Articles | Volume 36, issue 1
https://doi.org/10.5194/ejm-36-11-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-11-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiple growth of zirconolite in marble (Mogok metamorphic belt, Myanmar): evidence for episodes of fluid metasomatism and Zr–Ti–U mineralization in metacarbonate systems
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Shun Guo
CORRESPONDING AUTHOR
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Yueheng Yang
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Qian Mao
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Jiangyan Yuan
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Shitou Wu
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Xiaochi Liu
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
Kyaing Sein
Myanmar Geosciences Society, Hlaing University Campus, Yangon, Myanmar
Related authors
No articles found.
Pan Tang and Shun Guo
Eur. J. Mineral., 35, 569–588, https://doi.org/10.5194/ejm-35-569-2023, https://doi.org/10.5194/ejm-35-569-2023, 2023
Short summary
Short summary
In this study, unusual corundum- and spinel-bearing symplectites after muscovite were found in ultrahigh-pressure eclogites from the Dabie terrane, China. The results indicate that these symplectites formed by the low-pressure partial melting of muscovite during slab exhumation. We stress that the occurrence of corundum- and spinel-bearing symplectites after muscovite in eclogites provides important implications for fluid and melt actions in exhumed slabs.
Related subject area
Fluid-rock interaction
Contact metamorphic reactions and fluid–rock interactions related to magmatic sill intrusion in the Guaymas Basin
Pervasive carbonation of peridotite to listvenite (Semail Ophiolite, Sultanate of Oman): clues from iron partitioning and chemical zoning
Alban Cheviet, Martine Buatier, Flavien Choulet, Christophe Galerne, Armelle Riboulleau, Ivano Aiello, Kathleen M. Marsaglia, and Tobias W. Höfig
Eur. J. Mineral., 35, 987–1007, https://doi.org/10.5194/ejm-35-987-2023, https://doi.org/10.5194/ejm-35-987-2023, 2023
Short summary
Short summary
The present study is based on sample chemical and mineralogical analyses of oceanic sediment and rock that were collected in the Guaymas Basin during IODP Expedition 385. The contact aureoles are not only affected by maturation of organic matter and dehydration reaction, but mineralogical reactions concern all sediment components (silicates, sulfides, carbonates, organic matter) and can be the result of the combination of different stages of alteration during and after the sill emplacement.
Thierry Decrausaz, Marguerite Godard, Manuel D. Menzel, Fleurice Parat, Emilien Oliot, Romain Lafay, and Fabrice Barou
Eur. J. Mineral., 35, 171–187, https://doi.org/10.5194/ejm-35-171-2023, https://doi.org/10.5194/ejm-35-171-2023, 2023
Short summary
Short summary
The carbonation of peridotites occurs during the fluxing of reactive CO2-bearing fluids, ultimately producing listvenites (magnesite and quartz assemblage). We studied the most extended outcrops of listvenites worldwide, found at the base of the Semail Ophiolite (Oman). Our study highlights the partitioning of iron during early pervasive carbonation revealed by chemical zoning in matrix magnesites, and we discuss the conditions favoring the formation of Fe-rich magnesite.
Cited articles
Audétat, A. and Keppler, H.: Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell, Earth Planet. Sc. Lett., 232, 393–402, https://doi.org/10.1016/j.epsl.2005.01.028, 2005.
Antignano, A. and Manning, C.E.: Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900 ∘C and 0.7 to 2.0 GPa. Chem. Geol., 251, 112–119, https://doi.org/10.1016/j.chemgeo.2008.03.001, 2008.
Azzone, R. G., Ruberti, E., Enrich, G. E. R., and Gomes, C. B.: Zr- and Ba-rich minerals from the Ponte Nova alkaline mafic–ultramafic massif, southeastern Brazil: indication of an enriched mantle source, Can. Mineral., 47, 1087–1103, https://doi.org/10.3749/canmin.47.5.1087, 2009.
Bali, E., Audétat, A., and Keppler, H.: The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity, Contrib. Mineral. Petrol., 161, 597–613, https://doi.org/10.1007/s00410-010-0552-9, 2011.
