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Abstract. Fluid infiltration into (meta-)carbonate rocks is an important petrologic process that induces meta-
morphic decarbonation and potential mineralization of metals or nonmetals. The determination of the infiltration
time and the compositional features of reactive fluids is essential to understand the mechanism and process of
fluid–rock interactions. Zirconolite (ideal formula: CaZrTi2O7) is an important U-bearing accessory mineral that
can develop in metasomatized metacarbonate rocks. In this study, we investigate the occurrence, texture, com-
position, and chronology of various types of zirconolite from fluid-infiltrated reaction zones in dolomite marbles
from the Mogok metamorphic belt, Myanmar. Three types of zirconolite are recognized: (1) the first type (Zrl-I)
coexists with metasomatic silicate and oxide minerals (forsterite, spinel, phlogopite) and has a homogeneous
composition with high contents of UO2 (21.37 wt %–22.82 wt %) and ThO2 (0.84 wt %–1.99 wt %). (2) The sec-
ond type (Zrl-II) has textural characteristics similar to those of Zrl-I. However, Zrl-II shows a core–rim zonation
with a slightly higher UO2 content in the rims (average of 23.5± 0.4 wt % (n= 8)) than the cores (average of
22.1± 0.3 wt % (n= 8)). (3) The third type (Zrl-III) typically occurs as coronas around baddeleyite and coex-
ists with polycrystalline quartz. Zrl-III has obviously lower contents of UO2 (0.88 wt %–5.3 wt %) than those of
Zrl-I and Zrl-II. All types of zirconolite have relatively low rare earth element (REE) contents (< 480 µg g−1

for 6REE). Microtextures and compositions of the three zirconolite types, in combination with in situ zir-
conolite U–Pb dating using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), reveal
episodic fluid infiltration and element mobilization in the dolomite marbles. The first-stage infiltration occurred
at ∼ 35 Ma, leading to the formation of Mg-rich silicates and oxides and accessory minerals (Zrl-I, baddeleyite,
and geikielite). The reactive fluid was characterized by high contents of Zr, Ti, U, and Th. After that, some Zrl-I
grains underwent a local fluid-assisted dissolution–precipitation process, which produced a core–rim zonation
(i.e., the Zrl-II type). The final stage of fluid infiltration, recorded by the growth of Zrl-III after baddeleyite, took
place at ∼ 19 Ma. The infiltrating fluid of this stage had relatively lower U contents and higher SiO2 activities
than the first-stage infiltrating fluid.

This study illustrates that zirconolite is a powerful mineral that can record repeated episodes (ranging from 35
to 19 Ma) of fluid influx, metasomatic reactions, and Zr–Ti–U mineralization in (meta-)carbonates. This mineral
not only provides key information about the timing of fluid flow but also documents the chemical variation in
reactive fluids. Thus, zirconolite is expected to play a more important role in characterizing the fluid–carbonate
interaction, orogenic CO2 release, and the transfer and deposition of rare metals.

Published by Copernicus Publications on behalf of the European mineralogical societies DMG, SEM, SIMP & SFMC.
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1 Introduction

Understanding the infiltration of fluids and melts into
(meta-)carbonate rocks is of particular importance because
these processes can cause significant CO2 release through
fluid/melt-rock interactions during orogenesis (e.g., Evans,
2011; Ferry, 2016; Carter and Dasgupta, 2018; Stewart et al.,
2019; Guo et al., 2022) and generate many skarn-type de-
posits of critical metals (e.g., Kerrick, 1977; Meinert, 1992;
Meinert et al., 2005; Deng and Wang, 2016; Xie et al., 2021)
and colored gemstones (e.g., Themelis, 2008; Searle et al.,
2020; Guo et al., 2021). Precisely dating the fluid infiltra-
tion events and constraining the compositions of reactive flu-
ids are critical for understanding the duration and episodes
of fluid flow, fluid–carbonate interaction progress, sources of
fluids, and ore-forming processes (Yuan et al., 2008; Deng
et al., 2014; Zhang et al., 2022). The influx of reactive flu-
ids and melts in magmatic–hydrothermal–metasomatic sys-
tems might be episodic and was likely to occur at various
stages and under various pressure–temperature conditions
(e.g., Barker et al., 2006; Brice et al., 2019; Guo et al.,
2021). Clarifying the fluid infiltration history and character-
izing the reactive fluid behavior in the metasomatic metacar-
bonate system are thus highly challenging.

The occurrence of Zr-bearing or Ti-bearing phases pro-
vides a good opportunity to uncover the complex infiltra-
tion history in carbonate rocks. Zirconolite (ideal formula:
CaZrTi2O7) occurs as an accessory mineral in a variety
of lithologies, not only in metasomatized carbonate rocks
(Gieré, 1986; Gieré, 1990; Gieré and Williams, 1992; Za-
ccarini et al., 2004) but also in many SiO2-poor magmatic
rocks, such as carbonatites, kimberlites, alkaline rocks, and
lunar basalts (Williams and Gieré, 1996; Giére et al., 1998).
In metasomatized marbles, zirconolite develops in various re-
action zones and typically shows complex chemical zonation
(e.g., Gieré and Williams, 1992). This mineral coexists with
other metasomatic minerals (e.g., baddeleyite, geikielite, tho-
rianite, uraninite, titanite, and spinel) and grew by the crys-
tallization from the reactive fluids or the replacement of other
Zr–Ti phases (Gieré and Williams, 1992; Zaccarini et al.,
2004; Proyer et al., 2014). Importantly, zirconolite typically
has high U and Th contents (up to 24 wt % and 22 wt %,
respectively), low common Pb contents, and a high U–Pb
isotopic system closure temperature of ∼ 800–900 ◦C (Ras-
mussen and Fletcher, 2004; Wu et al., 2010), which make it
an ideal geochronometer of fluid flow and metasomatism.

In addition to Th and U, several groups of trace elements
can be incorporated into the structure of zirconolite. For ex-
ample, the Ca site can be substituted by rare earth elements
(REEs); the Ti site can be substituted by some high-field-
strength elements (Nb and Ta), Fe, Cr, Al, Zn, and Mg; and
the Zr site can be substituted by Hf (Gieré et al., 1998). The
enrichment or depletion of different elements in zirconolite

is closely associated with the lithology of the host rock, for-
mation setting, and growth stage (Gieré et al., 1998), which
allows the compositional signatures of the reactive fluid/melt
to be constrained (e.g., Gieré and Williams, 1992; Zaccarini
et al., 2004). Therefore, the investigation of zirconolite po-
tentially provides key information on the time-resolved fluid
infiltration history and compositional variation of reactive
fluids in (meta-)carbonate rocks.

