Articles | Volume 36, issue 3
https://doi.org/10.5194/ejm-36-433-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-433-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland
Krisztián Szentpéteri
GTK – Mineral Potential Research Group (MTR), Espoo 02151, Finland
GTK – Mineral Potential Research Group (MTR), Espoo 02151, Finland
Stijn Glorie
Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
Hugh O'Brien
GTK – Circular Economy Group (KTR), Research Laboratory, Espoo 02151, Finland
Sari Lukkari
GTK – Circular Economy Group (KTR), Research Laboratory, Espoo 02151, Finland
Radoslaw M. Michallik
GTK – Circular Economy Group (KTR), Research Laboratory, Espoo 02151, Finland
Alan Butcher
GTK – Circular Economy Group (KTR), Research Laboratory, Espoo 02151, Finland
Related authors
No articles found.
Alexander T. De Vries Van Leeuwen, Stijn Glorie, Martin Hand, Jacob Mulder, and Sarah E. Gilbert
Geochronology, 7, 199–211, https://doi.org/10.5194/gchron-7-199-2025, https://doi.org/10.5194/gchron-7-199-2025, 2025
Short summary
Short summary
In this contribution, we demonstrate in situ monazite lutetium–hafnium dating and compare results with uranium–lead dating. We present data from monazite reference materials and complex samples to demonstrate the viability of this method. We show that in situ lutetium–hafnium dating of monazite can resolve multiple age populations and may find use in scenarios where the uranium–lead system has been compromised.
Jon Engström, Kathryn Cutts, Stijn Glorie, Esa Heilimo, Ester M. Jolis, and Radoslaw M. Michallik
Solid Earth, 16, 97–117, https://doi.org/10.5194/se-16-97-2025, https://doi.org/10.5194/se-16-97-2025, 2025
Short summary
Short summary
This paper describes migmatites and associated rocks in SW Finland that have been studied using the new in situ garnet and apatite Lu–Hf geochronology method. The metamorphic constraints and age presented in this paper enhance our understanding of the geological evolution in SW Finland. The results reveal detailed temporal constraints for the tectonic evolution that can be linked to major events in adjacent tectonic blocks in both Finland and Sweden during the Svecofennian orogeny.
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024, https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Short summary
Radiometric dating methods, involving laser ablation as the sample introduction, require robust calibrations to reference materials with similar ablation properties to the analysed samples. In the case of the rubidium–strontium dating method, calibrations are often conducted to nano powder with different ablation characteristics than the crystalline minerals. We describe the limitations of this approach and recommend an alternative calibration method involving natural minerals.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, https://doi.org/10.5194/gchron-4-353-2022, 2022
Short summary
Short summary
The article demonstrates a new technique that can be used to determine the age of calcite crystallisation using the decay of 176Lu to 176Hf. The technique is novel because (a) Lu–Hf radiometric dating is rarely applied to calcite and (b) this is the first instance where analysis has been conducted by ablating the sample with a laser beam rather than bulk dissolution. By using laser ablation the original context of the sample is preserved.
Sara Raič, Ferenc Molnár, Nick Cook, Hugh O'Brien, and Yann Lahaye
Solid Earth, 13, 271–299, https://doi.org/10.5194/se-13-271-2022, https://doi.org/10.5194/se-13-271-2022, 2022
Short summary
Short summary
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only for gold but because of the occurrences of economically important concentrations of base metals, especially cobalt. In this study we are testing the vectoring capacities of pyrite trace element geochemistry, combined with lithogeochemical and sulfur isotopic data in the Raja gold–cobalt prospect (northern Finland), by using multivariate statistical data analysis.
Cited articles
Aurola, E.: On the pegmatites in the Torro Area, Southwestern Finland, Bulletin de la Commission Geologique de Finlande, No. 206, 35 pp., https://tupa.gtk.fi/julkaisu/bulletin/bt_206.pdf (last access: 28 May 2024), 1963.