Barker, S. L., Cox, S. F., Eggins, S. M., and Gagan, M. K.: Microchemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow, Earth Planet. Sc. Lett., 250, 331–344, https://doi.org/10.1016/j.epsl.2006.07.051, 2006.
Barley, M. E., Doyle, M. G., Zaw, K., Pickard, A. L., and Rak, P.: Jurassic–Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar, Tectonics, 22, 1–11, https://doi.org/10.1029/2002TC001398, 2003.
Bellatreccia, F., Della Ventura, G., William, T. C., Lumpkin, G. L., Smith, K. L., and Colella, M.: Non-metamict zirconolite polytypes from the feldspathoid-bearing alkalisyenitic ejecta of the Vico volcanic complex (Latium, Italy), Eur. J. Mineral., 14, 809–820, https://doi.org/10.1127/0935-1221/2002/0014-0809, 2002.
Bertrand, G., Rangin, C., Maluski, H., Han, T. A., Thein, M., Myint, O., Maw, W., and Lwin, S.: Cenozoic metamorphism along the Shan scarp (Myanmar): Evidences for ductile shear along the Sagaing fault or the northward migration of the eastern Himalayan syntaxis?, Geophys. Res. Lett., 26, 915–918, https://doi.org/10.1029/1999GL900136, 1999.
Bertrand, G., Rangin, C., Maluski, H., and Bellon, H.: Diachronous cooling along the Mogok metamorphic belt (Shan scarp, Myanmar): The trace of the northward migration of the Indian syntaxis, J. Asian Earth Sci., 19, 649–659, https://doi.org/10.1016/S1367-9120(00)00061-4, 2001.
Brice, L., Lukas, P.B., Anne Sophie, B., Pamela, D. K., and Torsten, V.: Multi fluid-flow record during episodic mode I opening: A microstructural and SIMS study (Cotiella Thrust Fault, Pyrenees), Earth Planet. Sc. Lett., 503, 37–46, https://doi.org/10.1016/j.epsl.2018.09.016, 2018.
Busche, F. D., Prinz, M., Kell, K., and Kurat G.: Lunar zirkelite: A uranium-bearing phase, Earth Planet. Sc. Lett., 14, 313–321, https://doi.org/10.1016/0012-821X(72)90130-6, 1972.
Carter, L. B. and Dasgupta, R.: Decarbonation in the Ca-Mg-Fe carbonate system at mid-crustal pressure as a function of temperature and assimilation with arc magmas – Implications for long-term climate, Chem. Geol., 492, 30–48, https://doi.org/10.1016/j.chemgeo.2018.05.024, 2018.
Chen, S., Chen, Y., Li, Y. B., Su, B., Zhang, Q. H., Aung, M. M., and Sein, K.: Cenozoic ultrahigh-temperature metamorphism in pelitic granulites from the Mogok metamorphic belt, Myanmar, Sci. China Earth Sci., 64, 1873–1892, https://doi.org/10.1007/s11430-020-9748-5, 2021.
Cuney, M.: The extreme diversity of uranium deposits, Miner. Deposits, 44, 3–9, https://doi.org/10.1007/s00126-008-0223-1, 2009.
Deng, J. and Wang, Q. F.: Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework, Gondwana Res., 36, 219–274, https://doi.org/10.1016/j.gr.2015.10.003, 2016.
Deng, X. D., Li, J. W., and Wen, G.: Dating iron skarn mineralization using hydrothermal allanite-(La) U-Th-Pb isotopes by laser ablation ICP-MS, Chem. Geol., 382, 95–110, https://doi.org/10.1016/j.chemgeo.2014.05.023, 2014.
Duan, Z. and Li, J.W.: Zircon and titanite U-Pb dating of the Zhangjiawa iron skarn deposit, Luxi district, North China Craton: Implications for a craton-wide iron skarn mineralization, Ore Geol. Rev., 89, 309–323, https://doi.org/10.1016/j.oregeorev.2017.06.022, 2017.
Evans, K.: Metamorphic carbon fluxes: how much and how fast?, Geology, 39, 195–196, 2011.
Ferry, J. M.: Fluids in the crust during regional metamorphism: Forty years in the Waterville limestone, Am. Mineral., 101, 500–517, https://doi.org/10.2138/am-2016-5118, 2016.
Gardiner, N. J., Searle, M. P., Robb, L. J., and Morley, C. K.: Neo-Tethyan magmatism and metallogeny in Myanmar – An Andean analogue?, J. Asian Earth Sci., 106, 197–215, https://doi.org/10.1016/j.jseaes.2015.03.015, 2015.
Garnier, V., Maluski, H., Giuliani, G., Ohnenstetter, D., and Schwarz, D.: Ar-Ar and U-Pb ages of marble-hosted ruby deposits from central and southeast Asia, Can. J. Earth Sci., 43, 509–532, https://doi.org/10.1139/E06-005, 2006.
Gieré, R.: Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti, Zr and REE, Contrib. Mineral. Petrol., 93, 459–470, https://doi.org/10.1007/BF00371716, 1986.
Gieré, R.: Transport and deposition of REE in H2S-rich fluids: evidence from accessory mineral assemblages, Chem. Geol., 110, 251–268, https://doi.org/10.1016/0009-2541(93)90257-J, 1990.
Gieré, R. and Williams, C. T.: REE-bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy), Contrib. Mineral. Petrol., 112, 83–100, https://doi.org/10.1007/BF00310957, 1992.
Gieré, R., Williams, C. T., and Lumpkin, G.: Chemical characteristics of natural zirconolite, Schweiz, Mineral. Petrogr. Mitt., 78, 433–459, 1998.
Griffin, W., Powell, W., Pearson, N. J., and O'Reilly, S. Y.: GLITTER: data reduction software for laser ablation ICP-MS, in: Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, edited by: Sylvester, P., Mineral. Assoc. Can., Short Course, 40, 308–311, 2008.
Guo, S., Chen, Y., Liu, C. Z., Wang, J. G., Su, B., Gao, Y. J., Wu, F. Y., Sein, K., Yang, Y. H., and Mao, Q.: Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar: Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization, J. Asian Earth Sci., 117, 82–106, https://doi.org/10.1016/j.jseaes.2015.12.004, 2016.
Guo, S., Tang, P., Su, B., Chen, Y., Ye, K., Zhang, L. M., Gao, Y. J., Liu, J. B., and Yang, Y. H.: Unusual replacement of Fe-Ti oxides by rutile during retrogression in amphibolite-hosted veins (Dabie UHP terrane): A mineralogical record of fluid-induced oxidation processes in exhumed UHP slabs, Am. Mineral., 102, 2268–2283, https://doi.org/10.2138/am-2017-6120, 2017.
Guo, S., Zhao, K. D., John, T., Tang, P., Chen, Y., and Su, B.: Metasomatic flow of metacarbonate-derived fluids carrying isotopically heavy boron in continental subduction zones: Insights from tourmaline-bearing ultra-high pressure eclogites and veins (Dabie terrane, eastern China), Geochim. Cosmochim. Ac., 253, 159–200, https://doi.org/10.1016/j.gca.2019.03.013, 2019.
Guo, S., Chu, X., Hermann, J., Chen, Y., Li, Q. L., and Wu, F. Y.: Multiple episodes of fluid infiltration along a single metasomatic channel in metacarbonates (Mogok metamorphic belt, Myanmar) and implications for CO2 release in orogenic belts, J. Geophys. Res., 126, e2020JB020988, https://doi.org/10.1029/2020JB020988, 2021.
Guo, S., Hermann, J., Tang, P., Chu, X., Chen, Y., and Su, B.: Formation of carbon-bearing silicate melts by melt-metacarbonate interaction at convergent plate margins, Earth Planet. Sc. Lett., 597, 117816, https://doi.org/10.1016/j.epsl.2022.117816, 2022.
Haifler, J., Skoda, R., Filip, J., Larsen, A. O., and Rohlicek, J.: Zirconolite from Larvik Plutonic Complex, Norway, its relationship to stefanweissite and nöggerathite, and contribution to the improvement of zirconolite end-member systematics, Am. Mineral., 106, 1255–1272, https://doi.org/10.2138/am-2021-7510, 2017.
Hurai, V., Huraiova, M., Gajdosova, M., Konecny, P., Slobodnik, M., and Siegfried, P. R.: Compositional variations of zirconolite from the Evate apatite deposit (Mozambique) as an indicator of magmatic-hydrothermal conditions during post-orogenic collapse of Gondwana, Miner. Petrol., 112, 279–296, https://doi.org/10.1007/s00710-017-0538-7, 2018.
Jamtveit, B., Wogelius, R. A., and Fraser, D. G.: Zonation patterns of skarn garnets: Records of hydrothermal system evolution, Geology, 21, 113–116, 1993.
Karmakar, S.: Formation of clinohumite ± spinel in dolomitic marbles from the Makrohar Granulite Belt, Central India: Evidence for Ti mobility during regional metamorphism, Am. Mineral., 102, 1818–1827, https://doi.org/10.2138/am-2021-7755, 2021.
Keppler, H. and Wyllie, P. J.: Role of fluids in transport and fractionation of uranium and thorium in magmatic provinces, Nature, 348, 521–533, https://doi.org/10.1038/348531a0, 1990.
Keppler, H. and Wyllie, P. J.: Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF, Contrib. Mineral. Petrol., 109, 139–150, https://doi.org/10.1007/BF00306474, 1991.
Kerrick, D. M.: The genesis of zoned skarns in the Sierra Nevada, California, J. Petrol., 18, 144–181, https://doi.org/10.1093/petrology/18.1.144, 1977.
Lamont, T. N., Searle, M. P., Hacker, B. R., Kyi Htun, K., Htun, K. M, Morley C. K., Waters, D. J., and White, R. W.: Late Eocene-Oligocene granulite facies garnet-sillimanite migmatites from the Mogok Metamorphic belt, Myanmar, and implications for timing of slip along the Sagaing Fault, Lithos, 386/387, 106027, https://doi.org/10.1016/j.lithos.2021.106027, 2021.
Li, Q. L., Zhou, Q., Liu, Y., Xiao, Z. Y., Lin, Y. T., Li, J. H., Ma, H. X., Tang, G. Q., Guo, S., Tang, X., Yuan, J. Y., Li, J., Wu, F. Y., Ouyang, Z. Y., Li, C. L., and Li, X. H.: Two billion-year-old volcanism on the moon from Chang'E-5 basalts, Nature, 600, 54–58, https://doi.org/10.1038/s41586-021-04100-2, 2021.
Lorand, J. P. and Cottin, J. Y.: A new natural occurrence of zirconolite (CaZrTi2O7) and baddeleyite (ZrO2) in basic cumulates: the Laouni layered intrusion (Southern Hoggar, Algeria), Mineral. Mag., 51, 671–676, https://doi.org/10.1180/minmag.1987.051.363.06, 1987.
Meinert, L. D.: Skarns and skarn deposits, Geosci. Can., 19, 145–162, 1992.
Meinert, L. D., Dipple, G. M., and Nicolescu, S.: World skarn deposit, Econ. Geol., 100th Anniversary Volume, 299–336, ISBN: 978-1-887483-01-8, 2005.
Melluso, L., Guarino, V., Lustrino, M., Morra, V., and Gennaro, R. D.: The REE- and HFSE-bearing phases in the Itatiaia alkaline complex (Brazil) and geochemical evolution of feldspar-rich felsic melts, Mineral. Mag., 81, 217–250, https://doi.org/10.1180/minmag.2016.080.122, 2017.
Migdisov, A. A., Williams-Jones, A. E., van Hinsberg, V., and Salvi, S.: An experimental study of the solubility of baddeleyite (ZrO2) in fuoride-bearing solutions at elevated temperature, Geochim. Cosmochim. Ac., 75, 7426–7434, https://doi.org/10.1016/j.gca.2011.09.043, 2011.
Mitchell, A. H. G., Htay, M. T., Htun, K. M., Win, M. N., Oo, T., and Hlaing, T.: Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar, J. Asian Earth Sci., 29, 891–910, https://doi.org/10.1016/j.jseaes.2006.05.009, 2007.
Mitchell, A., Chung, S.L., Oo., T., Lin, T. H., and Hung, C. H.: Zircon U-Pb ages in Myanmar: Magmatic-metamorphic events and the closure of a neo-Tethys ocean?, J. Asian Earth Sci., 56, 1–23, https://doi.org/10.1016/j.jseaes.2012.04.019, 2012.
Pascal, M. L., Di Muro, A., Fonteilles, M., and Principe, C.: Zirconolite and calzirtite in banded forsterite-spinel-calcite skarn ejecta from the 1631 eruption of Vesuvius: inferences for magma-wallrock interactions, Mineral. Mag., 73, 333–56, https://doi.org/10.1180/minmag.2009.073.2.333, 2009.
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., and Chenery, S. P.: A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials, Geostand. Newsl., 21, 115–144, https://doi.org/10.1111/j.1751-908X.1997.tb00538.x, 1997.
Peiffert, C., Cuney, M., and Nguyen-Trung, C.: Uranium in granitic magmas: Part 2. experimental determination of uranium solubility and fluid-melt partitioning coefficients in the uranium oxide-haplogranite-H2O-NaX (X = Cl, F) system at 770 ∘C 2 kbar, Geochim. Cosmochim. Ac., 60, 1515–1529, https://doi.org/10.1016/0016-7037(96)00039-7, 1996.
Phyo, M. M., Wang, H. A. O., Guillong, M., Berger, A., Franz, L., Balmer, W. A., and Krzemnicki, M. S.: U-Pb dating of zircon and zirconolite inclusions in marble-hosted gem-quality ruby and spinel from Mogok, Myanmar, Minerals, 10, 195, https://doi.org/10.3390/min10020195, 2020.
Platt, R. G., Wall, F., Williams, C. T., and Wooley, A. R.: Zirconolite, chevkinite and other rare earth minerals from nepheline syenites and peralkaline granites and syenites of the Chilwa alkaline province, Malawi, Mineral. Mag., 51, 253–263, https://doi.org/10.1180/minmag.1987.051.360.07, 1987.
Proyer, A., Baziotis, I., Mposkos, E., and Rhede, D.: Ti- and Zr-minerals in calcite-dolomite marbles from the ultrahigh-pressure Kimi Complex, Rhodope mountains, Greece: Implications for the P-T evolution based on reaction textures, petrogenetic grids, and geothermobarometry, Am. Mineral., 99, 1429–1448, https://doi.org/10.2138/am.2014.4710, 2014.
Purtscheller, F. and Tessadri, R.: Zirconolite and baddeleyite from metacarbonates of the Ötztal-Stubai complex (northern Tyrol, Austria), Mineral. Mag., 49, 523–529, 1985.
Putnis, A. and Austrheim, H.: Fluid-induced processes: Metasomatism and metamorphism, Geofluids, 10, 254–269, https://doi.org/10.1111/j.1468-8123.2010.00285.x, 2010.
Rapp, J. F., Klemme, S., Butler, I. B., and Harley, S. L.: Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation, Geology, 38, 323–326, https://doi.org/10.1130/G30753.1, 2010.
Rasmussen, B. and Fletcher, I. R.: Zirconolite: a new U-Pb chronometer for mafic igneous rocks, Geology, 32, 785–788, 2004.
Rasmussen, B., Fletcher, I. R., and Muhling, J. R.: Pb Pb geochronology, petrography and chemistry of Zr-rich accessory minerals (zirconolite, tranquillityite and baddeleyite) in mare basalt 10047, Geochim. Cosmochim. Ac., 72, 5799–5818, https://doi.org/10.1016/j.gca.2008.09.010, 2008.
Rasmussen, B., Mueller, A. G., and Fletcher, I. R.: Zirconolite and xenotime U-Pb age constraints on the emplacement of the Golden Mile Dolerite sill and gold mineralization at the Mt Charlotte mine, Eastern Goldfields Province, Yilgarn Craton, Western Australia, Contrib. Mineral. Petrol., 157, 559–572, https://doi.org/10.1007/s00410-008-0352-7, 2009.
Rajesh, V. J., Yokoyama, K., Santosh, M., Arai, S., Oh, C. W., and Kim, S. W.: Zirconolite and baddeleyite in an ultramafic suite from Southern India: early Ordovician carbonatite-type melts associated with extensional collapse of the Gondwana crust, J. Geol., 114, 171–188, https://doi.org/10.1086/499571, 2006.
Rocholl, A.: Major and trace element composition and homogeneity of microbeam reference material: Basalt glass USGS BCR-2G, Geostand. Newsl., 22, 33–45, https://doi.org/10.1111/j.1751-908X.1998.tb00543.x, 1998.
Salvi, S. and WilliamsJones, A. E.: The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada, Geochim. Cosmochim. Ac., 60, 1917–1932, https://doi.org/10.1016/0016-7037(96)00071-3, 1996.
Satish-Kumar, M., Hermann, J., Miyamoto, T., and Osanai Y.: Fingerprinting a multistage metamorphic fluid–rock history: Evidence from grain scale Sr, O and C isotopic and trace element variations in high-grade marbles from East Antarctica, Lithos, 114, 217–228, https://doi.org/10.1016/j.lithos.2009.08.010, 2010.
Searle, M. P., Noble, S. R., Cottle, J. M., Waters, D. J., Mitchell, A. H. G., Hlaing, T., and Horstwood, M. S. A.: Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks, Tectonics, 26, TC3014, https://doi.org/10.1029/2006TC002083, 2007.
Searle, M. P., Morley, C. K., Waters, D. J., Gardiner, N. J., Htun, U. K., and Nu, T. T.: Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar), Geol. Soc. Lond. Memoirs, 48, 261–293, https://doi.org/10.1144/M48.12, 2017.
Searle, M. P., Garber, J. M., Hacker, B. R., Htun, K., Gardiner, N. J., Waters, D. J., and Robb, L. J.: Timing of syenite-charnockite magmatism and ruby and sapphire metamorphism in the Mogok valley region, Myanmar, Tectonics, 39, e2019TC005998, https://doi.org/10.1029/2019TC005998, 2020.
Shi, G. H., Zhang, X. C., Wang, Y., Li, Q. L., Wu, F. Y., and He, H. Y.: Age determination of oriented rutile inclusions in sapphire and of moonstone from the Mogok metamorphic belt, Myanmar. Am. Miner., 106, 1852–1859, https://doi.org/10.2138/am-2021-7487, 2021.
Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope evolution by a two-stage model, Earth. Planet. Sc. Lett., 26, 207–221, https://doi.org/10.1016/0012-821X(75)90088-6, 1975.
Stewart, E. M., Ague, J. J., Ferry, J. M., Schiffries, C. M., Tao, R. B., Isson, T. T., and Planavsky, N. J.: Carbonation and decarbonation reactions: Implications for planetary habitability, Am. Mineral., 104, 1369–1380, https://doi.org/10.2138/am-2019-6884, 2019.
Stucki, A., Trommsdorff, V., and Günther, D.: Zirconolite in metarodingites of Penninic Mesozoic ophiolites, Central Alps, Schweiz. Mineral. Petrogr. Mitt., 81, 257–265, 2001.
Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geol. Soc. Spec. Publ., 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Tan, W., Steven, M., Reddy, S. M., Fougerouse, D., Wang, C. Y., Xian, H. Y., Yang, Y. P., and He, H. P.: Superimposed microstructures of pyrite in auriferous quartz veins as fingerprints of episodic fluid infiltration in the Wulong Lode gold deposit, NE China, Mineral. Deposita, 57, 685–700, https://doi.org/10.1007/s00126-022-01104-4, 2022.
Tanis, E. A., Simon, A., Zhang, Y. X., Chow, P., Xiao, Y. M., Hanchar, J. M., Tschauner, O., and Shen, G. Y.: Rutile solubility in NaF–NaCl–KCl-bearing aqueous fluids at 0.5–2.79 GPa and 250–650 ∘C, Geochim. Cosmochim. Ac., 177, 170–181, https://doi.org/10.1016/j.gca.2016.01.003, 2016.
Themelis, T.: Gems and mines of Mogok, Bangkok: A and T Publishers, 352, ISBN 0940965-30-5, 2008.
Thu, Y. K. and Enami, M.: Evolution of metamorphic fluid recorded in granulite facies metacarbonate rocks from the middle segment of the Mogok metamorphic belt in central Myanmar, J. Metamorph. Geol., 36, 905–931, https://doi.org/10.1111/jmg.12419, 2018.
Tropper, P., Harlov, D., Krenn, E., Finger, F., Rhede, D., and Bernhard, F.: Zr-bearing minerals as indicators for the polymetamorphic evolution of the eastern, lower Austroalpine nappes (Stubenberg Granite contact aureole, Styria, Eastern Alps, Austria), Lithos, 95, 72–86, https://doi.org/10.1016/j.lithos.2006.07.008, 2007.
Tropper, P. and Manning, C. E.: Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones, Am. Mineral., 90, 502–505, https://doi.org/10.2138/am.2005.1806, 2005.
Ventura, G. D., Bellatreccia, F., and Willianms, C. T.: Zirconolite with significant REEZrNb(Mn, Fe)O7 from a xenolith of the Laacher See eruptive center, Eifel volcanic region, Germany, Can. Mineral., 38, 57–65, https://doi.org/10.2113/gscanmin.38.1.57, 2000.
Vermeesch, P.: Isoplot R: A free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Wang, N., Mao, Q., Zhang, T., Jialong Hao, J. L., and Lin, Y. T.: Nano SIMS and EPMA dating of lunar Zirconolite, Prog. Earth. Pl. Sci., 8, 51, https://doi.org/10.1186/s40645-021-00446-3, 2021.
Williams, C. T.: Uranium-enriched minerals in mesostasis areas of the rhum layered pluton, Contrib. Mineral. Petrol., 66, 29–39, https://doi.org/10.1007/BF00376083, 1978.
Williams, C. T. and Gieré, R.: Zirconolite: A review of localities worldwide, and a compilation of its chemical compositions, Bulletin of the Natural History Museum, London (Geology), 52, 1–24, 1996.
Win, M. M., Enami, M., and Kato, T.: Metamorphic conditions and CHIME monazite ages of Late Eocene to Late Oligocene high-temperature Mogok metamorphic rocks in central Myanmar, J. Asian Earth Sci., 117, 304–316, https://doi.org/10.1016/j.jseaes.2015.11.023, 2016.
Whitney, D. L., and Evans, B. W.: Abbreviations for names of rock-forming minerals, Am. Mineral., 95, 185–187, https://doi.org/10.2138/am.2010.3371, 2010.
Wu, F. Y., Yang Y. H., Mitchell, R. H., Bellatreccia, F., Li, Q. L., and Zhao, Z. F.: In situ U-Pb and Nd-Hf-(Sr) isotopic investigations of zirconolite and calzirtite, Chem. Geol., 277, 178–195, https://doi.org/10.1016/j.chemgeo.2010.08.007, 2010.
Wu, S. T., Karius, V., Schmidt, B. C., Simon, K., and Woerner, G.: Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass Spectrometry, Geostand. Geoanal. Res., 42, 575–591, https://doi.org/10.1111/ggr.12230, 2018.
Wu, S. T., Worner, G., Jochum, K. P., Stoll, B., Simon, K., and Kronz, A.: The preparation and preliminary characterisation of three synthetic andesite reference glass materials (ARM-1, ARM-2, ARM-3) for In Situ Microanalysis, Geostand. Geoanal. Res., 43, 567–584, https://doi.org/10.1111/ggr.12301, 2019.
Wu, S. T., Yang, Y. H., Jochum, K. P., Romer, R. L., Glodny, J., Savov, I. P., Agostini, S., De Hoog, J. C. M., Stefan, T. M., Peters, S. T. M., Kronz, A., Zhang, C., Bao, Z., Wang, X. J., Li, Y. L., Tang, G. Q., Feng, L. J., Yu, H. M, Li, Z. X., Zhang, L., Lin, J., Zeng, Y., Xu, C. X., Wang, Y. P., Cui, Z., Deng, L., Xiao, J., Liu, Y. H., Xue, D. S., Zhang, D., Jia, L. H., Wang, H., Xu, L., Huang, C., Xie, L. W., Pack, A., Worner, G., He, M. Y., Li, C. F., Yuan, H. L., Huang, F., Li, Q. L., Yang, J. H., Li, X. H., and Wu, F. Y.: Isotopic compositions (Li-B-Si-O-Mg-Sr-Nd-Hf-Pb) and Fe Fe ratios of three synthetic andesite glass reference materials (ARM-1, ARM-2, ARM-3), Geostand. Geoanal. Res., 45, 719–745, https://doi.org/10.1111/ggr.12399, 2021.
Xie, L. W., Zhang, Y. B., Zhang, H. H., Sun, J. F., and Wu, F. Y.: In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite, Chin. Sci. Bull., 53, 1565–1573, https://doi.org/10.1007/s11434-008-0086-y, 2008.
Xie, Q. H., Zhang, Z. C., Jin Z. L., Santosh, M., Han, L., Wang, K. Y., Zhao P. L., and He, H. H.: The high-grade Fe skarn deposit of Jinling, North China Craton: Insights into hydrothermal iron mineralization, Ore Geol. Rev., 138, 104395, https://doi.org/10.1016/j.oregeorev.2021.104395, 2021.
Yonemura, K., Osanai, Y., Nakano, N., Adachi, T., Charusiri, P., and Zaw, T. N.: EPMA U-Th-Pb monazite dating of metamorphic rocks from the Mogok Metamorphic belt, Central Myanmar, J. Mineral. Petrol. Sci., 198, 184–188, https://doi.org/10.2465/jmps.121019a, 2013.
Yuan, S., Peng, J., Hu, R., Li, H., Shen, N., and Zhang, D.: A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China), Mineral. Deposita, 43, 375–382, https://doi.org/10.1007/s00126-007-0166-y, 2008.
Zaccarini, F., Stumpfl, E., and Garuti, F.: Zirconolite and Zr-Th-U minerals in chromitites of the Finero Complex, Western Alps, Italy: evidence for carbonatite-type metasomatism in a subcontinental mantle plume, Can. Mineral., 42, 1825–1845, https://doi.org/10.2113/gscanmin.42.6.1825, 2004.
Zeng, Z. Y. and Liu, Y.: Magmatic-hydrothermal zircons in syenite: A record of Nb–Ta mineralization processes in the Emeishan large igneous province, SW China, Chem. Geol., 589, 120675, https://doi.org/10.1016/j.chemgeo.2021.120675, 2022.
Zhang, D., Guo, S., Chen, Y., Li, Q. L., Ling, X. X., Liu, C. Z., and Sein, K.: ∼ 25 Ma Ruby mineralization in the Mogok stone tract, Myanmar: new evidence from SIMS U-Pb dating of coexisting titanite, Minerals, 11, 536, https://doi.org/10.3390/min11050536, 2021.
Zhang, Y., Song, S. L., Hollings, P., Li, D. F., Shao, Y. J., Chen, H. Y., Zhao L. J., Kamo, S., Jin, T. T., Yuan, L. L., Liu, Q. Q., and Chen, S. C.: In-situ U-Pb geochronology of vesuvianite in skarn deposits, Chem. Geol., 612, 121136, https://doi.org/10.1016/j.chemgeo.2022.121136, 2022.
Zhao, W. W., Zhou, M. F., and Chen, W. T.: Growth of hydrothermal baddeleyite and zircon in different stages of skarnization, Am. Mineral., 101, 2689–2700, https://doi.org/10.2138/am-2016-5706, 2016.
Short summary
We investigate the occurrence, texture, composition, and chronology of three types of zirconolite in dolomite marbles from the Mogok metamorphic belt, Myanmar. These zirconolites, which were formed by multiple episodes of fluid–marble interaction, record the time-resolved fluid infiltration history in metacarbonates and reactive fluid compositions from ~35 to ~19 Ma. Zirconolite is expected to play a more important role in orogenic CO2 release and the transfer and deposition of rare metals.
We investigate the occurrence, texture, composition, and chronology of three types of...