In this study, we investigate the occurrence, texture, min-
eral compositions, and chronology of different types of zir-
conolite in fluid-infiltrated marbles from the Mogok meta-
morphic belt (MMB, central Myanmar). Our results re-
veal multistage growth of zirconolite, which was caused by
episodic fluid infiltration and Zr–Ti–U mineralization events
at ages ranging from ∼ 35 to ∼ 19 Ma. Moreover, we com-
pare and summarize the compositional signatures of zircono-
lites from various lithologies.

2 Geological setting and sample petrography

The MMB is located in central Myanmar (Fig. 1a). This nar-
row sickle-shaped belt extends approximately 1500 km from
the Andaman Sea north to the eastern Himalayan syntaxis
and is distributed along the northwestern margin of the Shan
Plateau and southward between the Shan scarp and Sagaing
fault (e.g., Barley et al., 2003; Gardiner et al., 2015; Mitchell
et al., 2007; Searle et al., 2007, 2017). The formation and
evolution of the MMB are closely related to the closure of the
Neo-Tethys ocean, India–Asia collision, and post-collision
extension and uplift (Searle et al., 2017). The MMB is mainly
composed of various types of amphibolite-to-granulite-facies
metasedimentary and metaigneous rocks (e.g., Mitchell et
al., 2012; Searle et al., 2017) and considered to represent
the exhumed lower and middle crustal metamorphic rocks
of the Sibumasu (Asia) plate. This belt produces some of the
world’s best examples of colored gemstones, such as spinel,
ruby, and sapphire (e.g., Searle et al., 2007, 2017; Guo et al.,
2021; Zhang et al., 2021).

The main lithologies of the MMB include various types
of gneisses, migmatites, marbles, schists, and calc–silicate
rocks (Mitchell et al., 2007; Searle et al., 2017). In ad-
dition, syenites, granitoid rocks, dikes, leucosomes, peg-
matites, and hydrothermal veins were widely observed in the
MMB (Mitchell et al., 2007; Gardiner et al., 2015; Searle et
al., 2017, 2020). In contacts between the magmatic rocks and
marbles, metasomatic rocks develop by the influx of fluids or
melts, leading to the formation of gemstone-bearing reaction
zones (e.g., Themelis, 2008; Guo et al., 2016, 2021; Searle et
al., 2020). The peak metamorphic pressures and temperatures
of the MMB rocks range from 5 to 12 kbar and from 625 to
> 950 ◦C (Searle et al., 2007; Yonemura et al., 2013; Win et
al., 2016; Thu and Enami, 2018; Chen et al., 2021; Lamont et
al., 2021). Ultrahigh-temperature metamorphism (> 900 ◦C)
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Figure 1. (a) Geological map (modified from Themelis, 2008) showing the distribution of the Mogok metamorphic belt (MMB). (b) A
simplified geological map (modified from Guo et al., 2021) of the Nayaung Oke area showing the lithologic distribution and sample locality.

has been documented in the Thabeikkiyin and Bernardmyo
areas (Chen et al., 2021; Lamont et al., 2021).

The metamorphic ages of the MMB range from ∼ 60 to
20 Ma (Searle et al., 2017; Lamont et al., 2021). Many stud-
ies revealed multiple metamorphic ages for single MMB
rocks, indicating a multistage metamorphic evolution of
these rocks (e.g., Win et al., 2016; Lamont et al., 2021).
Ultrahigh-temperature metamorphism was determined to
have occurred at 43–32 Ma (Lamont et al., 2021) and
∼ 25 Ma (Chen et al., 2021). New U–Pb dating for zircon
or titanite indicates that metamorphism related to ruby for-
mation occurred at 22–25 Ma (Zhang et al., 2021; Phyo et
al., 2020). Intrusions of diorites, granite charnockites, and
syenites in the MMB have large variations in age ranging
from∼ 170 to 13 Ma (e.g., Mitchell et al., 2012; Searle et al.,
2020; Shi et al., 2021). The age of metasomatism (contact
metamorphism) varies with the time of infiltrating fluids or
melts from these intrusions (Searle et al., 2020; Guo et al.,
2021).

The study region is located in the Nayaung Oke area
(Fig. 1). This area comprises dolomite marbles, calc–silicate
rocks, gneisses, and schists. In addition, small amounts of
low-grade metamorphic rocks, sedimentary rocks, and in-
trusions are present. The Sedawgyi gneisses have a Cam-
brian U–Pb protolith age of 491± 4 Ma, and a biotite gran-
ite dike in these gneisses shows a zircon U–Pb age of

17.0± 0.3 Ma (Mitchell et al., 2012). Syntectonic deformed
hornblende syenites have emplacement ages of 33.11± 0.93
to 30.90± 0.64 Ma (Barley et al., 2003). In the marbles,
polycrystalline mineral reaction zones, which are mainly
composed of metasomatic minerals (spinel, forsterite, and
phlogopite) and carbonates, have been found (Guo et al.,
2021). These reaction zones represent the flow channels of
reactive fluids and the products of fluid–marble interactions.
Three episodes of fluid influx have been revealed in the reac-
tion zones based on mineral zonations, replacement textures,
and baddeleyite–zircon dating (Guo et al., 2021). The first
(35–36 Ma) and second (23–24 Ma) infiltration episodes are
related to the syenite magmatic events, and the third episode
(∼ 17 Ma) is related to the Si-rich fluids derived from the
gneisses.

In this study, two samples (13MDL76-A and 13MDL76-
B; Guo et al., 2021) of reaction zones in the marbles (Fig. 2a)
were investigated. Both samples are composed of calcite
(36 vol %–47 vol %), forsterite (18 vol %–36 vol %), spinel
(7 vol %–18 vol %), phlogopite (3 vol %–17 vol %), and small
amounts of dolomite and accessory minerals (baddeleyite,
geikielite, rutile, zirconolite, and uraninite). The two sam-
ples have TiO2 contents of 0.22 wt %–0.35 wt %, Zr contents
of 71.1–128 µg g−1, U contents of 65.1–118 µg g−1, and Th
contents of 5.17–9.55 µg g−1 (Guo et al., 2021). Mineral ab-
breviations are according to Whitney and Evans (2010), and
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Figure 2. Specimen photograph, photomicrographs (in plane-
polarized light), and BSE images of Zrl-I and associated minerals.
(a) Reaction zones in the marbles. (b–e) Zrl-I occurring as irregu-
larly shaped crystals (0.04–10 mm in size) in the matrix of the reac-
tion zones. Coexistence of spinel, forsterite, phlogopite, calcite, and
Zrl-I containing calcite inclusions from samples 13MDL76-A (b–
c) and 13MDL76-B (d–e). (f–g) Zrl-I from samples 13MDL76-
A (f) and 13MDL76-B (g) in the resin mount. There is no obvious
compositional zonation in Zrl-I.

zirconolite and uraninite are abbreviated as Zrl and Urn, re-
spectively.

3 Analytical methods

3.1 Microtexture and X-ray mapping

The petrographic observations were conducted on thin sec-
tions using an optical microscope and a Zeiss Gemini
450 field-emission scanning electron microscope (FE-SEM)
equipped with an X-ray energy dispersive spectrometer and a
pneumatically retractable backscattered electron (BSE) sys-
tem at the Institute of Geology and Geophysics, Chinese
Academy of Sciences (IGGCAS). The observations, BSE
image acquisition, and compositional maps were operated at

accelerating voltages of 15–20 kV, a beam current of 5 nA,
and a working distance of 8.5 mm. The X-ray mapping was
performed by energy dispersive X-ray spectroscopy (EDS)
with a dwell time of 2000 µs per point.

3.2 Mineral compositions by microprobe analyses

The compositions of zirconolite, baddeleyite, geikielite, and
rutile were analyzed using a Cameca SX Five field emission
electron probe micro-analyzer (EPMA) at IGGCAS. Anal-
yses were operated in wavelength-dispersion mode (WDS)
with an acceleration voltage of 20 kV, a beam current of
20 nA, and a beam diameter of 1 µm. The crystals used for el-
ement analyses were as follows: one thallium acid phthalate
(TAP) crystal for Si, Mg, and Al analyses; one large pen-
taerythritol (LPET) crystal for Zr, Nb, Ca, K, Sc, Th, U, and
Y analyses; one large lithium fluoride (LLIF) crystal for Ti,
La, Nd, Mn, Sm, Gd, Er, and Hf analyses; and another LLIF
crystal for Fe, Ce, Pr, Eu, Dy, Yb, and W analyses. The peak
counting time was 10 s for Si, Mg, Zr, Nb, Ti, Fe, La, Ce,
and Mn, and the background counting time was 5 s at the
high- and low-energy background positions. For the other el-
ements, the peak counting time was 20 s and the background
counting time was 10 s at each site. The following excitation
lines and calibrant materials have been used: U – Mα, syn-
thetic U glass; Zr – Lα, zircon; Hf – Lα, synthetic Hf metal;
Ti – Kα, rutile; Ca – Kα, rhodonite; Nb – Lα, synthetic
Nb2O5; Sc – Kα, synthetic Sc2O3; W – Lβ, scheelite; Mg –
Kα, synthetic MgO; Si – Kα, rhodonite; Mn – Kα, rhodonite;
Th – Mα, synthetic Th glass; Al – Kα, K-feldspar; K – Kα,
K-feldspar; Fe– Kα, hematite; Y – Lα, synthetic Y glass; La
– Lα, synthetic La glass; Ce – Lα, synthetic Ce glass; Pr –
Lβ, synthetic Pr glass; Nd – Lα, synthetic Nd glass; Sm–
Lβ, synthetic Sm glass; Eu – Lα, synthetic Eu glass; Gd –
Lα, synthetic Gd glass; Dy – Lα, synthetic Dy glass; Er –
Lβ, synthetic Er glass; and Yb – Lα, synthetic Yb glass. The
standard materials used for both U and Th (from P and H De-
velopments Ltd.; https://www.pandhdevelopments.com/, last
access: 14 December 2023) were synthesized glasses. The
glass standard used for Th analyses contains 7.40 wt % Al,
27.3 wt % Si, 15.8 wt % Ca, 5.18 wt % Th, and 44.6 wt % O;
and the glass standard used for U analyses contains 7.42 wt %
Al, 27.5 wt % Si, 16.1 wt % Ca, 3.85 wt % U, and 44.9 wt %
O. The synthetic standard used for REE analyses was also
Si–Al–Ca–O glasses with a single 10 % REE added. Aver-
aged detection limits (3σ ) were as follows (concentrations in
µg g−1): U – 658, Zr – 507, Hf – 444, Ti – 248, Ca – 73, Nb
– 392, Sc – 72, W – 1434, Mg – 110, Si – 145, Mn – 220, Th
– 676, Al – 77, K – 73, Fe – 219, Y – 344, La – 651, Ce –
220, Pr – 220, Nd – 220, Sm – 1114, Eu – 397, Gd – 438, Dy
– 373, Er – 495, and Yb – 436.

Eur. J. Mineral., 36, 11–29, 2024 https://doi.org/10.5194/ejm-36-11-2024
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Figure 3. Photomicrographs (in plane-polarized light) and BSE im-
ages of Zrl-II and associated minerals. (a–b) Zrl-II occurring as ir-
regularly shaped crystals (0.04–10 mm in size) in the matrix of the
reaction zones. Coexistence of forsterite, phlogopite, calcite, and
Zrl-II containing calcite inclusions from sample 13MDL76-A. (c–
d) Core–rim zoning structure of Zrl-II from samples 13MDL76-
A (c) and 13MDL76-B (d).

The major and minor element compositions of silicates
and oxides (forsterite, spinel, and phlogopite) were measured
by a JOEL-8100 EPMA at IGGCAS. The measurements
were collected in WDS mode with an acceleration voltage of
15 kV, a beam current of 10 nA, and a beam diameter of 1 µm.
Natural and synthetic oxides were used as standards. The pre-
cision is ∼ 1.5 % for Ca, Ti, U, and Zr elements (> 5 wt %)
but is ∼ 5 %–20 % for other elements due to their low con-
centrations.

3.3 U–Pb ages of zirconolite

Zirconolite U–Pb dating was carried out by laser ablation in-
ductively coupled plasma mass spectrometry (LA-ICP-MS)
employing an Agilent 7500a Q-ICP-MS instrument (Agilent
Technologies, USA) coupled to a 193 nm ArF excimer laser
system (Geolas HD, Lambda Physik, Göttingen, Germany)
at IGGCAS. The method and procedure are similar to those
described in Xie et al. (2008). Helium was employed as the
carrying gas to improve the transporting efficiency of ablated
aerosols. The laser beam diameter was 16 µm at a repetition
rate of 3 Hz, and the density of energy was ∼ 4.0 J cm−2.
The Phalaborwa zirconolite reference (SIMS 207Pb / 206Pb
age= 2067± 9 Ma, 1s, n= 16; Wu et al., 2010) was mea-
sured every six sample spot analyses to calibrate Pb /U ra-
tios and U contents. The resulting data were reduced based
on the GLITTER program (Griffin et al., 2008). Weighted
206Pb / 238U mean dates were calculated using the 207Pb cor-
rection of common Pb, assuming a common Pb composition
corresponding to the two-stage crustal Pb model of Stacey
and Kramers (1975). The age calculations and plotting of

Figure 4. BSE images of Zrl-III (in the rein mount) occurring as
small, rounded to platy polycrystalline grains around baddeleyite
and forming continuous or discontinuous coronas from samples
13MDL76-B (a–c) and 13MDL76-A (d). (a–b) Zrl-III coronas that
extend into the interior of baddeleyite along some fine fractures.
(c–d) Zrl-III coexisting or intergrown with quartz. The boundaries
between the baddeleyite and Zrl-III show either a zigzag shape (b–
d) or are smooth (a).

Tera-Wasserburg diagrams were made using IsoplotR (Ver-
meesch, 2018).

3.4 Trace element analysis of zirconolite by
LA-ICP-MS analyses

Trace element contents of zirconolite were determined by the
same instrument used for the measurement of U–Pb isotopes
at IGGCAS. The method is similar to those outlined in Wu
et al. (2018). The density of energy at the ablation spots was
∼ 4.0 J cm−2. The laser beam diameter was 32 µm at a repeti-
tion rate of 5 Hz. The spot locations of trace element analyses
are close to those of U–Pb isotope analyses. 43Ca was used as
the internal standard. The NIST 610 glass standard (Pearce et
al., 1997) was used as the calibration material, and the glass
standards of ARM-1 (Wu et al., 2019, 2021) and BCR-2G
(Rocholl, 1998) were analyzed as unknown samples to mon-
itor the data quality. The resulting data were also reduced
based on the GLITTER program (Griffin et al., 2008). For
most trace elements (> 0.10 µg g−1), the accuracy is better
than ± 10 % with an analytical precision (1 RSD, relative
standard deviation) of ± 10 %.

4 Results

4.1 Occurrence of zirconolite and associated minerals

Several thin sections were prepared from samples
13MDL76-A and 13MDL76-B to examine the occur-
rences and textures of zirconolite. Moreover, zirconolite
and baddeleyite grains were separated from each sample

https://doi.org/10.5194/ejm-36-11-2024 Eur. J. Mineral., 36, 11–29, 2024
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Figure 5. Ca (a), U (b), Ti (c), Zr (d), Si (e), and Hf (f) X-ray maps showing the replacement of baddeleyite by Zrl-III in Fig.4d. Zrl-III
coexists or is intergrown with quartz (e).

Figure 6. (a) Uraninite inclusions in forsterite from sample
13MDL76-B. (b–c) Intergrowth of geikielite and rutile in the ma-
trix from samples 13MDL76-A (b) and 13MDL76-B (c). (d) Ru-
tile coexisting with spinel, phlogopite, and calcite from sample
13MDL76-A.

and mounted in resins for further observation. Three types
of zirconolite were recognized based on their occurrence,
texture, and coexisting mineral assemblage.

The first type of zirconolite (Zrl-I) typically occurs as ir-
regularly shaped crystals (0.04–10 mm in size) in the matrix
of the reaction zones. Zrl-I coexists with forsterite, spinel,
calcite, phlogopite, and dolomite (Fig. 2b–e) and contains
calcite inclusions (Fig. 2e). No compositional zonation can
be observed in Zrl-I (Fig. 2c, e–g). The second type of zir-
conolite (Zrl-II) also occurs as an isolated mineral in the ma-
trix. The shape, grain size, coexisting mineral assemblage,
and inclusions of Zrl-II are similar to those of Zrl-I (Fig. 3).
However, Zrl-II exhibits core–rim zonation. The rims of Zrl-
II are brighter than the cores in the BSE images (Fig. 3c and
d).

The third type of zirconolite (Zrl-III) exclusively occurs
as small, rounded to platy polycrystalline grains around the
external edges of baddeleyite and forms continuous or dis-
continuous coronas that are ≤ 25 µm thick (Fig. 4). We pre-
pared a resin mount of separated baddeleyite to observe Zrl-
III (Fig. 4) because baddeleyite can rarely be observed in thin
sections. The width of zirconolite around a single baddeleyite
grain is highly variable at different locations. The boundaries
between the baddeleyite and zirconolite are either zigzag-
shaped (Fig. 4b–d) or smooth (Fig. 4a). The original shapes
of baddeleyite grains and the reaction interface can be found.
The growth of Zrl-III also occurs in the interior of badde-
leyite along some fine fractures that extend to the outside of
the baddeleyite grains (Fig. 4a). The BSE images (Fig. 4c
and d) and element maps (Fig. 5) show that Zrl-III typically
coexists with or is intergrown with fragmental, porous, poly-
crystalline quartz.

Moreover, in both samples, some Ti-bearing and U-
bearing accessory minerals, such as geikielite (MgTiO3), ru-
tile (TiO2), and uraninite (UO2), can be observed in the ma-
trix or as inclusions in silicate minerals (Fig. 6).

4.2 Mineral compositions

4.2.1 Zirconolite

The compositions of zirconolite are presented in Tables 1
and 2. Zrl-I has 28 wt %–30 wt % ZrO2, 31 wt %–33 wt %
TiO2, and 8.5 wt %–9.6 wt % CaO (Fig. 7a; Table 1). The
UO2 content of Zrl-I ranges from 21 wt %–23 wt %, and the
ThO2 content ranges from 0.84 wt %–1.99 wt %. Zrl-I also
contains small amounts of MgO (2.6 wt %–3.2 wt %), FeO
(1.2 wt %–1.3 wt %), Al2O3 (0.46 wt %–0.74 wt %), HfO2
(0.58 wt %–0.72 wt %), Nb2O5 (0.37 wt %–0.52 wt %), and
Sc2O3 (≤ 0.03 wt %) (Fig. 8c; Fig. S1; Table 1). The con-
tents of REEs are very low (generally lower than the limit of
detection by EPMA analyses). LA-ICP-MS analyses indicate
that the6REE of Zr-I ranges from 123 to 174 µg g−1 (Fig. 9;

Eur. J. Mineral., 36, 11–29, 2024 https://doi.org/10.5194/ejm-36-11-2024
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Figure 7. Compositional variations in zirconolite from the MMB.
(a) Plots of CaO vs. UO2 (wt %) discriminating between the
different types of zirconolite. (b–d) Plots of Mg2+

+Fe2+ vs.
Th4+

+U4+ (apfu) (b), Nb5+
+Al3+ vs. Ti4+ (apfu) (c), and Hf

vs. Zr4+ (µg g−1) (d) showing negative or positive correlations be-
tween them.

Table 2). Zrl-I exhibits a light rare earth element (LREE)-
depleted and flat heavy rare earth element (HREE) pattern in
the chondrite-normalized diagram with negative Eu anoma-
lies (Fig. 9). The Cs, Rb, and Ba contents of Zrl-I are lower
than the limits of detection (Table 2).

Zrl-II has ZrO2 (28 wt %–30 wt %), TiO2 (30 wt %–
32 wt %), CaO (8.6 wt %–9.5 wt %), UO2 (21 wt %–
24 wt %), and ThO2 (0.71 wt %–2.0 wt %) contents similar to
those of Zrl-I (Fig. 7a; Table 1). The brighter rims in the BSE
images have slightly higher UO2 and lower CaO contents
than the darker cores (Fig. 7a; Table 1). The contents of
MgO, FeO, Al2O3, Sc2O3, and HfO2 in both cores and
rims are similar (Fig. S1). Both the cores and rims have low
REE contents (125 to 158 µg g−1 for 6REE) and show a
LREE-depleted pattern similar to that of Zrl-I (Fig. 9).

Compared to Zrl-I and Zrl-II, Zrl-III is found to have
higher contents of ZrO2 (32 wt %–38 wt %), TiO2 (36 wt %–
44 wt %), CaO (12 wt %–15 wt %), Nb2O5 (0.74 wt %–
1.3 wt %), and HfO2 (0.93 wt %–1.04 wt %); much lower
contents of UO2 (0.88 wt %–5.3 wt %); and slightly lower
contents of MgO (0.24 wt %–1.3 wt %) and FeO (0.47 wt %–
1.2 wt %) (Table 1; Fig. S1). The ThO2 contents range
from 0.60 wt %–6.8 wt %. The Al2O3 contents of Zrl-
III (0.52 wt %–0.77 wt %) are similar to those of Zrl-
I (0.46 wt %–0.74 wt %) and Zrl-II (0.49 wt %–0.72 wt %).
The LA-ICP-MS analyses indicate that the contents of REEs
in Zrl-III (366 to 477 µg g−1 for 6REE) are higher than
those of Zrl-I and Zrl-II (Fig. 9; Table 2). In the chondrite-
normalized diagram, Zrl-III shows a nearly flat REE pattern
(except La and Ce) with a negative Eu anomaly (Fig. 9).

Figure 8. (a) Ca–Ti–Zr compositional variations (apfu) of zircono-
lite. (b) Ca–(Th+U)–(REE+Y) compositional variations (apfu) of
zirconolite. (c) Plots of Nb2O5 vs. HfO2 (wt %) of zirconolite. Zir-
conolite from nepheline syenite or syenite (Platt et al.,1987; Ventura
et al., 2000; Bellatreccia et al., 2002; Haifler et al., 2017; Melluso et
al., 2017), ultra-mafic to mafic rocks (Williams, 1978; Lorand and
Cottin, 1987; Stucki et al., 2001; Rajesh et al., 2006; Azzone et al.,
2009), carbonatite (Williams and Giere, 1996), metasomatic rocks
(Purtscheller and Tessadri., 1985; Gieré, 1986; Gieré and Williams,
1992; Zaccarini et al., 2004; Pascal et al., 2009; Proyer et al., 2014),
and lunar basalt (Busche et al., 1972; Li et al., 2021; Wang et al.,
2021).

Figure 9. Chondrite-normalized REE patterns (Sun and Mc-
Donough, 1989) of different types of zirconolite from the MMB.

4.2.2 Baddeleyite, rutile, and geikielite

The compositions of baddeleyite, rutile, and geikielite
measured by EPMA are presented in Table S1. Bad-
deleyite is mainly composed of ZrO2 (94 wt %–98 wt %)
and HfO2 (2.3 wt %–5.2 wt %). This mineral also con-
tains minor amounts of TiO2 (0.18 wt %–0.52 wt %) and
Nb2O5 (0.13 wt %–0.22 wt %). Rutile is composed of
TiO2 (> 97 wt %) and contains minor amounts of ZrO2
(0.03 wt %–0.59 wt %), FeO (0.02 wt %–0.09 wt %), CaO
(0.07 wt %–1.1 wt %), and Nb2O5 (≤ 0.54 wt %). Geikielite
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is mainly composed of TiO2 (63 wt %–66 wt %), MgO
(27 wt %–30 wt %), and FeO (5.2 wt %–7.0 wt %). The con-
tents of UO2 and ThO2 in the three minerals above are lower
than the limits of detection by EPMA analyses.

4.2.3 Silicate minerals and spinel

The compositions of silicate and oxide minerals (forsterite,
spinel, and phlogopite) coexisting with zirconolite were
analyzed, and the results are presented in Table S1.
Forsterite has near-endmember compositions with XMg
[=Mg / (Mg+Fe2+)]= 0.99. Spinel has high Al contents
of 68 wt %–70 wt % and XMg of 0.98–0.90. The Cr2O3
contents of spinel range from 0.80 wt %–3.3 wt %. Phlogo-
pite has near-endmember compositions (XMg = 0.99–1) and
high TiO2 contents of 0.57 wt %–1.5 wt %. The K (0.63–
0.87 apfu, atomic proportion per formula unit) and Na (0.11–
0.38 apfu) contents of phlogopite are high, and the Ca
(≤ 0.002 apfu) contents are low. In addition, phlogopite con-
tains considerable amounts of F (1.6 wt %–1.9 wt %).

4.3 U–Pb ages of zirconolite

The U–Th–Pb isotope contents of zirconolite are presented
in Table S2 and shown in Fig. 10. The f206 values of zir-
conolite in the MMB range from 1 %–7 %, indicating low
proportions of common Pb. The Th/U ratios of Zrl-I (0.03–
0.08) and Zrl-II (0.04–0.08) are lower than those of Zrl-
III (0.40–2.9). A total of 18 analyses on Zrl-I from sam-
ple 13MDL76-A and 16 analyses on Zrl-I from sample
13MDL76-B give lower intercept ages of 34.8± 0.5 Ma (2σ ,
mean square weighted deviation, MSWD= 1.7; Fig. 10a)
and 35.2± 0.5 Ma (2σ , MSWD= 2; Fig. 10b), respec-
tively, in Tera-Wasserburg concordia diagrams. Their
weighted mean 206Pb / 238U ages after 207Pb correction
are 34.9± 0.5 Ma (2σ , MSWD= 1.6) and 35.3± 0.5 Ma
(2σ , MSWD= 1.8), respectively. Four analyses on the
13MDL76-A Zrl-II and seven analyses on the 13MDL76-
B Zrl-II yield lower intercept ages of 34.4± 1.0 Ma
(2σ , MSWD= 0.17; Fig. 10c) and 34.9± 0.8 Ma (2σ ,
MSWD= 1.5; Fig. 10d), respectively. Their weighted mean
206Pb / 238U ages after 207Pb correction are 34.4± 1.0 Ma
(2σ , MSWD= 0.14) and 34.9± 0.8 Ma (2σ , MSWD= 1.1),
respectively. There is no difference in the ages between
the Zrl-II cores and rims. Six analyses of Zrl-III from
13MDL76-B define a regression line with a lower inter-
cept age of 18.6± 0.9 Ma (2σ , MSWD= 1.1; Fig. 10e). The
weighted mean 206Pb / 238U age after 207Pb correction is
18.6± 0.9 Ma (2σ , MSWD= 0.92).

5 Discussion

5.1 Multiple growth of zirconolite in the reaction zones
of marbles

The studied reaction zones in marbles were formed by
episodic infiltrations of external reactive fluids (Guo et al.,
2021). Thus, the growth of zirconolite in these reaction zones
is associated with the different stages of fluid influx and min-
eral reactions.

Zrl-I occurs in the matrix and typically coexists with car-
bonates (calcite and dolomite), forsterite, spinel, and phlo-
gopite, and it also contains calcite inclusions (Fig. 2a–f).
The boundaries between Zrl-I and coexisting minerals are
generally sharp, suggesting the simultaneous formation of
these minerals. Therefore, Zrl-I developed during the first
infiltration process that led to the metasomatic formation
of forsterite, spinel, and phlogopite by the replacement of
dolomite at 704–750 ◦C and ∼ 8 kbar (Guo et al., 2021). Zrl-
I has very high ZrO2 (28 wt %–30 wt %), TiO2 (31 wt %–
33 wt %), UO2 (21 wt %–23 wt %), and ThO2 (0.84 wt %–
1.9 wt %) contents, and contain considerable amounts of Nb,
Ta, and Hf (Table 1; Figs. 7c, 7d, 8c), indicating high contents
of these elements in the K–Al–Si-bearing infiltrating fluid.
This interpretation is in accordance with the petrographic ob-
servations that abundant rutile, uraninite, and baddeleyite oc-
cur in the reaction zones (Fig. 6), indicating high Zr–Ti–U
contents in the reactive fluid. The metasomatic reactions in-
volved in the formation of Zrl-I at the expense of dolomite
can be summarized as follows:
2Dol+ 4TiO2(aq) + ZrO2(aq)

= Zrl+Cal + 2Gk + 3CO2, (R1)
2Dol+ 2TiO2(aq) + ZrO2(aq) + SiO2(aq)

= Zrl + Cal+Fo + 3CO2, (R2)
2Dol+ 2TiO2(aq) + ZrO2(aq) + 2Al2O3

= Zrl+Cal+ 2Spl + 3CO2, (R3)
6Dol+ 2TiO2(aq) + ZrO2(aq) + Al2O3+ 6SiO2

+K2O + 2H2O = Zrl + 5Cal + 2Phl + 7CO2, (R4)
Dol+ 2TiO2(aq) + UO2(aq)

= U-Zrl(UZrTi2O7)+Cal+ CO2, (R5)
Dol+ 2TiO2(aq) + ThO2(aq)

= Th-Zrl(ThZrTi2O7)+Cal+CO2. (R6)

Zrl-II has a grain shape, size, and inclusions similar to those
of Zrl-I. Both types of zirconolite have the same coexisting
mineral assemblages. Moreover, Zrl-II cores have the same
compositional variations and REE patterns as those of Zrl-I
(Fig. 3d). Thus, we consider that the growth mechanism of
Zrl-II cores is similar to that of Zrl-I. The formation of irreg-
ular Zrl-II rims is related to a later alteration process because
the sharp core–rim contact of Zrl-II is consistent with fluid-
assisted replacement reactions (e.g., Putnis and Austrheim,
2010).
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Figure 10. (a–b) Tera-Wasserburg U–Pb concordia diagrams for Zrl-I from 13MDL76-A (a) and 13MDL76-B (b). (c–d) Tera-Wasserburg
U–Pb concordia diagrams for Zrl-II from 13MDL76-A (c) and 13MDL76-B (d). The red and black ellipses represent the core and rim of
Zrl-II, respectively. (e) Tera-Wasserburg U–Pb concordia diagrams for Zrl-III from 13MDL76-B. The discordia lines in the Terra-Wasserburg
diagrams are forced through a 207Pb / 206Pb value of 0.84± 0.05. The 207Pb / 206Pb values were estimated using the two-stage crustal Pb
model of Stacey and Kramers (1975) for all samples. The gray areas in Tera-Wasserburg U–Pb concordia diagrams show that the variation
in the estimated 207Pb / 206Pb value has little effect on the calculated ages for low common Pb contents for Zrl-I and Zrl-II (f206< 2 %,
Table S2; Li et al., 2012). The data-point error bars are 1σ .
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Figure 11. Schematic model (not-to-scale) of multiple episodes of fluid infiltration in the marbles (a, c, e) and the growth of Zrl-I (b), Zrl-II
(d), and Zrl-III (f).

The corona textures of Zrl-III around baddeleyite and the
jagged grain boundaries between the two minerals (Fig. 4)
indicate the growth of Zrl-III by the replacement of badde-
leyite. Similar textures of zirconolite rimming baddeleyite
have been previously observed in metacarbonate rocks (e.g.,
Purtscheller and Tessadri, 1985; Tropper et al., 2007), mafic–
ultramafic magmatic rocks (e.g., Rasmussen and Fletcher,
2004; Azzone et al., 2009; Hurai et al., 2018), and lunar
basalt (e.g., Rasmussen et al., 2008; Li et al., 2021). The for-
mation of the Zrl-III corona is closely related to fluid meta-
somatism via a mechanism of interface-coupled dissolution–
precipitation (ICDP) (e.g., Putnis and Austrheim, 2010; Guo
et al., 2017). Zrl-III does not form on all the boundaries of
baddeleyite (Fig. 4), suggesting that Zrl-III formed only on
the sites where the infiltrating fluid was able to pass. Calcium
in Zrl-III is locally derived from calcite, and Ti may be de-
rived from the infiltrating fluid. The large compositional vari-
ation for the Zrl-III corona after a single baddeleyite grain
(Fig. 4a, Table 1) may be caused by different degrees of
fluid–mineral interaction and element exchange at different
sites of the baddeleyite grain boundary. Based on the reac-
tants and products, the following reaction can be inferred:

Bdy+ 2TiO2(aq) + CaCO3 = Zrl-III + CO2. (R7)

Zrl-III has variable and much higher UO2 (0.88 wt %–
5.3 wt %) and ThO2 (0.60 wt %–6.8 wt %) than baddeleyite
(UO2≤ 0.23 wt %, ThO2≤ 0.06 wt %; Table S1), indicating
that the infiltrating fluids responsible for Zrl-III also con-
tain certain amounts of U and Th. However, the UO2 con-
tents of Zrl-III are obviously lower than those of Zrl-I and
Zrl-II (Fig. 7a; Table 1), implying that the later-stage in-
filtrating fluid has lower UO2 contents than the first-stage
infiltrating fluid. Interestingly, Zrl-III is found to be inter-

grown with polycrystalline quartz (Figs. 4c, d and 5e). This
phenomenon has rarely been reported in natural rocks (Ras-
mussen and Fletcher, 2004; Rasmussen et al., 2008, 2009).
The coexistence of Zrl-III and quartz in the MMB samples
indicates that this stage of the reactive fluid was locally SiO2-
saturated. Guo et al. (2021) revealed that a gneiss-derived
later-stage fluid with high SiO2 activity infiltrated the mar-
bles at ∼ 680 ◦C and 5 kbar. We therefore suggest that the
development of Zrl-III is also associated with this stage of
high-αSiO2 fluid influx.

In summary, the above results indicate that the three types
of zirconolite record multiple episodes of fluid infiltration in
the marbles. The first stage of infiltration led to the formation
of Zrl-I and Mg-rich silicates and oxides, as well as other
accessory minerals (baddeleyite and geikielite) (Fig. 11a
and b). The reactive K–Al–Si fluid was also enriched in Zr,
Ti, U, and Th. After that, a portion of Zrl-I grains experienced
a local fluid-assisted dissolution–precipitation process, pro-
ducing a core–rim zonation (i.e., the Zrl-II type) (Fig. 11c
and d). The final stage of infiltration formed Zrl-III at the
expense of baddeleyite. This final stage of fluid was charac-
terized by relatively low U contents and high SiO2 activities
(Fig. 11e and f).

5.2 Constraints on episodic infiltration by zirconolite
U–Pb dating

The high U and Pb contents and low common Pb contents
in zirconolite provide a good opportunity to elucidate the
time-resolved infiltration history and episodic fluid–rock in-
teractions in the marbles using in situ dating technology.
The analyses of Zrl-I grains from both samples yield simi-
lar lower intercept ages of 34.8± 0.5 Ma (2σ , MSWD= 1.7,
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n= 18; Fig. 10a) and 35.2± 0.5 Ma (2σ , MSWD= 2, n=
16; Fig. 10b), consistent with the U–Pb ages of baddeleyite
cores (35.8± 0.8 Ma; Guo et al., 2021) in the same samples.
This result further supports the simultaneous formation of
Zrl-I and baddeleyite, and therefore the ages represent the
time of the earliest infiltration event in these marbles. Be-
cause the Zrl-I ages are similar to the emplacement ages
of hornblende syenites near the marbles (from 33.1± 0.9 to
30.9± 0.6 Ma; Barley et al., 2003), it is reasonable to infer
that the Zr–Ti–U–Th-rich metasomatic fluid is derived from
the syenitic magma (Searle et al., 2020).

Zrl-II from the two samples gives lower intercept ages
of 34.4± 1.0 Ma (2σ , MSWD= 0.17, n= 4; Fig. 10c) and
34.9± 0.8 Ma (2σ , MSWD= 1.5, n= 7; Fig. 10d), which
are in accordance with those of Zrl-I within the uncertain-
ties. The ages of the Zrl-II cores and rims are indistinguish-
able within the uncertainties. Thus, Zrl-II most likely repre-
sents Zrl-I grains that have experienced a local dissolution–
precipitation process, which occurred slightly later than the
formation of Zrl-I (i.e., Zrl-II cores).

The analyses of the Zrl-III corona around baddeleyite yield
a lower intercept age of 18.6± 0.9 Ma (2σ , MSWD= 1.1,
n= 6; Fig. 10e), indicating an infiltration event postdating
the formation of Zrl-I and Zrl-II. The ages are consistent
with the time of the final stage of infiltration in the mar-
bles constrained by zircon U–Pb dating (17.05± 0.27 Ma)
in the same samples (Guo et al., 2021). The ages are also
close to those of a biotite granite dike in the nearby Sedaw-
gyi gneisses (17.0± 0.3 Ma; Mitchell et al., 2012). We thus
suggest that the last stage of SiO2-rich infiltrating fluids was
derived from the partial melts of the gneisses during the
Miocene uplift cooling process of the MMB (Bertrand et al.,
1999, 2001; Garnier et al., 2006; Mitchell et al., 2012).

Therefore, the multiple formation stages of zirconolite
record episodes of infiltration in the marbles ranging from
35 to 19 Ma during the India–Asia collision and uplift of the
MMB (Fig. 11a–f).

5.3 Comparison with other types of zirconolite

Zirconolite occurs in a variety of rock types, includ-
ing metasomatized metacarbonates, mafic–ultramafic mag-
matic rocks, carbonatites, syenite, syenite pegmatite, placer
deposits, and extraterrestrial samples (see the review of
Williams and Gieré, 1996). This mineral has several cation-
acceptor sites, which allows a series of cation substitutions
ranging in ionic radii from 0.40 to 1.14 A◦ and charges from
2+ to 6+ (Giereì et al., 1998). The compositions of natural
zirconolite vary extensively, and the predominant substitu-
tions involve (1) U, Th, Pb, and REEs for Ca; (2) Hf for Zr;
and (3) Al, Nb, Ta, Fe, Mg, Mn, Zn, and W for Ti (Gieré
et al., 1998). Clarifying the correlation between zirconolite
compositions and types of host lithologies is essential to un-
derstand the mineral growth mechanism and element substi-

tution, as well as to establish a potential framework to trace
the origin of zirconolite.

The MMB zirconolite, which formed by the metasoma-
tism of dolomite marbles, is characterized by high UO2
(0.88 wt %–24 wt %) and ThO2 (0.6 wt %–6.8 wt %) con-
tents and low REE contents (below the detection limits
by EPMA). The U4+

+Th4+ content correlates well with
the Mg2+

+Fe2+ content (Fig. 7b), indicating that the fol-
lowing coupled substitution causes the U4+ and Th4+ en-
richments in zirconolite (Giereì and Williams, 1992): (U,
Th)4+

+ (Mg, Fe)2+
=Ca2+

+Ti4+. The positive correlation
between Nb5+

+Al3+ and Ti4+ (Fig. 7c) supports the fact
that the enrichments of Nb (maybe also Ta) are mainly
governed by the following coupled substitution: (Nb, Ta)5+

+Al3+ = 2Ti4+ (Giereì and Williams, 1992). The incorpo-
ration of Hf in zirconolite is controlled by the substitution
of Hf4+

=Zr4+, as indicated by the positive correlation be-
tween the two elements (Fig. 7d).

Figure 8a–c compare the compositions of zirconolite from
the MMB samples with those from a variety of litholo-
gies reported in previous studies, including mafic–ultramafic
magmatic rocks (kimberlites and lunar basalts), carbonatites,
syenites, and metasomatized carbonate rocks. MMB zircono-
lite has similar contents of Ca, Ti, and Zr to other types
of zirconolite (Fig. 8a). The U+Th contents of zirconolite
are highly varied (from 0.002 to 0.48 apfu) for all types of
lithologies except the lunar samples, the zirconolite of which
typically has relatively low U+Th contents (< 0.013 apfu)
(Fig. 8b). In contrast, different types of zirconolite have dis-
tinct REE+Y concentrations (Fig. 8b). Generally, zircono-
lite in syenites, lunar basalts, and mafic–ultramafic magmatic
rocks have high total REE+Y contents (up to 0.65 apfu).
Zirconolite formed during metasomatic processes of carbon-
ate rocks (skarn) and marbles, including the MMB zircono-
lite, typically exhibits the lowest contents of REE+Y (from
0 to 0.20 apfu). The REEs contents of zirconolite from car-
bonatites and most mafic–ultramafic rocks are in between
those of the syenites and metasomatic rocks. The Nb2O5
and HfO2 contents for different types of zirconolites are also
highly variable (Fig. 8c). Zirconolite from the metasomatic
rocks and lunar samples generally have lower Nb2O5 con-
tents than those from carbonatites and syenites.

5.4 Implication for multiple stages of infiltration in
metacarbonates and Zr–Ti–Th–U mineralization

Fluid/melt infiltration into metacarbonates and fluid/melt-
rock interactions occur widely in subduction–collision oro-
genic belts, which may induce significant CO2 release and
mineralization of critical metals (e.g., Stewart et al., 2018;
Guo et al., 2021, 2022; Kerrick, 1977; Meinert et al., 2005;
Deng and Wang, 2016; Xie et al., 2021). A growing number
of studies have indicated that the infiltration–metasomatic
processes in metacarbonates are complex and involve mul-
tiple episodes of reactions (e.g., Jamtveit et al., 1993; Satish-
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Kumar et al., 2010; Brice et al., 2019; Tan et al., 2022; Guo
et al., 2019, 2021; Zeng and Liu, 2022). However, it is diffi-
cult to precisely constrain the time and fluid chemical char-
acteristics of each infiltration episode. Studies on zircono-
lite provide a new solution to address this problem. Our new
results on the MMB reaction zones indicate that zirconolite
can grow at various stages in response to the episodic fluid
infiltrations and fluid-assisted replacement reactions. On the
one hand, high U–Th–Pb contents and advances in the in
situ isotopic analytical technique enable the zirconolite to
yield the time of fluid influx (Sect. 5.2). On the other hand,
compared to other accessory geochronometers (e.g., badde-
leyite, zircon, and rutile) in metacarbonate rocks, zirconolite
can accommodate more groups of trace elements in its crys-
tal lattice (Sect. 5.3). Therefore, this mineral also provides
more information on the compositions of introduced reactive
fluids. Here, a comprehensive study on the MMB samples
presents an example to elucidate the fluid influx history and
reactive fluid compositions in the marbles using zirconolite.
More importantly, the growth of zirconolite in metacarbon-
ates is typically accompanied by the consumption of carbon-
ates and the release of CO2 (Reactions R1–R7). Thus, zir-
conolite may be of particular importance for characterizing
the decarbonation process and the flow of carbonic fluids.

Our results indicate an efficient mobilization and transfer
of Zr (Hf), Ti (Nb and Ta), and U (Th) during the fluid–rock
interactions, although high-field-strength elements (HFSEs)
were typically regarded as sparingly soluble components in
aqueous fluids (e.g., Keppler and Wyllie, 1990, 1991; Audé-
tat and Keppler, 2005; Tropper and Manning, 2005). Experi-
mental and geological studies indicate that the enrichment of
F and other halogens can significantly elevate the solubility
of HFSEs by complexing with HFSEs in aqueous fluid (Kep-
pler and Wyllie, 1990, 1991; Peiffer et al., 1996; Antignano
and Manning, 2008; Cuney, 2009; Rapp et al., 2010; Bali
et al., 2011; Migdisov et al., 2011; Tanis et al., 2016; Kar-
makar, 2021). The high F contents in phlogopite (1.6 wt %–
1.9 wt %) from the reaction zones indicate that the reactive
HFSE-bearing fluids also contain F. We thus suggest that F
played an important role in transporting HFSEs in the flu-
ids (Gieré, 1986; Salvi and WilliamsJones, 1996; Zhao et al.,
2016; Guo et al., 2016; Duan and Li, 2017; Zeng and Liu,
2022), and the growth of phlogopite during the fluid–marble
interaction decomposed F–HFSE complexes to deposit Zrl
and other HFSE-rich minerals. In addition, we reveal that the
mineralization of Zr–Ti–U-rich phases in (meta-)carbonate
rocks could be episodic. This provides a new insight into
the transport and precipitation of HFSEs during crustal fluid–
rock interactions.

6 Conclusions

Three textural types of zirconolite (Zrl-I, Zrl-II, and Zrl-III),
which formed by multiple episodes of fluid–marble interac-

tion during the India–Asia continental collision, have been
recognized in the reaction zones of MMB dolomite mar-
bles. These types of zirconolite record important informa-
tion about the timing of episodic infiltration and the chem-
ical compositions of the reactive fluids. Zrl-I records the
first episode of fluid infiltration at ∼ 35 Ma with high U and
Th contents in the reactive fluid. Zrl-II, which has a core–
rim compositional zonation, reflects a local dissolution–
precipitation process slightly later than the first episode of
fluid infiltration. Zrl-III, which formed by the replacement of
baddeleyite, documents a final stage of SiO2-rich fluid infil-
tration at ∼ 19 Ma. This late reactive fluid has lower U con-
tents. All the infiltrating fluids have low REE contents. The
fluids responsible for the Zrl-I and Zrl-II formation were de-
rived from the syenite intrusions, whereas the fluid respon-
sible for the formation of Zrl-III was associated with the
granite dike in nearby gneisses. This study illustrates that the
combination of detailed petrographic study, mineral chem-
istry, and in situ U–Pb dating on multistage-formed zircono-
lite can be used to constrain the time-resolved fluid infiltra-
tion history in metacarbonates and reactive fluid composi-
tions.
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