Articles | Volume 35, issue 4
https://doi.org/10.5194/ejm-35-645-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-645-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Provenance, protolith and metamorphic ages of jadeite-bearing orthogneiss and host paragneiss at Tavagnasco, the Sesia Zone, Lower Aosta Valley, Italy
Department of Earth and Environmental Sciences, University of Iowa,
Iowa City, IA 52242, USA
William C. McClelland
Department of Earth and Environmental Sciences, University of Iowa,
Iowa City, IA 52242, USA
Simon Schorn
NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
Roberto Compagnoni
Department of Earth Sciences, University of Torino, 10125 Turin,
Italy
Matthew A. Coble
Department of Geological Sciences, Stanford-USGS Ion Microprobe
Laboratory, Stanford, CA 94305, USA
Department of Environmental Chemistry, GNS Science, Avalon, 5010, New Zealand
Related authors
Wentao Cao, Jane A. Gilotti, and Hans-Joachim Massonne
Eur. J. Mineral., 32, 405–425, https://doi.org/10.5194/ejm-32-405-2020, https://doi.org/10.5194/ejm-32-405-2020, 2020
Short summary
Short summary
Zoisite eclogites from the Sanddal area, North-East Greenland, contain numerous textures, such as cusps and neoblasts, which are interpreted as melt-related textures. Mineral chemistry and thermodynamic modeling demonstrate that they were partially melted through the breakdown of hydrous minerals, phengite, paragonite and zoisite. Pressure–temperature phase diagrams show that the eclogites reached a maximum depth of ∼70 km and were partially melted near that depth and during exhumation.
Simon Schorn, Anna Rogowitz, and Christoph A. Hauzenberger
Eur. J. Mineral., 35, 715–735, https://doi.org/10.5194/ejm-35-715-2023, https://doi.org/10.5194/ejm-35-715-2023, 2023
Short summary
Short summary
We investigate rocks called eclogite, which are related to subduction and the collision of continents. Our samples show evidence of limited melting at high pressure corresponding to about 70 km depth, which may play an important role in the exhumation of these rocks and the differentiation of the crust. However, due to their composition and metamorphic evolution, melt production is limited, suggesting that similar rocks are unlikely to contribute strongly to subduction-related magmatism.
Luca Barale, Giancarlo Capitani, Paolo Castello, Roberto Compagnoni, Roberto Cossio, Gianluca Fiore, Linda Pastero, and Marcello Mellini
Eur. J. Mineral., 35, 347–360, https://doi.org/10.5194/ejm-35-347-2023, https://doi.org/10.5194/ejm-35-347-2023, 2023
Short summary
Short summary
The first occurrence of centimeter-thick PS-15 polygonal serpentine veins from ultramafics of Monte Avic, Val d'Aosta, is here reported. The combined mineralogical study led by three techniques with different resolutions has provided new analytical tools capable of recognizing the PS-15 polygonal serpentine. In particular, X-ray powder diffraction data (XRPD) and micro-Raman recognize polygonal serpentine more quickly and easily than transmission electron microscopy (TEM) but equally rigorously.
Giancarlo Capitani, Roberto Compagnoni, Roberto Cossio, Serena Botta, and Marcello Mellini
Eur. J. Mineral., 33, 425–432, https://doi.org/10.5194/ejm-33-425-2021, https://doi.org/10.5194/ejm-33-425-2021, 2021
Short summary
Short summary
Unusually large lizardite (Lz) crystals from Monte Fico serpentinites, Elba (Mellini and Viti, 1994), have allowed several subsequent studies. During a µ-Raman study of serpentine minerals (Compagnoni et al., 2021), the careful microscopic examination of this Lz showed
spongymicrostructure. TEM observations confirmed that the Lz hosts voids, filled with chrysotile and polygonal serpentine; their mutual relationships indicate that Lz grew up with a skeletal habit and fibres epitactically.
Wentao Cao, Jane A. Gilotti, and Hans-Joachim Massonne
Eur. J. Mineral., 32, 405–425, https://doi.org/10.5194/ejm-32-405-2020, https://doi.org/10.5194/ejm-32-405-2020, 2020
Short summary
Short summary
Zoisite eclogites from the Sanddal area, North-East Greenland, contain numerous textures, such as cusps and neoblasts, which are interpreted as melt-related textures. Mineral chemistry and thermodynamic modeling demonstrate that they were partially melted through the breakdown of hydrous minerals, phengite, paragonite and zoisite. Pressure–temperature phase diagrams show that the eclogites reached a maximum depth of ∼70 km and were partially melted near that depth and during exhumation.
