: Electron Probe Quantification, edited by: Heinrich, K. F. J. and Newbury, D. E., Plenum Press, New York, 31–75, 1991.
Romer, R. L. and Smeds, S.-A.: U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden, Precambrian Res., 76, 15–30, https://doi.org/10.1016/0301-9268(95)00023-2, 1996.
Roza Llera, A., Fuertes-Fuente, M., Cepedal, A., and Martin-Izard, A.: Barren and Li–Sn–Ta Mineralized Pegmatites from NW Spain (Central Galicia): A Comparative Study of Their Mineralogy, Geochemistry, and Wallrock Metasomatism, Minerals, 9, 739, https://doi.org/10.3390/min9120739, 2019.
Saalmann, K.: Structural control on gold mineralization in the Satulinmäki and Riukka prospects, Häme Schist Belt, southern Finland, B. Geol. Soc. Finland, 79, 69–93, 2007.
Saalmann, K., Mänttäri, I., Ruffet, G., and Whitehouse, M. J.: Age and tectonic framework of structurally controlled Palaeoproterozoic gold mineralization in the Häme belt of southern Finland, Precambrian Res., 174, 53–77, 2009.
Saikkonen, R.: Hirvikallion petaliittiesiintymä, Tammela, Oy Lohja Ab, Malminetsintä, Report 12.1.1981, 1981 (in Finnish).
Simonen, A.: Kalioperäkartan selitys, Lehti – Sheet – 2024, Somero, Explanation to the map of rocks, Geological map of Finland, 1 : 100 000, https://tupa.gtk.fi/kartta/kallioperakartta100/kps_2024.pdf (last access: 28 May 2024), 1956.
Simpson, A., Gilbert, S., Tamblyn, R., Hand, M., Spandler, C., Gillespie, J., Nixon, A., and Glorie, S.: In-situ Lu-Hf geochronology of garnet, apatite and xenotime by LA-ICP MS/MS, Chem. Geol., 577, 120299, https://doi.org/10.1016/j.chemgeo.2021.120299, 2021.
Simpson, A., Glorie, S., Hand, M., Spandler, C., Gilbert, S., and Cave, B.: In situ Lu-Hf geochronology of calcite, Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, 2022.
Simpson, A., Glorie, S., Hand, M., Spandler, C., and Gilbert, S.: Garnet Lu-Hf speed dating: A novel method to rapidly resolve polymetamorphic histories, Geosci. Front., 121, 215–234, https://doi.org/10.1016/j.gr.2023.04.011, 2023.
Söderlund, U., Patchett, P. J., Vervoort, J. D., and Isachsen, C. E.: The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions, Earth Planet. Sc. Lett., 219, 311–324, https://doi.org/10.1016/S0012-821X(04)00012-3, 2004.
Szentpéteri, K., Cutts, K., Glorie, S., O'Brien, H., Lukkari, S., Michallik, R. M., and Butcher, A.: Laser ablation ICP-MS/MS Lu-Hf garnet data for Keityonmaki Li-pegmatite, Version 1.0., Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.60520/IEDA/113207, 2024.
Teertstra, D. K., Černý, P., and Hawthorne, F. C.: Rubidium-rich feldspars and associated minerals from the Luolämaki pegmatite, Somero, Finland, BGSF, 70, 43–49, 1998.
Teertstra, D. K., Černý, P., and Hawthorne, F. C.: Pollucite and its alteration in Finnish pegmatites, BGSF, 368, 39 pp., https://tupa.gtk.fi/julkaisu/bulletin/bt_368.pdf (last access: 28 May 2024), 1993.
Thomas, R. J., Bühmann, D., Bullen, W. D., Scogings, A. J., and De Bruin, D.: Unusual spodumene pegmatites from the Late Kibaran of southern Natal, South Africa, Ore Geol. Rev., 9, 61–182, 1994.
Tindle, A. G. and Breaks, F. W.: Columbite-tantalite mineral chemistry from rare-element granitic pegmatites: Separation Lake area, N.W. Ontario, Canada, Mineral. Petr., 70, 165–198, 2000.
Vermeesch, P: IsoplotR: a free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vesasalo, A.: On the petalite occurrences of Tammela, SW Finland, BGSF, 31, 59–74, 1959.
Short summary
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum (LCT) pegmatite from the Somero–Tammela pegmatite region. The age obtained was 1801 ± 53 Ma, which is consistent with zircon ages of 1815–1740 Ma obtained from the same pegmatite. We show the in situ Lu–Hf method is a fast way of obtaining reliable age dates from LCT pegmatites.
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum...