Articles | Volume 35, issue 6
https://doi.org/10.5194/ejm-35-897-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-897-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tetrahedrite-(Cd), Cu6(Cu4Cd2)Sb4S13, from Radětice near Příbram, Czech Republic: the new Cd member of the tetrahedrite group
Jiří Sejkora
CORRESPONDING AUTHOR
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9, Czech Republic
Cristian Biagioni
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, 56126 Pisa, Italy
Pavel Škácha
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9, Czech Republic
Mining Museum Příbram, Hynka Kličky Place 293, 261 01 Příbram VI, Czech Republic
Silvia Musetti
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, 56126 Pisa, Italy
Anatoly V. Kasatkin
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Fabrizio Nestola
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, 35131, Padua, Italy
Related authors
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Cristian Biagioni, Jiří Sejkora, Yves Moëlo, Georges Favreau, Vincent Bourgoin, Jean-Claude Boulliard, Elena Bonaccorsi, Daniela Mauro, Silvia Musetti, Marco Pasero, Natale Perchiazzi, and Jana Ulmanová
Eur. J. Mineral., 37, 319–335, https://doi.org/10.5194/ejm-37-319-2025, https://doi.org/10.5194/ejm-37-319-2025, 2025
Short summary
Short summary
Ginelfite is a new Ag–Fe–Tl–Pb sulfosalt described from the hydrothermal deposit of Jas Roux (France). It belongs to the so-called boxwork sulfosalts, a group of species showing the highest structural complexity among this group of chalcogenides. This very complex structure is probably stabilized by the occurrence of minor chemical constituents (Tl, Fe) occupying specific structural positions.
Cristian Biagioni, Daniela Mauro, Jiří Sejkora, Zdeněk Dolníček, Andrea Dini, and Radek Škoda
Eur. J. Mineral., 37, 39–52, https://doi.org/10.5194/ejm-37-39-2025, https://doi.org/10.5194/ejm-37-39-2025, 2025
Short summary
Short summary
Dacostaite is a new fluoride–arsenate mineral found in the Sb(Au) deposit of the Cetine di Cotorniano Mine (Tuscany, Italy). It shows a novel crystal structure formed by heteropolyhedral layers and isolated Mg(H2O)6 groups connected by H bonds. The heteropolyhedral layers are similar to those occurring in alunite-supergroup minerals, and this is a further example of the ability of nature to use similar modules in forming the large number of currently known structural arrangements.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Richard Pažout, Michal Dušek, Jiří Sejkora, Jakub Plášil, Gheorghe Ilinca, and Zdeněk Dolníček
Eur. J. Mineral., 36, 641–656, https://doi.org/10.5194/ejm-36-641-2024, https://doi.org/10.5194/ejm-36-641-2024, 2024
Short summary
Short summary
A new sulfosalt mineral species, lazerckerite, Ag3.7Pb4.6(Sb7.9Bi3.8)Σ11.7S24, has been found, identified, structurally solved, and approved by the IMA. The mineral belongs to the Sb–Bi mixed members of the andorite branch of the lillianite homologous series. The description and characterization of the mineral are presented, and the ways of distinguishing the mineral from other similar members of the group on the basis of chemical results are explained.
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Pavel Škácha, Jiří Sejkora, Jakub Plášil, Zdeněk Dolníček, and Jana Ulmanová
Eur. J. Mineral., 33, 175–187, https://doi.org/10.5194/ejm-33-175-2021, https://doi.org/10.5194/ejm-33-175-2021, 2021
Short summary
Short summary
Grimmite, sulfide of cobalt and nickel, is the new mineral for the mineralogical system.
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Giuseppe Illuminati, Silvia Musetti, Fabio Bellatreccia, Cristian Biagioni, Enrico Caprilli, Ahmad Rabiee, and Marco E. Ciriotti
Eur. J. Mineral., 37, 483–504, https://doi.org/10.5194/ejm-37-483-2025, https://doi.org/10.5194/ejm-37-483-2025, 2025
Short summary
Short summary
In this work, we present the most iron-rich chrysoberyl discovered to date, found in the Sabatini Volcanic Complex (Latium, Italy). We provide a comprehensive overview of its chemical, structural, spectroscopic, and optical properties. The characterization of this chrysoberyl reveals several unique features, offering valuable insights into its genetic model and geochemical constraints, which are consistent with existing literature on the Sabatini complex and with ongoing research.
Cristian Biagioni, Jiří Sejkora, Yves Moëlo, Georges Favreau, Vincent Bourgoin, Jean-Claude Boulliard, Elena Bonaccorsi, Daniela Mauro, Silvia Musetti, Marco Pasero, Natale Perchiazzi, and Jana Ulmanová
Eur. J. Mineral., 37, 319–335, https://doi.org/10.5194/ejm-37-319-2025, https://doi.org/10.5194/ejm-37-319-2025, 2025
Short summary
Short summary
Ginelfite is a new Ag–Fe–Tl–Pb sulfosalt described from the hydrothermal deposit of Jas Roux (France). It belongs to the so-called boxwork sulfosalts, a group of species showing the highest structural complexity among this group of chalcogenides. This very complex structure is probably stabilized by the occurrence of minor chemical constituents (Tl, Fe) occupying specific structural positions.
Tonči Balić-Žunić, Anna Garavelli, Donatella Mitolo, Fabrizio Nestola, Martha Giovanna Pamato, Maja Bar Rasmussen, and Morten Bjerkvig Jølnæs
Eur. J. Mineral., 37, 79–89, https://doi.org/10.5194/ejm-37-79-2025, https://doi.org/10.5194/ejm-37-79-2025, 2025
Short summary
Short summary
Heimaeyite (Na3Al(SO4)3) has been found in fumaroles on Eldfell volcano, which lies on the island of Heimaey, Iceland. Its crystal structure contains Al–sulfate chains and belongs to a known structure type that also comprises K–Nb, K–Ta, Na–V, and Na–Fe representatives. We registered small Fe–Al substitution in heimaeyite, which might indicate a solid solution between Na–Al and Na–Fe compounds. We investigated the specimen with electron microscopy, an electron microprobe, and X-ray diffraction.
Cristian Biagioni, Daniela Mauro, Jiří Sejkora, Zdeněk Dolníček, Andrea Dini, and Radek Škoda
Eur. J. Mineral., 37, 39–52, https://doi.org/10.5194/ejm-37-39-2025, https://doi.org/10.5194/ejm-37-39-2025, 2025
Short summary
Short summary
Dacostaite is a new fluoride–arsenate mineral found in the Sb(Au) deposit of the Cetine di Cotorniano Mine (Tuscany, Italy). It shows a novel crystal structure formed by heteropolyhedral layers and isolated Mg(H2O)6 groups connected by H bonds. The heteropolyhedral layers are similar to those occurring in alunite-supergroup minerals, and this is a further example of the ability of nature to use similar modules in forming the large number of currently known structural arrangements.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Richard Pažout, Michal Dušek, Jiří Sejkora, Jakub Plášil, Gheorghe Ilinca, and Zdeněk Dolníček
Eur. J. Mineral., 36, 641–656, https://doi.org/10.5194/ejm-36-641-2024, https://doi.org/10.5194/ejm-36-641-2024, 2024
Short summary
Short summary
A new sulfosalt mineral species, lazerckerite, Ag3.7Pb4.6(Sb7.9Bi3.8)Σ11.7S24, has been found, identified, structurally solved, and approved by the IMA. The mineral belongs to the Sb–Bi mixed members of the andorite branch of the lillianite homologous series. The description and characterization of the mineral are presented, and the ways of distinguishing the mineral from other similar members of the group on the basis of chemical results are explained.
Cristian Biagioni, Anatoly V. Kasatkin, Fabrizio Nestola, Radek Škoda, Vladislav V. Gurzhiy, Atali A. Agakhanov, and Natalia N. Koshlyakova
Eur. J. Mineral., 36, 529–540, https://doi.org/10.5194/ejm-36-529-2024, https://doi.org/10.5194/ejm-36-529-2024, 2024
Short summary
Short summary
Zvěstovite-(Fe) is a new, Ag-rich, member of the tetrahedrite group, the most widespread sulfosalts in ore deposits. Its discovery stresses the chemical variability of this mineral group, allowing for a better understanding of the structural plasticity of these compounds, which are able to host a plethora of different elements typical of hydrothermal environments.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023, https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary
Short summary
We have developed the thermodynamic theory of the properties of inclusions consisting of more than one phase, including inclusions containing solids plus a fluid. We present a software utility that enables for the first time the entrapment conditions of multiphase inclusions to be determined from the measurement of their internal pressure when that is measured in a laboratory.
Yanjuan Wang, Fabrizio Nestola, Huaikun Li, Zengqian Hou, Martha G. Pamato, Davide Novella, Alessandra Lorenzetti, Pia Antonietta Antignani, Paolo Cornale, Jacopo Nava, Guochen Dong, and Kai Qu
Eur. J. Mineral., 35, 361–372, https://doi.org/10.5194/ejm-35-361-2023, https://doi.org/10.5194/ejm-35-361-2023, 2023
Short summary
Short summary
In this work we have applied the elastic geobarometry approach to a Chinese diamond in order to determine the depth of formation of an olivine-bearing diamond. Together with the temperature of residence at which the diamond resided in the mantle, we were able to discover that the diamond was formed at about 190 km depth. Beyond the geological meaning of our results, this work could be a reference paper for future works on Chinese diamonds using elastic geobarometry.
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Yanjuan Wang, Fabrizio Nestola, Zengqian Hou, Xiangping Gu, Guochen Dong, Zhusen Yang, Guang Fan, Zhibin Xiao, and Kai Qu
Eur. J. Mineral., 35, 65–74, https://doi.org/10.5194/ejm-35-65-2023, https://doi.org/10.5194/ejm-35-65-2023, 2023
Short summary
Short summary
Bobtraillite is an extremely rare cyclosilicate with a unique composition and complex structure. In this paper, we describe the second occurrence of the extremely rare complex zirconium silicate. The results suggest that the ideal formula of bobtraillite could be written as (Na, □)12(□, Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O.
Luca Faccincani, Valerio Cerantola, Fabrizio Nestola, Paolo Nimis, Luca Ziberna, Leonardo Pasqualetto, Aleksandr I. Chumakov, Jeffrey W. Harris, and Massimo Coltorti
Eur. J. Mineral., 34, 549–561, https://doi.org/10.5194/ejm-34-549-2022, https://doi.org/10.5194/ejm-34-549-2022, 2022
Short summary
Short summary
We determined the physical conditions at the time of its entrapment for an inclusion pair hosted in a Siberian diamond (Udachnaya kimberlite) and found that it equilibrated under relatively oxidized conditions, near the enstatite–magnesite–olivine–diamond (EMOD) buffer, similarly to Udachnaya xenoliths originating from comparable depths. These results can be reconciled with models suggesting relatively oxidized, water-rich CHO fluids as the most likely parents for lithospheric diamonds.
Cristian Biagioni, Marco E. Ciriotti, Georges Favreau, Daniela Mauro, and Federica Zaccarini
Eur. J. Mineral., 34, 365–374, https://doi.org/10.5194/ejm-34-365-2022, https://doi.org/10.5194/ejm-34-365-2022, 2022
Short summary
Short summary
The paper reports the type description of the new mineral species graulichite-(La). This is a new addition to the dussertite group within the alunite supergroup, and its discovery improves our knowledge on the crystal chemistry of this important supergroup of minerals, having both technological and environmental applications.
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Pavel Škácha, Jiří Sejkora, Jakub Plášil, Zdeněk Dolníček, and Jana Ulmanová
Eur. J. Mineral., 33, 175–187, https://doi.org/10.5194/ejm-33-175-2021, https://doi.org/10.5194/ejm-33-175-2021, 2021
Short summary
Short summary
Grimmite, sulfide of cobalt and nickel, is the new mineral for the mineralogical system.
Yves Moëlo and Cristian Biagioni
Eur. J. Mineral., 32, 623–635, https://doi.org/10.5194/ejm-32-623-2020, https://doi.org/10.5194/ejm-32-623-2020, 2020
Short summary
Short summary
The plagionite group is a family of complex sulfides (
lead-antimony sulfosalts) encountered in various Pb-Cu-Zn ore deposits. Analysis of these crystal structures confirms a systematic Pb-versus-Sb substitution in two adjacent cation positions. Such a substitution varies according not only to the Pb / Sb ratio of each member but also, apparently, to the kinetics of crystallization. Re-examination of a Pb-free synthetic derivative permitted its redefinition as a Na-Sb sulfosalt.
Cited articles
Allen, F. H., Bergerhoff, G., and Sievers, R.: Crystallographic Databases, International Union of Crystallography, Chester, England, 221 pp., 1987.