Roberto Giustetto, Stefania Padovan, Luca Barale, and Roberto Compagnoni
Eur. J. Mineral., 32, 147–166, https://doi.org/10.5194/ejm-32-147-2020, https://doi.org/10.5194/ejm-32-147-2020, 2020
Short summary
Short summary
The Neolithic polished stone industry of Chiomonte was studied with a multi-analytical approach, with the aim of providing information about the raw material origins and supply sources. Most tools are made of greenstones. Specific mineral and chemical markers were found, pointing to an origin in the Monviso area. The presence on roughouts and broken tools with raw surfaces ascribable to pebbles or cobbles suggests that these rocks had been picked up from glacial or alluvial secondary sources.
Related subject area
Geochronology
Supergene phases from ferruginous duricrusts: non-destructive microsampling and mineralogy prior to (U–Th) ∕ He geochronological analysis
Karina P. P. Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Eur. J. Mineral., 35, 383–395, https://doi.org/10.5194/ejm-35-383-2023, https://doi.org/10.5194/ejm-35-383-2023, 2023
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on sub-millimeter grains that allows us to quantify the hematite and goethite content and hematite / goethite ratio of grains prior to (U–Th) / He geochronological analysis. (U–Th) / He data performed on different aliquots with different acquisition times show no remarkable differences in age, opening a new way to investigate the (U–Th) / He data evolution in supergene lateritic duricrusts.
Cited articles
Andreoli, M., Compagnoni, R., and Lombardo, B.: Jadeite megablasts from
Valchiusella (Sesia-Lanzo zone, Western Alps), Rend. Soc. Ital. Mineral.
Petrol., 32, 681–698, 1976.
Angiboust, S., Glodny, J., Oncken, O., and Chopin, C.: In search of
transient subduction interfaces in the Dent Blanche–Sesia tectonic system
(W. Alps), Lithos, 205, 298–321, 2014.
Arboit, F., Chew, D., Visoná, D., Massironi, M., Sciascia, F.,
Benedetti, G., and Rodani, S.: The geodynamic evolution of the Italian South
Alpine basement from the Ediacaran to the Carboniferous: Was the South
Alpine terrane part of the peri-Gondwana arc-forming terranes?, Gondwana
Res., 65, 17–30, 2019.
Avigad, D., Weissbrod, T., Gerdes, A., Zlatkin, O., Ireland, T. R., and
Morag, N.: The detrital zircon U–Pb–Hf fingerprint of the northern
Arabian–Nubian Shield as reflected by a Late Ediacaran arkosic wedge
(Zenifim Formation; subsurface Israel), Precambrian Res., 266, 1–11,
2015.
Babist, J., Handy, M. R., Konrad-Schmolke, M., and Hammerschmidt, K.:
Precollisional, multistage exhumation of subducted continental crust: The
Sesia Zone, western Alps, Tectonics, 25, TC6008, https://doi.org/10.1029/2005TC001927, 2006.
Barth, A. P. and Wooden, J. L.: Timing of magmatism following initial
convergence at a passive margin, southwestern U.S. Cordillera, and ages of
lower crustal magma sources, J. Geology, 114, 231–245, 2006.
Barth, A. P. and Wooden, J. L.: Coupled elemental and isotopic analyses of
polygenetic zircons from granitic rocks by ion microprobe, with implications
for melt evolution and the sources of granitic magmas, Chem. Geol., 277,
149–159, 2010.
Beltrando, M., Compagnoni, R., and Lombardo, B.: (Ultra-) High-pressure
metamorphism and orogenesis: An Alpine perspective, Gondwana Res., 18,
147–166, 2010a.
Beltrando, M., Rubatto, D., and Manatschal, G.: From passive margins to
orogens: The link between ocean-continent transition zones and
(ultra)high-pressure metamorphism, Geology, 38, 559–562, 2010b.
Beltrando, M., Manatschal, G., Mohn, G., Dal Piaz, G. V., Brovarone, A. V.,
and Masini, E.: Recognizing remnants of magma-poor rifted margins in
high-pressure orogenic belts: The Alpine case study, Earth-Sci. Rev.,
131, 8–115, 2014.
Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N.,
Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S.,
and Foudoulis, C.: Improved 206Pb 238U microprobe geochronology by the
monitoring of a trace-element related matrix effect; SHRIMP, ID-TIMS,
ELA-ICP-MS and oxygen isotope documentation for a series of zircon
standards, Chem. Geol., 205, 115–140, 2004.
Bussy, F., Venturini, G., Hunziker, J. C., and Martinotti, G.: U-Pb ages of
magmatic rocks of the Western Austroalpine Dent-Blanche-Sesia Unit, Schweiz.
Mineral. Petrogr. Mitt., 78, 163–168, 1998.
Chen, Y.-X., Zhou, K., Qiang, H., Zheng, Y.-F., Schertl, H.-P., and Chen, K.:
First finding of continental deep subduction in the Sesia Zone of Western
Alps and implications for subduction dynamics, Nat. Sci. Rev., 10,
nwad023, https://doi.org/10.1093/nsr/nwad023, 2023.
Coble, M. A., Vazquez, J. A., Barth, A. P., Wooden, J., Burns, D.,
Kylander-Clark, A., Jackson, S., and Vennari, C. E.: Trace Element
Characterisation of MAD-559 Zircon Reference Material for Ion Microprobe
Analysis, Geostand. Geoanalyt. Res., 42, 481–497, 2018.
Compagnoni, R. and Maffeo, B.: Jadeite-bearing metagranites l.s. and
related rocks in the Monte Mucrone area (Sesia-Lanzo zone, Western Italian
Alps), Schweiz. Mineral. Petrogr. Mitt., 53, 355–378, 1973.
Compagnoni, R., Dal Piaz, G. V., Hunziker, J. C., Gosso, G., Lombardo, B.,
and Williams, P. F.: The Sesia-Lanzo zone, a slice of continental crust with
alpine high-pressure–low temperature assemblages in the Western Italian
Alps, Rend. Soc. Ital. Mineral. Petrol., 33, 281–334, 1977.
Compagnoni, R., Engi, M., and Regis, D.: Val d'Aosta section of the Sesia
Zone: multi-stage HP metamorphism and assembly of a rifted continental
margin. 10th Int. Eclogite Conference, Syn-Conference Excursion, 5 September
2013, GFT – Geological Field Trips, 6, 1–44, https://doi.org/10.3301/GFT.2014.02, 2013.
Dachs, E.: PET: petrological elementary tools for Mathematica, Comput.
Geosci., 24, 219–235, 1998.
Dal Piaz, G. V.: History of tectonic interpretations of the Alps, J.
Geodyn., 32, 99–114, 2001.
Ferry, J. M. and Watson, E. B.: New thermodynamic models and revised
calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib.
Mineral. Petrol., 154, 429–437, 2007.
Finger, F., Roberts, M. P., Haunschmid, B., Schermaier, A., and Steyrer, H.
P.: Variscan granitoids of central Europe: their typology, potential sources
and tectonothermal relations, Mineral. Petrol., 61, 67–96, 1997.
Fiora, L., Fiusello, C., Fornaro, M., and Primavori, P.: Verde Argento,
Marmo Macc. Int., 28, 61–82, 1999.
Forshaw, J. B., Waters, D. J., Pattison, D. R. M., Palin, R. M., and Gopon,
P.: A comparison of observed and thermodynamically predicted phase
equilibria and mineral compositions in mafic granulites, J. Metam. Geol.,
37, 153–179, 2019.
Gehrels, G. and Pecha, M.: Detrital zircon U-Pb geochronology and Hf
isotope geochemistry of Paleozoic and Triassic passive margin strata of
western North America, Geosphere, 10, 49–65, 2014.
Gehrels, G. E., Valencia, V., and Ruiz, J.: Enhanced precision, accuracy,
efficiency, and spatial resolution of U-Pb ages by laser
ablation-multicollector-inductively coupled plasma-mass spectrometry,
Geochem. Geophys. Geosyst. Geochem., 9, Q03017, https://doi.org/10.1029/2007GC001805, 2008.
Gehrels, G., Giesler, D., Olsen, P., Kent, D., Marsh, A., Parker, W.,
Rasmussen, C., Mundil, R., Irmis, R., Geissman, J., and Lepre, C.: LA-ICPMS
U–Pb geochronology of detrital zircon grains from the Coconino, Moenkopi,
and Chinle formations in the Petrified Forest National Park (Arizona),
Geochronology, 2, 257–282, 2020.
Gibson, T. M., Faehnrich, K., Busch, J. F., McClelland, W. C., Schmitz, M.
D., and Strauss, J. V.: A detrital zircon test of large-scale terrane
displacement along the Arctic margin of North America, Geology, 49, 545–550,
2021.
Giuntoli, F. and Engi, M.: Internal geometry of the central Sesia Zone
(Aosta Valley, Italy): HP tectonic assembly of continental slices, Swiss J.
Geosci., 109, 445–471, 2016.
Giuntoli, F., Lanari, P., Burn, M., Kunz, B. E., and Engi, M.: Deeply subducted continental fragments – Part 2: Insight from petrochronology in the central Sesia Zone (western Italian Alps), Solid Earth, 9, 191–222, https://doi.org/10.5194/se-9-191-2018, 2018.
Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J.
B., and Palin, R. M.: Activity-composition relations for the calculation of
partial melting equilibria in metabasic rocks, J. Metam. Geol., 34,
845–869, 2016.
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological–geophysical record of spreading and subduction in the Alps,
Earth Sci. Rev., 102, 121–158, 2010.
Hayden, L. A. and Watson, E. B.: Rutile saturation in hydrous siliceous melts
and its bearing on T-thermometry of quartz and zircon, Earth Planet. Sc. Lett., 258, 561–568, 2007.
Holland, T. J. B. and Powell, R.: Activity–composition relations for
phases in petrological calculations: an asymmetric multicomponent
formulation, Contrib. Mineral. Petrol., 145, 492–501, 2003.
Holland, T. J. B. and Powell, R.: An improved and extended internally
consistent thermodynamic dataset for phases of petrological interest,
involving a new equation of state for solids, J. Metam. Geol., 29, 333–383,
2011.
Hunziker, J. C.: Rb-Sr and K-Ar age determination and the Alpine tectonic
history of the western Alps, Mem. Instituti Geologia e Mineralogia Univ.
Padova, 31, 1–45, 1974.
Kunz, B. E., Manzotti, P., von Niederhäusern, B., Engi, M., Darling, J.
R., Giuntoli, F., and Lanari, P.: Permian high-temperature metamorphism in
the Western Alps (NW Italy), Int. J. Earth Sci., 107, 203–229, 2018.
Liermann, H.-P., Isachsen, C., Altenberger, U., and Oberhänsli, R.:
Behavior of zircon during high-pressure, low-temperature metamorphism: Case
study from the Internal Unit of the Sesia Zone (Western Italian Alps), Eur.
J. Mineral., 14, 61–71, 2002.
Linnemann, U., Pereira, F., Jeffries, T. E., Drost, K., and Gerdes, A.: The
Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of
geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating
(Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs),
Tectonophysics, 461, 21–43, 2008.
Ludwig, K. R.: Isoplot 3.6, Berkeley Geochronology Center Special
Publication 4, 77 pp., 2008.
Ludwig, K. R.: Squid 2: A User's Manual, Berkeley Geochronology Center
Special Publication 5, 110 pp., 2009.
Malusà, M. G., Guillot, S., Zhao, L., Paul, A., Solarino, S., Dumont,
T., Schwartz, S., Aubert, C., Baccheschi, P., Eva, E., Lu, Y., Lyu, C.,
Pondrelli, S., Salimbeni, S., Sun, S., and Yuan, W.: The deep structure of
the Alps based on the CIFALPS seismic experiment: a synthesis, Geochem.
Geophys. Geosyst., 22, e2020GC009466, https://doi.org/10.1029/2020GC009466, 2021.
Manzotti, P., Ballèvre, M., Zucali, M., Robyr, M., and Engi, M.: The
tectonometamorphic evolution of the Sesia–Dent Blanche nappes (internal
Western Alps): review and synthesis, Swiss J. Geosci., 107, 309–336, 2014a.
Manzotti, P., Zucali, M., Ballèvre, M., Robyr, M., and Engi, M.:
Geometry and kinematics of the Roisan-Cignana shear zone, and the evolution
of the Dent Blanche Tectonic System (Western Alps), Swiss J. Geosci., 107,
23–47, 2014b.
Massonne, H.-J. and Sobiech, M.: Paragonite: why is it so rare in
medium-temperature high-pressure rocks?, Int. Geol. Rev., 49, 301–312,
2007.
Mattinson, J. M.: Analysis of the relative decay constants of 235U and 238U
by multi-step CA-TIMS measurements of closed-system natural zircon samples,
Chem. Geol., 275, 186–198, 2010.
McClelland, W. C. and Lapen, T. J.: Linking time to the
pressure-temperature path for ultrahigh-pressure rocks, Elements, 9,
273–279, 2013.
Meinhold G., Bassis A., Hinderer M., Lewin A., and Berndt J.: Detrital
zircon provenance of north Gondwana Palaeozoic sandstones from Saudi Arabia,
Geol. Mag., 158, 442–458, 2021.
Nance, D. R., Murphy, J. B., Strachan, R. A., Keppie, J. D.,
Gutiérrez-Alonso, G., Fernández-Suárez, J., Quesada, C.,
Linnemann, U., D'Lemos, R., and Pisarevsky, S. A.: Neoproterozoic–early
Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan
terranes: Amazonian v. West African connections, in: The Boundaries of the West African Craton, edited by: Ennih, N. and
Liégeois, J.-P.,
Geol. Soc., London, Special Publications, 297, 345–383, 2008.
Paces, J. B. and Miller Jr., J. D.: Precise U-Pb ages of Duluth complex and
related mafic intrusions, northeastern Minnesota: Geochronological insights
to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes
associated with the 1.1 Ga midcontinent rift system, J. Geophys. Res., 98,
13997–14013, 1993.
Paul, A., Malusà, M. G., Solarino, S., Salimbeni, S., Eva, E., Nouibat,
A., Pondrelli, S., Aubert, C., Dumont, T., Guillot, S., Schwartz, S., and
Zhao, L.: Along-strike variations in the fossil subduction zone of the
Western Alps revealed by the CIFALPS seismic experiments and their
implications for exhumation of (ultra-) high-pressure rocks, Earth Planet. Sc. Lett., 598, 117843, https://doi.org/10.1016/j.epsl.2022.117843, 2022.
Polino, R., Dal Piaz, G. V., and Gosso, G.: Tectonic erosion at the Adria
margin and accretionary processes for the Cretaceous orogeny of the Alps,
Mém. Société Géol. France, 156, 345–367, 1990.
Powell, R. and Holland, T. J. B.: An internally consistent thermodynamic
dataset with uncertainties and correlations: 3. Application, methods, worked
examples and a computer program, J. Metam. Geol., 6, 173–204, 1988.
Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., and Engi,
M.: Multiple metamorphic stages within an eclogite-facies terrane (Sesia
Zone, western Alps) revealed by Th–U–Pb petrochronology, J. Petrol., 55,
1429–1456, 2014.
Rubatto, D.: Dating of Pre-Alpine Magmatism, Jurassic Ophiolites and Alpine
Subductions in the Western Alps, PhD thesis (unpublished), ETH, Swiss
Federal Institute of Technology, 1998.
Rubatto, D., Regis, D., Hermann, J., Boston, K., Engi, M., Beltrando, M.,
and McAlpine, S. R. B.: Yo-yo subduction recorded by accessory minerals in
the Italian Western Alps, Nat. Geosci., 4, 338–342, 2011.
Schaltegger, U. and Gebauer, D.: Pre-Alpine geochronology of the Central,
Western and Southern Alps, Schweiz. Mineral. Petrogr. Mitt., 79, 79–87,
1999.
Siegesmund, S., Oriolo, S., Broge, A., Hueck, M., Lammerer, B., Basei, M. A.
S., and Schulz, B.: Cadomian to Cenerian accretionary orogenic processes in
the Alpine basement: the detrital zircon archive, Int. J. Earth Sci., 112, 1157–1174, https://doi.org/10.1007/s00531-023-02305-6, 2023.
Sirevaag, H., Jacobs, J., Ksienzyka, A. K., Rocchi, S., Paoli, G.,
Jørgensen, H., and Košler, J.: From Gondwana to Europe: The journey
of Elba Island (Italy) as recorded by U–Pb detrital zircon ages of
Paleozoic metasedimentary rocks, Gondwana Res., 38, 273–288, 2016.
Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope
evolution by a two stage model, Earth Planet. Sc. Lett., 26, 207–221,
1975.
Tropper P., Essene E. J., Sharp Z. D., and Hunziker, J. C.: Application of
K-feldspar – jadeite-quartz barometry to eclogite facies metagranites and
metapelites in the Sesia Lanzo Zone (Western Alps, Italy), J. Metam. Geol.,
17, 195–209, 1999.
Venturini, G., Martinotti, G., Armando, G., Barbero, M., and Hunziker, J. C.:
The Central Sesia Lanzo zone (Western Italian Alps): new field observations
and lithostratigraphic subdivisions, Schweiz. Mineral. Petrogr. Mitt., 74,
115–125, 1994.
Vho, A., Rubatto, D., Lanari, P., and Regis, D.: The evolution of the Sesia
Zone (Western Alps) from Carboniferous to Cretaceous: insights from zircon
and allanite geochronology, Swiss J. Geosci. 113, https://doi.org/10.1186/s00015-020-00372-4, 2020.
von Raumer, J. F., Bussy, F., Schaltegger, U., Schulz, B., and Stampfli, G.
M.: Pre-Mesozoic Alpine basements – their place in the European Paleozoic
framework, Geol. Soc. Am. Bull., 125, 89–108, 2013.
von Raumer, J. F., Stampfli, G. M., Arenas, R., and Martínez, S. S.:
Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their
tectonic interpretation, Int. J. Earth Sci., 104, 1107–1121, 2015.
Watson, E. B., Wark, D. A., and Thomas, J. B.: Crystallization thermometers for
zircon and rutile, Contrib. Mineral. Petrol., 151, 413–433, 2006.
White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., and Green, E.
C. R.: New mineral activity-composition relations for thermodynamic
calculations in metapelitic systems, J. Metam. Geol., 32, 261–286, 2014a.
White, R. W., Powell, R., and Johnson, T. E.: The effect of Mn on mineral
stability in metapelites revisited: new a–x relations for manganese-bearing
minerals, J. Metam. Geol., 32, 809–828, 2014b.
Whitney, D. L. and Evans, B. W.: Abbreviations for names of rock-forming
minerals, Am. Mineralogist, 95, 185–187, 2010.
Williams, I. S.: U–Pb by ion microprobe, in: Applications of microanalytical techniques to
understanding mineralizing processes, edited by: McKibben, M. A., Shanks, W. C., and
Ridley, W. I., Soc. Econ. Geol. Rev. Econ. Geol., 7, 1–35, 1998.
Žák, J., Svojtka, M., Gerdjikov, I., Kounov, A., and Vangelov, D.
A.: The Balkan terranes: a missing link between the eastern and western
segments of the Avalonian–Cadomian orogenic belt?, Int. Geol. Rev., 64,
2389–2415, 2022.
Zucali, M., Spalla, M. I., and Gosso, G.: Strain partitioning and fabric
evolution as a correlation tool: the example of the Eclogitic Micaschists
Complex in the Sesia-Lanzo Zone (Monte Mucrone-Monte Mars, Western Alps,
Italy), Schweiz. Mineral. Petrogr. Mitt., 82, 429–454, 2002.
Zurbriggen, R.: Ordovician orogeny in the Alps: a reappraisal, Int. J. Earth
Sci., 104, 335–350, 2015.
Short summary
We show that metamorphosed sedimentary rocks in the Western Alps have a detrital zircon signature that connects them to the Adrian plate along the Gondwana margin. We used zircon to learn that a jadeite-bearing orthogneiss intruded into these strata in the Ordovician (at ~460 Ma) and was metamorphosed at high pressure during early Alpine subduction of Adria beneath Europe at ~78 Ma. Our results are consistent with the complex subduction of Adria before full-on collision with the European plate.
We show that metamorphosed sedimentary rocks in the Western Alps have a detrital zircon...