Alviola, R.: The granitic pegmatites of the Somero-Tammela area, in: Symposium Precambrian granitoids. Petrogenesis, geochemistry and metallogeny, 14–17 August 1989, Helsinki, Finland, Excursion C1: Late orogenic and synorogenic Svecofennian granitoids and associated pegmatites of southern Finland. Geol. Surv. Finl, Guidb., 26, 16–25, https://tupa.gtk.fi/julkaisu/opas/op_026.pdf (last access: 28 May 2024), 1989.
Alviola, R.: Tutkimustyöselostus Tammelan kunnassa, valtausalueella Kietyönmäki 1, kaiv. rek, No. 3991/1, suoritetuista teollisuusmineraalitutkimuksista, Geol. Surv. Finl., Rep., no. M06/2024/-93/1/85, 7 pp., 1993 (in Finnish).
Alviola, R.: Pegmatiittien malmipotentiaalista Suomessa, Geol. Surv. Finl, Rep., no.: M10/03/1/85, 5 pp., 2003 (in Finnish).
Alviola, R., Mänttäri, I., Mäkitie, H., and Vaasjoki, M.: Svecofennian rare.element granitic pegmatites of the ostrobothnia region, western finland; their metamorphic environment and time of intrusion, in: Svecofennian granitic pegmatites (1.86–1.79 Ga) and quartz monzonite (1.87 Ga), and their metamorphic environment in the Seinäjoki region, western Finland, edited by: Mäkiite, H., Geol. Surv. Finl. Special Paper, 30, 9–29, 2001.
Anderson, O. M., Lentz, D. R, Mcfalrlae C. R. M., and Falc, H.: A geological, geochemical and textural study of a LCT pegmatite: implications for the magmatic versus metasomatic origin of Nb–Ta mineralization in the Moose II pegmatite, Northwest Territories, Canada, J. Geosci., 58, 299–320, 2013.
Breaks, F. W. and Tindle, A. G.: Rare-Metal Exploration Potential of the Separation Lake Area: an Emerging Target for Bikita-Type Mineralization in the Superior Province of NW Ontario, OGS, OFR 5966, 27 pp., 1997.
Bradley, D. C., McCauley, A. D., and Stillings, L. M.: Mineral-deposit model for lithium-caesium-tantalum pegmatites, USGS Sci. Investig. Rep., 2010-5070-O, 48 pp., 2017.
Černý, P.: Characteristics of pegmatite deposits of tantalum, in: Lanthanides, tantalum and niobium, edited by: Möller, P., Černý, P., Saupé, F., Springer, Berlin Heidelberg New York, 195 pp., https://doi.org/10.1007/978-3-642-87262-4_8, 1989.
Černý, P.: Rare-element granitic pegmatites, Part I: Anatomy and internal evolution of pegmatite deposits, Geoscience Canada (Ore Deposit Models series), 18, 49–67, 1991.
Černý, P.: Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research, Appl. Geochem., 7, 393–416, 1992.
Černý, P. and Ferguson, R. B.: The Tanco pegmatite at Bernic Lake, Manitoba; IV, Petalite and spodumene relations, Can. Mineral., 11, 660–678, 1972.
Černý, P., Goad, B. E., Hawthorne, F. C., and Chapman, R.: Fractionation trends of the Nb- and Ta- bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba, Am. Mineral., 71, 501–517, 1986.
Černý, P., Novak, M., and Chapman, R.: Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Marsikov. northern Moravia, Czechoslovakia, Can. Mineral., 30, 699–718, 1992a.
Černý, P., Ercit, T. S., and Wise, M. A.: The tantalite-tapiolite gap: natural assemblages versus experimental data, Can. Mineral., 30, 587–596, 1992b.
Charoy, B., Noronha, F., and Lima, A.: Spodumene–petalite–eucryptite: Mutual relationships and pattern of alteration in Li-rich aplite–pegmatite dykes from northern Portugal, Can. Mineral., 39, 729–746, 2001.
Chischi, J., Oskierski, H. C., Alhadad, M. F., Deditius, A., Senanayake, G., Roberts, M. P., and Dlugogorski, B. Z.: Alteration of Spodumene to Muscovite and Cookeite – Implications for the Fate of Lithium and Iron, Goldschmidt 2021 Abstract, https://conf.goldschmidt.info/goldschmidt/2021/meetingapp.cgi/Paper/4626 (last access: 28 May 2024), 2021.
Dias, F., Lima, A., and Roda-Robles, E.: Mutual relationships between spodumene and petalite from the Iberian Massif pegmatites: More than PT changes?, Can. Mineral., 57, 731–732, 2019.
Eilu, P.: Overview on Gold Deposits in Finland in Mineral Deposits of Finland, edited by: Maier, W. D., O'Brien, H., and Lahtinen, R., Mineral Deposits of Finland, Elsevier, Amsterdam, 377–403, 2015.
Eilu, P., Ahtola, T., Äikäs, O., Halkoaho, T., Heikura, P., Hulkki, H., Iljina, M., Juopperi, H., Karinen, T., Kärkkäinen, N., Konnunaho, J., Kontinen, A., Kontoniemi, O., Korkiakoski, E., Korsakova, M., Kuivasaari, T., Kyläkoski, M., Makkonen, H., Niiranen, T., Nikander, J., Nykänen, V., Perdahl, J.-A., Pohjolainen, E., Räsänen, J., Sorjonen-Ward, P., Tiainen, M., Tontti, M., Torppa, A., and Västi, K.: Metallogenic areas in Finland, Geological Survey of Finland, Special Paper 53, 207–342, https://tupa.gtk.fi/julkaisu/specialpaper/sp_053_pages_207_342.pdf (last access: 28 May 2024), 2012.
Glorie, S., Mulder, J., Hand, M., Fabris, A., Simpson, A., and Gilbert, S.: Laser ablation (in situ) Lu-Hf dating of magmatic fluorite and hydrothermal fluorite-bearing veins, Geosci. Front., 14, 101629, https://doi.org/10.1016/j.gsf.2023.101629, 2023.
Kuusela, J., Ahtola, T., Koistinen, E., Seppänen, H., Hatakka, T., and Lohva, J.: Report of investigations on the Rapasaaret lithium pegmatite deposit in Kaustinen-Kokkola, Western Finland, Geol. Surv. Finl., Rep., 42/2011, 65 pp., https://tupa.gtk.fi/raportti/arkisto/42_2011.pdf (last access: 28 May 2024), 2011.
Leväniemi, H.: Lithium Pegmatite Prospectivity Modelling in Somero-Tammela Area, Southern Finland, Geol. Surv. Finl., Rep., 151/2013, 20 pp., https://tupa.gtk.fi/raportti/arkisto/151_2013.pdf (last access: 28 May 2024), 2013.
Li, Y. and Vermeesch, P.: Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers, Geochronology, 3, 415–420, https://doi.org/10.5194/gchron-3-415-2021, 2021.
Lima, A. and Dias, F.: Spodumene and Quartz Intergrowth – Textural and Genesis Point of View, Geophys. Res. Abstr., EGU General Assembly 2019, Vienna, Austria, Vol. 21, EGU2019-13404, https://meetingorganizer.copernicus.org/EGU2019/EGU2019-13404.pdf (last access: 28 May 2024), 2019.
Lindroos, A., Romer, R. L., Ehlers, C., and Alviola, R.: Late-orogenic Svecofennian deformation in SW Finland constrained by pegmatite emplacement ages, Terra Nova, 8, 567–574, https://doi.org/10.1111/j.1365-3121.1996.tb00786.x, 1996.
London, D.: Experimental phase equilibria in the system LiAlSiO4–SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites, Am. Mineral., 69, 995–1004, 1984.
London, D.: Pegmatites, Can. Mineral. Spec. Publ., Québec, QC, Canada, 10, 340 pp., ISBN 9780921294474, 2008.