Andreasen, J. W., Makovicky, E., Lebech, B., and Karup-Møller, S.: The role of iron in tetrahedrite and tennantite determined by Rietveld refinement of neutron powder diffraction data, Phys. Chem. Miner., 35, 447–454, 2008.
Bestemyanova, K. V. and Grinev, O. M.: Mineralogy of baryte-polymetallic deposits of Zmeinogorskiy ore district (Rudnyi Altai), Bulletin of the Tomsk Polytechnic University. Engineering of Georesources, 332, 210–222, 2021 (in Russian).
Biagioni, C., George, L. G., Cook, N. J., Makovicky, E., Moëlo, Y., Pasero, M., Sejkora, J., Stanley, C. J., Welch, M. D., and Bosi, F.: The tetrahedrite group: Nomenclature and classification, Am. Miner., 105, 109–122, 2020a.
Biagioni, C., Sejkora, J., Musetti, S., Velebil, D., and Pasero, M.: Tetrahedrite-(Hg), a new “old” member of the tetrahedrite group, Mineral. Mag., 84, 584–592, 2020b.
Biagioni, C., Sejkora, J., Raber, T., Roth, P., Moëlo, Y., and Dolníček, Z.: Tennantite-(Hg), a new tetrahedrite group mineral from the Lengenbach quarry (Binn, Switzerland), Mineral. Mag., 85, 744–751, 2021.
Biagioni, C., Kasatkin, A., Sejkora, J., Nestola, F., and Škoda, R.: Tennantite-(Cd), Cu6(Cu4Cd2)As4S13, from the Berenguela mining district, Bolivia: the first Cd-member of the tetrahedrite group, Mineral. Mag., 86, 834–840, 2022a.
Biagioni, C., Sejkora, J., Moëlo, Y., Marcoux, E., Mauro, D., and Dolníček, Z.: Tennantite-(Cu), Cu12As4S13, from Layo, Arequipa Department, Peru: a new addition to the tetrahedrite-group minerals, Mineral. Mag., 86, 331–339, 2022b.
Blüml, A., Slačík, J., Straková, S., and Malý, R.: Mineralogical and technological characteristics of the vein S-1 vein at the 7th level of the Radětice deposit, Unpublished report DIAMO SUL, 26 pp., 1984 (in Czech).
Borčinová Radková, A., Jamieson, H., Lalinská-Voleková, B., Majzlan, J., Števko, M., and Chovan, M.: Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and L'ubietová-Svätodušná, Slovakia, Am. Miner., 102, 1091–1100, 2017.
Brese, N. E. and O'Keeffe, M.: Bond-valence parameters for solids, Acta Cryst., B47, 192–197, 1991.
Charlat, M. and Lévy, C.: Influence des principales substitutions sur le parametre cristallin de la série tennantite-tétraédrite, Bull. Soc. Franç. Miner. Crist, 98, 152–158, 1975.
Charnock, J. M., Garner, C. D., Pattrick, R. A. D., and Vaughan, D. J.: Coordination sites of metals in tetrahedrite minerals determined by EXAFS, J. Solid St. Chem., 82, 279–289, 1989.
Chetty, R., Bali, A., and Mallik, R. C.: Tetrahedrites as thermoelectric materials: an overview, J. Mater. Chem. C, 3, 12364–12378, 2015.
Criddle, A. J. and Stanley, C. J.: Quantitative data file for ore minerals, third edition, Chapman & Hall, London, ISBN 041246750X, 1993.
Dobbe, R. T. M.: Manganoan-cadmian tetrahedrite from the Tunaberg Cu-Co deposit, Bergslagen, central Sweden, Mineral. Mag., 56, 113–115, 1992.
Flack, H. D.: On enantiomorph-polarity estimation, Acta Cryst., A39, 876–881, 1983.
Garmash, A. A.: Features of the structure of the Zmeinogorsk deposit in Altai – in: Basic questions and methods for studying the structures of ore fields and deposits, Moscow, State scientific and technical publishing house of literature on geology and protection of mineral resources, 566–581, 1960 (in Russian).
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., and Catalano, A.: The effects of cadmium toxicity, Inter. J. Environment. Res., Public Health, 17, 3782, https://doi.org/10.3390/ijerph17113782, 2020.
George, L. L., Cook, N. J., and Ciobanu, C. L.: Minor and trace elements in natural tetrahedrite-tennantite: effects on element partitioning among base metal sulphides, Minerals, 7, 17, https://doi.org/10.3390/min7020017, 2017.
Ghisani, F., Timmo, K., Altosaar, M., Raudoja, J., Mikli, V., Pilvet, M., Kauk-Kuusik, M., and Grossberg, M.: Synthesis and characterization of tetrahedrite Cu10Cd2Sb4S13 monograin material for photovoltaic application, Mat. Sci. Semiconduct. Process., 110, 104973, https://doi.org/10.1016/j.mssp.2020.104973, 2020.
Ghisani, F., Timmo, K., Altosaar, M., Mikli, V., Danilson, M., Grossberg, M., and Kauk-Kuusik, M.: Chemical etching of tetrahedrite Cu10Cd2Sb4S13 monograin powder materials for solar cell applications, Mat. Sci. Semiconduct. Process, 138, 106291, https://doi.org/10.1016/j.mssp.2021.106291, 2022.
Jia, D., Fu, Z., Zhang, H., and Zhao, C.: The first discovery of Cd-freibergite in China, Acta Miner. Sinica, 8, 136–137, 1988 (in Chinese with English abstract).
Johnson, M. L. and Burnham, C. W.: Crystal structure refinement of an arsenic-bearing argentian tetrahedrite, Am. Miner., 70, 165–170, 1985.
Johnson, N. E.: X-ray powder diffraction data for synthetic varieties of tetrahedrite, Powder Diffr., 6, 43–47, 1991.
Johnson, N. E., Craig, J. R., and Rimstidt, J. D.: Compositional trends in tetrahedrite, Can. Mineral., 24, 385–397, 1986.
Johnson, N. E., Craig, J. R., and Rimstidt, J. D.: Effect of substitutions on the cell dimension of tetrahedrite, Cana. Mineral., 25, 237–244, 1987.
Johnson, N. E., Craig, J. R., and Rimstidt, J. D.: Crystal chemistry of tetrahedrite, Am. Miner., 73, 389–397, 1988.
Keim, M. F., Staude, S., Marquardt, K., Bachmann, K., Opitz, J., and Markl, G.: Weathering of Bi-bearing tennantite, Chem. Geol., 499, 1–25, https://doi.org/10.1016/j.chemgeo.2018.07.032, 2018.
Kraus, W. and Nolze, G.: POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Cryst., 29, 301–303, 1996.
Krustok, J., Raadik, T., Kaupmees, R., Ghisani, F., Timmo, K., Altosaar, M., Mikli, V., and Grossberg, M.: Broad-band photoluminescence of donor–acceptor pairs in tetrahedrite Cu10Cd2Sb4S13 microcrystals, J. Phys. D: Appl. Phys., 54, 105102, https://doi.org/10.1088/1361-6463/abce29, 2020.
Kumar, D. S. P., Chetty, R., Rogl, P., Rogl, G., Bauer, E., Malar, P., and Mallik, R. C.: Thermoelectric properties of Cd doped tetrahedrite: Cu12−xCdxSb4S13, Intermetallics, 78, 21–29, 2016.
Levinsky, P., Candolfi, C., Dauscher, A., Tobola, A., Hejtmánek, J., and Lenoir, B.: Thermoelectric propertirs of the tetrahedrite – tennantite solid solutions Cu12Sb4−xAsxS13 and Cu10Co2Sb4−yAsyS13 (0≤x, y≤4), Phys. Chem. Chem. Phys., 21, 4547–4555, 2019.
López Cota, F. A., Díaz-Guillén, J. A., Juan Dura, O., López de la Torre, M. A., Rodríguez-Hernández, J., and Fernández Fuentes, A.: Mechanosynthesis and thermoelectric properties of Fe, Zn, and Cd-Doped P-Type Tetrahedrite: Cu12−xMxSb4S13, Materials, 14, 3448, https://doi.org/10.3390/ma14133448, 2021.
Majzlan, J., Kiefer, S., Herrmann, J., Števko, M., Sejkora, J., Chovan, M., Lánczos, T., Lazarov, M., Gerdes, A., Langenhorst, F., Borčinová Radková, A., Jamieson, H., and Milovský, R.: Synergies in elemental mobility during weathering of tetrahedrite [(Cu,Fe,Zn)12(Sb,As)4S13]: Field observations, electron microscopy, isotopes of Cu, C, O, radiometric dating, and water geochemistry, Chem. Geol., 488, 1–20, https://doi.org/10.1016/j.chemgeo.2018.04.021, 2018.
Makovicky, E. and Karup-Møller, S.: Exploratory studies on substitution of minor elements in synthetic tetrahedrite. Part I. Substitution by Fe, Zn, Co, Ni, Mn, Cr, V and Pb. Unit-cell parameter changes on substitution and the structural role of “Cu2+”, N. Jb. Miner. Abh., 167, 89–123, 1994.
Makovicky, E., Forcher, K., Lottermoser, W., and Amthauer, G.: The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite, Mineral. Petrol., 43, 73–81, 1990.
Makovicky, E., Tippelt, G., Forcher, K., Lottermoser, W., Karup-Møller, S., and Amthauer, G.: Mössbauer study of Fe-bearing synthetic tennantite, Can. Mineral., 41, 1125–1134, 2003.
Makovicky, E., Karanović, L., Poleti, D., Balić-Zunić, T., and Paar, W. H.: Crystal structure of copper-rich unsubstituted tennantite, Cu12.5As4S13, Can. Mineral., 43, 679–688, 2005.
Mikuš, T., Vlasáč, J., Majzlan, J., Sejkora, J., Steciuk, G., Plášil, J., Rößler, C., and Matthes, C.: Argentotetrahedrite-(Cd), Ag6(Cu4Cd2)Sb4S13, a new member of the tetrahedrite group from Rudno nad Hronom, Slovakia, Mineral. Mag., 87, 262–270, 2023.
Momma, K., Shimizu, M., Kusaba, Y., and Ohki, Y.: Tetrahedrite-(Mn), IMA 2021-098, in: CNMNC Newsletter 65, Eur. J. Mineral., 34, https://doi.org/10.5194/ejm-34-143-2022, 2022.
Nasonova, D. I., Presniakov, I. A., Sobolev, A. V., Verchenko, V. Y., Tsirlin, A. A., Wei, Z., Dikarev, E. V., and Shevelkov, A. V.: Role of iron in synthetic tetrahedrites revisited, J. Solid St. Chem., 235, 28–35, 2016.
Pattrick, R. A. D.: Microprobe analyses of cadmium-rich tetrahedrites from Tyndrum, Perthshire, Scotland, Mineral. Mag., 42, 286–288, 1978.
Pattrick, R. A. D. and Hall, A. J.: Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites, Mineral. Mag., 47, 441–451, 1983.
Pouchou, J. L. and Pichoir, F.: “PAP” (φρZ) procedure for improved quantitative microanalysis, in: Microbeam Analysis, edited by: Armstrong, J. T., San Francisco Press, San Francisco, 104–106, 1985.
Repstock, A., Voudouris, P., Zeug, M., Melfos, V., Zhai, M., Li, H., Kartal, T., and Matuszczak, J.: Chemical composition and varieties of fahlore-group minerals from Oligocene mineralization in the Rhodope area, Southern Bulgaria and Northern Greece, Mineral. Petrol., 110, 103–123, 2016.
Sejkora, J., Biagioni, C., Vrtiška, L., and Moëlo, Y.: Zvěstovite-(Zn), Ag6(Ag4Zn2)As4S13, a new tetrahedrite-group mineral from Zvěstov, Czech Republic. Mineral. Mag., 85, 716–724, 2021.
Sejkora, J., Biagioni, C., Škácha, P., Musetti, S., and Dolníček, Z.: Hakite-(Cd), IMA 2022-090, in: CNMNC Newsletter 70, Eur. J. Miner., 34, 591–601, 2022.
Sejkora, J., Biagioni, C., Števko, M., Musetti, S., and Peterec, D.: Tetrahedrite-(Cu), Cu12Sb4S13, from Bankov near Košice, Slovak Republic: a new member of the tetrahedrite group minerals, Mineral. Mag., submitted, 2023.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Cryst., C71, 3–8, 2015.
Škácha, P., Sejkora, J., Palatinus, L., Makovicky, E., Plášil, J., Macek, I., and Goliáš, V.: Hakite from Příbram, Czech Republic: compositional variability, crystal structure and the role in Se mineralization, Mineral. Mag., 80, 1115–1128, 2016.
Škácha, P., Sejkora, J., and Plášil, J.: Selenide mineralization in the Příbram uranium and base-metal district (Czech Republic), Minerals, 7, 91, https://doi.org/10.3390/min7060091, 2017.
Skinner, B. J.: Unit-cell edges of natural and synthetic sphalerites, Am. Miner., 46, 1399–1411, 1961.
Štekl, J., Sedláček, J., Pech, V., Müller, L., and Měrák, J.: Radětice shaft – vertical development of the S-1 vein, unpublished report DIAMO SUL, 60 pp., 1981 (in Czech).
Štekl, J., Chyba, F., Pech, V., and Müller, L.: Final report of project VP – shaft Radětice – vein S-1 – 3rd level, unpublished report DIAMO SUL, 36 pp., 1984a (in Czech).
Štekl, J., Chyba, F., Pech, V., and Müller, L.: Final report of project VP – shaft Radětice – vein S-1 – 7th level, unpublished report DIAMO SUL, 36 pp., 1984b (in Czech).
Suekuni, K., Tomizawa, Y., Ozaki, T., and Koyano, M.: Systematic study of electronic and magnetic properties for Cu12−xTMxSb4S13 (TM = Mn, Fe, Co, Ni, and Zn) tetrahedrite, J. Appl. Phys., 115, 143702, https://doi.org/10.1063/1.4871265, 2014.
Timofeevskiy, B. A.: On the ore content and stratigraphy of the Zmeinogorsk deposit, Soviet Geology, 2–3, 17–29, 1940 (in Russian).
Voropaev, A. V., Spiridonov, E. M., and Shchibrik, V. I.: Tetrahedrite-Cd – first find in USSR, Dokl. Akad. Nauk SSSR, 300, 1446–1448, 1988 (in Russian).
Voudouris, P. C., Spry, P. G., Sakellaris, G. A., and Mavrogonatos, C.: A cervelleite-like mineral and other Ag-Cu-Te-S minerals [Ag2CuTeS and (Ag,Cu)2TeS] in gold-bearing veins in metamorphic rocks of the Cycladic Blueschist Unit, Kallianou, Evia Island, Greece, Mineral. Petrol., 101, 169–183, 2011.
Wang, Y., Chen, R., Gu, X., Nestola, F., Hou, Z., Yang, Z., Dong, G., Hu, G. and Qu, K.: Tetrahedrite-(Ni), Cu6(Cu4Ni2)Sb4S13, the first nickel member of tetrahedrite group mineral from Luobusa chromite deposit, Tibet, China, Am. Miner., 108, 1984–1992, https://doi.org/10.2138/am-2022-8761, 2023.
Warr, L. N.: IMA-CNMNC approved mineral symbols, Mineral. Mag., 85, 291–320, 2021.
Wedepohl, K. H.: The composition of the continental crust, Geochim. Cosmochim. Ac., 59, 1217–1232, 1995.
Welch, M. D., Stanley, C. J., Spratt, J., and Mills, S. J.: Rozhdestvenskayaite Ag10Zn2Sb4S13 and argentotetrahedrite Ag6Cu4(Fe2+,Zn)2Sb4S13: two Ag-dominant members of the tetrahedrite group, Eur. J. Miner., 30, 1163–1172, https://doi.org/10.1127/ejm/2018/0030-2773, 2018.
Weller, D. P. and Morelli, D. T.: Tetrahedrite thermoelectrics: from fundamental science to facile synthesis, Front. Electron. Mater., 2, 913280, https://doi.org/10.3389/femat.2022.913280, 2022.
Wilson, A. J. C. (Ed.): International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1992.
Wuensch, B. J.: The crystal structure of tetrahedrite, Cu12Sb4S13, Z. Kristallogr., 119, 437–453, 1964.
Wuensch, B. J., Takéuchi, Y., and Nowacki, W.: Refinement of the crystal structure of binnite, Cu12As4S13, Z. Kristallogr., 123, 1–20, https://doi.org/10.1524/zkri.1966.123.16.1, 1966.
Xu, Y. N. and Ching, W. Y.: Electronic, optical, and structural properties of some wurtzite crystals, Phys. Rev., B48, 4335–4351, 1993.
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group,...