Lyalina, L. M., Selivanova, E. A., and Hatert, F.: Nomenclature of the triphylite group of minerals, Eur. J. Mineral., 35, 427–437, https://doi.org/10.5194/ejm-35-427-2023, 2023.
Hernández-Filiberto, L., Roda-Robles, E., Simmons, W. B., and Webber, K. L.: Garnet as Indicator of Pegmatite Evolution: The Case Study of Pegmatites from the Oxford Pegmatite Field (Maine, USA), Minerals, 11, 802–810, https://doi.org/10.3390/min11080802, 2021.
Mäkinen, E.: Die Granitpegmatite von Tammela in Finnland und ihire Minerale, Bulletin de la Commission Geologique de Finlande No. 35 (BGSF), 101 pp., https://tupa.gtk.fi/julkaisu/bulletin/bt_035.pdf (last access: 28 May 2024), 1913.
Martins, T. C.: Multidisciplinary study of pegmatites and associated Li and Sn-Nb-Ta mineralisation from the Barroso-Alvão region, PhD Thesis, Faculty of Sciences, University of Porto, 269 pp., https://repositorio-aberto.up.pt/handle/10216/83857 (last access: 28 May 2024), 2009.
Moretz, L., Heimann, A., Bitner, J., Wise, M., Rodrigues Soares, D., and Mousinho, F. A.: The composition of garnet as indicator of rare metal (Li) mineralization in granitic pegmatites, Proceeding of the 6th International Symposium on Granitic Pegmatites, New Hampshire and Maine, USA, 26 May–2 June, 94–95, 2013.
Müller, A., Kaersley, A., Spratt, J., and Seltmann, R.: Petrogenetic implications of magmatic garnet in granitic pegmatites from southern Norway, Can. Mineral., 50, 1095–1115, 2012.
Nebel, O., Morel, M. L. A., and Vroon, P. Z.: Isotope dilution determinations of Lu, Hf, Zr, Ta and W, and Hf isotope compositions of NIST SRM 610 and 612 glass wafers, Geostand. Geoanal. Res., 33, 487–499, https://doi.org/10.1111/j.1751-908X.2009.00032.x, 2009.
Norris, A. and Danyushevsky, L.: Towards estimating the complete uncertainty budget of quantified results measured by LA-ICP-MS, Goldschimdt Boston, https://goldschmidtabstracts.info/2018/1894.pdf (last access: 28 May 2024), 2018.
Pan, Y. and Breaks, F. W.: Rare earth elements in fluorapatite, separation lake area, Ontario: evidence for S-type granite – rare element pegmatite linkage, Can. Mineral., 35, 659–671, 1997.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite: Freeware for the visualisation and processing of mass spectrometric data, J. Anal. Atom. Spectrom., 26, 2508–2518, https://doi.org/10.1039/c1ja10172b, 2011.
Paul, B., Paton, C., Norris, A., Woodhead, J., Hellstrom, J., Hergt, J., and Greig, A.: CellSpace: A module for creating spatially registered laser ablation images within the Iolite freeware environment, J. Anal. Atom. Spectrom., 27, 700–706, https://doi.org/10.1039/c2ja10383d, 2012.
Petrus, J. A., Chew, D. M., Leybourne, M. I., and Kamber, B. S.: A new approach to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) using the flexible map interrogation tool “Monocle”, Chem. Geol., 463, 76–93, 2017.
Pouchou, J. L. and Pichoir, F.: Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP”, in: Electron Probe Quantification, edited by: Heinrich, K. F. J. and Newbury, D. E., Plenum Press, New York, 31–75, 1991.
Romer, R. L. and Smeds, S.-A.: U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden, Precambrian Res., 76, 15–30, https://doi.org/10.1016/0301-9268(95)00023-2, 1996.
Roza Llera, A., Fuertes-Fuente, M., Cepedal, A., and Martin-Izard, A.: Barren and Li–Sn–Ta Mineralized Pegmatites from NW Spain (Central Galicia): A Comparative Study of Their Mineralogy, Geochemistry, and Wallrock Metasomatism, Minerals, 9, 739, https://doi.org/10.3390/min9120739, 2019.
Saalmann, K.: Structural control on gold mineralization in the Satulinmäki and Riukka prospects, Häme Schist Belt, southern Finland, B. Geol. Soc. Finland, 79, 69–93, 2007.
Saalmann, K., Mänttäri, I., Ruffet, G., and Whitehouse, M. J.: Age and tectonic framework of structurally controlled Palaeoproterozoic gold mineralization in the Häme belt of southern Finland, Precambrian Res., 174, 53–77, 2009.
Saikkonen, R.: Hirvikallion petaliittiesiintymä, Tammela, Oy Lohja Ab, Malminetsintä, Report 12.1.1981, 1981 (in Finnish).
Simonen, A.: Kalioperäkartan selitys, Lehti – Sheet – 2024, Somero, Explanation to the map of rocks, Geological map of Finland, 1 : 100 000, https://tupa.gtk.fi/kartta/kallioperakartta100/kps_2024.pdf (last access: 28 May 2024), 1956.
Simpson, A., Gilbert, S., Tamblyn, R., Hand, M., Spandler, C., Gillespie, J., Nixon, A., and Glorie, S.: In-situ Lu-Hf geochronology of garnet, apatite and xenotime by LA-ICP MS/MS, Chem. Geol., 577, 120299, https://doi.org/10.1016/j.chemgeo.2021.120299, 2021.
Simpson, A., Glorie, S., Hand, M., Spandler, C., Gilbert, S., and Cave, B.: In situ Lu-Hf geochronology of calcite, Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, 2022.
Simpson, A., Glorie, S., Hand, M., Spandler, C., and Gilbert, S.: Garnet Lu-Hf speed dating: A novel method to rapidly resolve polymetamorphic histories, Geosci. Front., 121, 215–234, https://doi.org/10.1016/j.gr.2023.04.011, 2023.
Söderlund, U., Patchett, P. J., Vervoort, J. D., and Isachsen, C. E.: The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions, Earth Planet. Sc. Lett., 219, 311–324, https://doi.org/10.1016/S0012-821X(04)00012-3, 2004.
Szentpéteri, K., Cutts, K., Glorie, S., O'Brien, H., Lukkari, S., Michallik, R. M., and Butcher, A.: Laser ablation ICP-MS/MS Lu-Hf garnet data for Keityonmaki Li-pegmatite, Version 1.0., Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.60520/IEDA/113207, 2024.
Teertstra, D. K., Černý, P., and Hawthorne, F. C.: Rubidium-rich feldspars and associated minerals from the Luolämaki pegmatite, Somero, Finland, BGSF, 70, 43–49, 1998.
Teertstra, D. K., Černý, P., and Hawthorne, F. C.: Pollucite and its alteration in Finnish pegmatites, BGSF, 368, 39 pp., https://tupa.gtk.fi/julkaisu/bulletin/bt_368.pdf (last access: 28 May 2024), 1993.
Thomas, R. J., Bühmann, D., Bullen, W. D., Scogings, A. J., and De Bruin, D.: Unusual spodumene pegmatites from the Late Kibaran of southern Natal, South Africa, Ore Geol. Rev., 9, 61–182, 1994.
Tindle, A. G. and Breaks, F. W.: Columbite-tantalite mineral chemistry from rare-element granitic pegmatites: Separation Lake area, N.W. Ontario, Canada, Mineral. Petr., 70, 165–198, 2000.
Vermeesch, P: IsoplotR: a free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vesasalo, A.: On the petalite occurrences of Tammela, SW Finland, BGSF, 31, 59–74, 1959.
Short summary
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum (LCT) pegmatite from the Somero–Tammela pegmatite region. The age obtained was 1801 ± 53 Ma, which is consistent with zircon ages of 1815–1740 Ma obtained from the same pegmatite. We show the in situ Lu–Hf method is a fast way of obtaining reliable age dates from LCT pegmatites.
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum...